Test 3: Spring 2006

MATH 221: BASIC CONCEPTS OF ELEMENTARY MATHEMATICS I

Name _____

Instructions: Check that your test consists of 25 problems. Put your name in the space provided above. Answer each multiple choice question below. Each problem is worth 4 points with the same scoring procedure as used on the quizzes. A blank page is provided at the end of this test for your work.

- 1. Which of the following is *not* correct?
 - (a) $17 \equiv -2 \pmod{5}$ (b) $17 \equiv 7 \pmod{5}$
 - (c) $13 \equiv -2 \pmod{5}$ (d) $13 \equiv 33 \pmod{5}$
- 2. Today is Wednesday, April 19, 2006. There are 365 days this year and 365 days next year, so neither year is a leap year. What day of the week will it be on April 19, 2007?
 - (a) Monday (b) Tuesday (c) Thursday (d) Friday
- 3. Which of the following is a proper fraction?

(a)
$$\frac{8}{6}$$
 (b) $\frac{\sqrt{2}}{2}$ (c) $\frac{19}{18}$ (d) $\frac{-12}{18}$

- 4. Which of the following is the simplest form of 225/315?
 - (a) $\frac{3}{4}$ (b) $\frac{7}{9}$ (c) $\frac{5}{7}$ (d) $\frac{75}{105}$
- 5. What fraction of the three pizzas is missing to the right?
 - (a) 1/3 (b) 1/6
 - (c) 5/24 (d) 6/25

- 6. One bit is one-eighth of a Spanish dollar. A teacher asks students to start with 21 bits and to exchange the bits for whole Spanish dollars and bits. The point of such an exercise is to teach the students
 - (a) unlike with English, every bit counts when doing mathematics.
 - (b) how to express fractions as mixed fractions.
 - (c) the commutative property of addition.
 - (d) the commutative property of multiplication.
- 7. What equation is the figure to the right illustrating?
 - (a) $\frac{1}{4} = \frac{3}{12}$ (b) $\frac{1}{3} = \frac{4}{12}$ (c) $\frac{8}{12} - \frac{4}{12} = \frac{1}{3}$ (d) $\frac{4}{12} - \frac{1}{12} = \frac{1}{4}$

					-	
					-	-
 					-	-
 					-	-
 			-			
 			-			
 			-			
					-	

8. Which one of the following is the least useful in explaining to a child why the fractions 3/4 and 6/8 are equal?

- 9. A clerk sold three pieces of one type of ribbon to different customers. One piece was $\frac{1}{3}$ yard long, another was $2\frac{1}{4}$ yard long, and the third was $3\frac{1}{2}$ yard long. What was the total length of that type of ribbon sold?
 - (a) $6\frac{1}{12}$ yards (b) $6\frac{1}{6}$ yards (c) $6\frac{1}{4}$ yards (d) $6\frac{1}{3}$ yards

10. The following represents an equation for the sum of two rational numbers.

What is the equation that is represented?

(a)	$\frac{1}{3} + \frac{11}{12} =$	$\frac{5}{4}$	(b)	$\frac{1}{4} +$	$\frac{11}{12} =$	$=\frac{7}{6}$
(c)	$\frac{1}{3} + \frac{9}{12} =$	$\frac{13}{12}$	(d)	$\frac{1}{6} +$	$\frac{3}{4} =$	$\frac{11}{12}$

11. Which of the following is written in decreasing order?

(a)
$$\frac{-19}{31}$$
, $\frac{-7}{11}$, $\frac{-19}{30}$
(b) $\frac{-19}{31}$, $\frac{-19}{30}$, $\frac{-7}{11}$
(c) $\frac{-19}{30}$, $\frac{-7}{11}$, $\frac{-19}{31}$
(d) $\frac{-19}{30}$, $\frac{-19}{31}$, $\frac{-7}{11}$

12. The figure to the right illustrates which of the following equations involving addition of rational numbers?

(a)
$$\frac{2}{3} + \frac{1}{4} = \frac{11}{12}$$
 (b) $\frac{3}{4} + \frac{1}{6} = \frac{11}{12}$
(c) $\frac{3}{10} + \frac{8}{10} = \frac{11}{10}$ (d) $\frac{1}{3} + \frac{3}{5} = \frac{14}{15}$

Note: In this problem, the letters "A" and "B" in the figures indicate two different shades of grey.

13. What multiplication problem is represented by the diagram below?

- 14. Martha has read $\frac{4}{5}$ of a 205-page book. How many pages does she have left to read?
 - (a) 36 pages (b) 38 pages (c) 41 pages (d) 44 pages
- 15. Which of the following is not always true? (Here, a, b, c and d are positive integers.)
 - (a) $\frac{a}{b} \times \frac{c}{d} = \frac{a}{b} \div \frac{d}{c}$ (b) $\frac{a}{b} + \frac{c}{d} = \frac{a+c}{b+d}$ (c) $\frac{a}{b} \div \frac{c}{d} = \frac{a \div c}{b \div d}$ (d) $\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$
- 16. When discussing division with rational numbers, we referred to the number of *a*'s that it takes to get *b*. With this in mind, the number of $\frac{1}{8}$'s that it takes to get $2\frac{1}{4}$ is
 - (a) 18 (b) 19 (c) 20 (d) 21

- 17. The figure to the right is a model for an equation involving division. What is the equation?
 - (a) $\frac{3}{4} \div \frac{1}{8} = 6$ (b) $\frac{1}{8} \div \frac{3}{4} = 1/6$ (c) $\frac{3}{8} \div \frac{1}{4} = 3/2$ (d) $\frac{8}{3} \div \frac{1}{8} = \frac{1}{3}$
- 18. The number 0.0076 is equal to which of the following?
 - (a) zero point zero one seven six (b) seventy-six thousandths
 - (c) seventy-six ten-thousandths (d)seven hundredths and six ten-

thousandths

19. Three of the following numbers are equal. What is the other number (the one that is different)?

(a)
$$\frac{0.215}{0.34}$$
 (b) $\frac{0.00215}{0.00034}$ (c) $\frac{0.0215}{0.034}$ (d) $\frac{215}{340}$

20. Given the numbers A, B, C, D, E and F on the number line below, which of the following is nearest to the value of $D \cdot F$? (Note that you have had the figure below in a similar but *different* problem.)

- 21. What is the value of 14.3/0.22?
 - (a) 0.0065(c) 0.65(b) 0.065 (d) 65

- 22. If the numbers below are arranged properly on a typical number line, which will be furthest to the right? (Note that these are negative numbers.)
 - (a) $^{-}0.84$ (b) $^{-}0.804$ (c) $^{-}0.8399$ (d) $^{-}0.80399$
- 23. Which of the following can be written as a terminating decimal?

(a)
$$\frac{12}{1440}$$
 (b) $\frac{23}{1440}$ (c) $\frac{34}{1440}$ (d) $\frac{45}{1440}$

- 24. The Venn Diagram to the right is missing the name of the bigger set of numbers that includes every number in the largest oval. What is it?
 - (a) the real numbers
 - (b) the irrational numbers
 - (c) the imaginary numbers
 - (d) the whopper numbers
- 25. Which of the following is true?
 - (a) The decimal expansion of an irrational number cannot have a pattern.
 - (b) Most real numbers are irrational.
 - (c) The number π equals 22/7.
 - (d) It is possible to make a list that includes all irrational numbers.

