MATH 174, PRACTICE PROBLEMS FOR After TEST 2

- 1. Let u_n be a sequence defined recursively by $u_0 = -1/2$, $u_1 = 0$, and $u_{n+1} = 6u_n 8u_{n-1}$ for all $n \ge 1$.
 - (a) What are the values of u_2 , u_3 , and u_4 ?
 - (b) Find an explicit formula for u_n .
- 2. Suppose u_n is a sequence defined by $u_n = 6^n 7 \times 2^n$ so that $u_0 = -6$, $u_1 = -8$, and $u_2 = 8$. Then u_n satisfies which one of the following recursion relations for all $n \ge 1$?

(a)
$$u_{n+1} = 2u_n - 4u_{n-1}$$
 (b) $u_{n+1} = 5u_n - 8u_{n-1}$ (c) $u_{n+1} = 8u_n - 12u_{n-1}$ (d) $u_{n+1} = 11u_n - 16u_{n-1}$

- 3. Suppose u_n is a sequence defined by $u_n = 2^n 3 \times (-1)^n$ so that $u_0 = -2$, $u_1 = 5$, and $u_2 = 1$. Determine a recursion relation that u_n satisfies for all $n \ge 1$.
- 4. Suppose f(x) = O(g(x)) so that there are positive M and x_0 such that $|f(x)| \le M|g(x)|$ for every $x \ge x_0$. Suppose also g(x) = O(h(x)) so that there are positive M' and x'_0 such that $|g(x)| \le M'|h(x)|$ for every $x \ge x'_0$. Explain why f(x) = O(h(x)). In other words, why are there M'' and x''_0 such that $|f(x)| \le M''|h(x)|$ for every $x \ge x'_0$?
- 5. Which of the following (possibly more than one) is $O(x^2)$? Give brief justifications of your answers (for each of (a), (b), (c), (d), and (e), you should explain why it is or is not $O(x^2)$).
 - (a) x (b) x^3 (c) $(x-1)^2$ (d) $(x+1)^2$ (e) $(\log_2 x)^{24}$
- 6. Which of the following (possibly more than one) is O(n⁵)? Give brief justifications of your answers (for each of (a), (b), (c), and (d), you should explain why it is or is not O(n⁵)).

(a)
$$\sum_{k=1}^{n} k^4$$
 (b) $\sum_{k=1}^{n} k^5$ (c) $\sum_{k=1}^{n} k(k+1)(k+2)(k+3)$ (d) $\sum_{k=1}^{n} 2^k$

- 7. For the graph below, determine the degrees of the vertices A, B, and C.
- 8. Denote a path by a sequence of vertices. For example, *DECDA* would be the path starting at *D*, and then going to *E*, and then *C*, and then back to *D*, and then ending at *A*. Write a sequence of vertices that represents an Euler circuit for the graph below.
- 9. Is the complete graph on six vertices (denoted K_6) planar? Why or why not?

