MATH 174: TEST 1

Name ____

Instructions: Put your name in the space provided above. Make sure that your test has six different pages including one blank page. Work each problem below and show <u>ALL</u> of your work. Put all answers in the spaces provided. Do <u>NOT</u> use a calculator.

Point Values: The point values are indicated to the left of each problem.

(6) 1. Complete the truth table below.

p	q	$p \wedge q$	$p \lor q$	$\sim q$	$\sim q \rightarrow p$	$\sim q \rightarrow (p \wedge q)$	$\sim q \land (\sim q \to (p \land q))$
Т	Т	Т	Т	F			
Т	F	F	Т	Т			
F	Т	F	Т	F			
F	F	F	F	Т			

(4) 2. Which one of the statement forms $p \wedge q$, $p \vee q$, $\sim q \rightarrow p$, $\sim q \rightarrow (p \wedge q)$, and $\sim q \wedge (\sim q \rightarrow (p \wedge q))$ is equivalent to q? (Note: These statement forms are in the truth table in Problem 1.)

Answer:	
---------	--

(4) 3. Which two of the statement forms $p \wedge q$, $p \vee q$, $\sim q$, $\sim q \rightarrow p$, $\sim q \rightarrow (p \wedge q)$, and $\sim q \wedge (\sim q \rightarrow (p \wedge q))$ are equivalent to each other? (Note: These statement forms are in the truth table in Problem 1.)

Answers:	1.							
	2.							
			c		1	1	~	

(put one form in each box)

4. Which if any of the statement forms $p \wedge q$, $p \vee q$, $\sim q \rightarrow p$, $\sim q \rightarrow (p \wedge q)$, and (4) $\sim q \wedge (\sim q \rightarrow (p \wedge q))$ is a tautology? Put "NONE" for the answer if none of these forms is a tautology. (Note: These statement forms are in the truth table in Problem 1.)

5. Which if any of the statement forms $p \wedge q$, $p \vee q$, $\sim q \rightarrow p$, $\sim q \rightarrow (p \wedge q)$, and (4) $\sim q \wedge (\sim q \rightarrow (p \wedge q))$ is a contradiction? Put "NONE" for the answer if none of these forms is a contradiction. (Note: These statement forms are in the truth table in Problem 1.)

Answer:

6. According to De Morgan's Law, $\sim (p \lor q)$ is equivalent to what? (4)

Answer:	
---------	--

7. What is the converse of "if p then q"? Use either words or a statement form. (4)

Answer:

8. What is the contrapositive of "if p then q"? Use either words or a statement form. (4)

Answer:

9. Which one of the converse, the inverse, the negation, and the contrapositive of "if p then (4)q" is equivalent to "if p then q"?

Answer:

(9) 10. Determine whether the following arguments are valid or invalid.

If I will go to school, then I will learn a lot. I will learn a lot. \therefore I will go to school.	Answer: (write "valid" or write "invalid")
For every martian boy, if he lives on Venus, then he is green. Joho is a green martian boy. ∴ Joho lives on Venus.	Answer: (write "valid" or write "invalid")
No student in this class knows Bill Satchaquaw. Jill is a student who knows Bill Satchaquaw. ∴ Jill is not in this class.	Answer: (write "valid" or write "invalid")

(4) 11. Negate the following:

$\exists x \in \mathbb{R} \text{ such that } x > 1 \text{ and } x \leq 3$

Answer:

(4) 12. Negate the following:

 $\forall n \in \mathbb{Z}$, if $n \ge 4$ and n is even, then n is the sum of two primes

Answer:

(4) 13. Prove that for all $n \in \{4, 6, 8, 10, 12\}$, n is the sum of two primes. The two primes may be equal (they may be the same prime). Use complete English sentences.

Put Proof Here:

(4) 14. Prove that there exists an integer n > 2 such that $2^n > n^2$. Use complete English sentences (one sentence is fine here).

Put Proof Here:

(4) 15. What are the prime divisors of 440?

Answer:

(4) 16. Which of the numbers 3, 4, 5, and 9 are divisors of 9876543210? Your answer should be more than one number.

Answer:

(9)

(6)

(10) 20. Complete the following proof that $\sqrt{2}$ is irrational.

Assume is rational. Then there exist a and b with $b \neq 0$, with $\sqrt{2} = a/b$, and with a/b reduced (so that a and b have no common prime factors). Since $\sqrt{2} = a/b$, we obtain $b\sqrt{2} = a$ $2b^2 = a^2$. so that We deduce that is even. Therefore, there is an integer k such that Substituting this into $2b^2 = a^2$, we obtain so that $b^2 =$ is even. This is a contradiction since We deduce that Therefore, our assumption is wrong and $\sqrt{2}$ is

 $\lfloor -37.95 \rfloor =$