1. The plane \mathcal{P} given by 7x - 4y + 4z = -3 and the line ℓ given by x = t + 3, y = 2t + 10 and z = -t - 1 intersect at a point A. Calculate the point A.

Point of Intersection A: (-1, 2, 3)

Solution: The line is given by the points (t + 3, 2t + 10, -t - 1) where t varies over all real numbers. We want to know which of these points satisfies the equation of the plane 7x - 4y + 4z = -3. To determine this, we simply plug in the point into the plane equation and solve for t. So we start with

$$7(t+3) - 4(2t+10) + 4(-t-1) = -3,$$

and simplify the left-hand side to get -5t-23 = -3. Solving for *t*, we see that t = -4 when the point (t+3, 2t+10, -t-1) in on the plane. So A = (-4+3, 2(-4)+10, -(-4)-1) = (-1, 2, 3).

2. Let \mathcal{P} and A be as in the previous problem. Calculate a point B which is a distance 18 from A and a distance 18 from plane \mathcal{P} . (Note: There are two correct answers. You only need to give one. Also, if you are using line ℓ , you are likely doing something wrong.)

(13, -6, 11) or (-15, 10, -5)(either answer) Point of Intersection *B*: B_{\bullet} Solution: Part of the problem is to see if you can visualize correctly where B is at. The point B is directly above (or below) A so that \overrightarrow{AB} is perpendicular to the plane \mathcal{P} and $\|\overrightarrow{AB}\| = 18$. Thus, we are looking for B so that \overrightarrow{AB} is a multiple of the vector $\overrightarrow{n} = \langle 7, -4, 4 \rangle$, the normal to the plane \mathcal{P} obtained from the equation for \mathcal{P} . Since $\|\vec{n}\| = \sqrt{49 + 16 + 16} = \sqrt{81} = 9$, and we want \overrightarrow{AB} to have length 18, we can take $\overrightarrow{AB} = 2 \overrightarrow{n} = \langle 14, -8, 8 \rangle$. (Alternatively, one can compute $\overrightarrow{AB} = 18 \frac{1}{n} / ||\overrightarrow{n}||$ and get the same result.) Since A = (-1, 2, 3) and $\overrightarrow{AB} = \langle 14, -8, 8 \rangle$, we deduce that B = (13, -6, 11). The other answer is obtained from taking \overrightarrow{AB} in the opposite direction, so $\overrightarrow{AB} = \langle -14, 8, -8 \rangle$. Then A = (-1, 2, 3) and $\overrightarrow{AB} = \langle -14, 8, -8 \rangle$ gives B = (-15, 10, -5).