MATH 174, ANSWERS TO TEST 1

1.	p	q	$p \wedge q$	$p \lor q$	$\sim q$	$\sim q \rightarrow p$	$\sim q \rightarrow (p \wedge q)$	$\sim q \wedge (\sim q \rightarrow (p \wedge q))$
	Т	Т	Т	Т	F	Т	Т	F
	Т	F	F	Т	Т	Т	F	F
	F	Т	F	Т	F	Т	Т	F
	F	F	F	F	Т	F	F	F

2. $\sim q \rightarrow (p \wedge q)$

3. $p \lor q$ and $\sim q \rightarrow p$

- 4. None.
- 5. $\sim q \wedge (\sim q \rightarrow (p \wedge q))$
- 6. $\sim p \wedge \sim q$
- 7. $q \rightarrow p$
- 8. $\sim q \rightarrow \sim p$
- 9. the contrapositive
- 10. The first two arguments are invalid and the last one is valid.
- 11. $\forall x \in \mathbb{R}, x \leq 1 \text{ or } x > 3$
- 12. $\exists n \in \mathbb{Z}$ such that $n \ge 4$, n is even, and n is not the sum of two primes
- 13. Observe that

4 = 2 + 2, 6 = 3 + 3, 8 = 3 + 5, 10 = 5 + 5, and 12 = 5 + 7.

This shows by the method of exhaustion that for all $n \in \{4, 6, 8, 10, 12\}$, n is the sum of two primes.

- 14. Since $2^5 = 32$ and $5^2 = 25$, we see that $2^5 > 5^2$. Thus, we have shown that there exists an integer n > 2 (namely, one can take n = 5) such that $2^n > n^2$.
- 15. 2, 5, and 11
- 16. 3, 5, and 9
- 17. No. To see this, we need only observe that $221 = 13 \times 17$. (One should check to see if 221 has a prime divisor $\leq \sqrt{221}$. This means one should check to see if 221 is divisible by one of the primes 2, 3, 5, 7, 11, or 13.)
- $18. \ 25 \ \mathrm{mod} \ 7 = 4, \ -33 \ \mathrm{mod} \ 14 = 9, \ \mathrm{and} \ \ 3029282726252423222120191817161514131211109876543210 \ \mathrm{mod} \ 4 = 2$
- 19. $\lceil 37.95 \rceil = 38$ and $\lfloor -37.95 \rfloor = -38$
- 20. Assume $\sqrt{2}$ is rational. Then there exist integers a and b with $b \neq 0$, with $\sqrt{2} = a/b$, and with a/b reduced (so that a and b have no common prime factors). Since $\sqrt{2} = a/b$, we obtain

 $b\sqrt{2} = a$ so that $2b^2 = a^2$.

We deduce that \boxed{a} is even. Therefore, there is an integer k such that $\boxed{a = 2k}$. Substituting this into $2b^2 = a^2$, we obtain $\boxed{2b^2 = (2k)^2 = 4k^2}$ so that $b^2 = \boxed{2k^2}$. We deduce that \boxed{b} is even. This is a contradiction since $\boxed{a/b}$ is reduced and a and b are even. Therefore, our assumption is wrong and $\sqrt{2}$ is $\boxed{\text{irrational}}$.