MATH 174, ANSWERS TO PRACTICE PROBLEMS FOR TEST 2
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. Yes. Every integen can be written uniquely in the foray + » whereq is an integer and € {0, 1, 2,3}. The integer
n is in B precisely whernr = 0 and is inC precisely whenr = 2. Sincedq + 0 = 2(2¢), 4¢ + 1 = 2(2¢) + 1,
49 +2=2(2¢g+1),and4dq + 3 = 2(2¢ + 1) + 1, we see that is odd precisely whenis 1 or 3. In other wordsp is in
A precisely when = 1 or r» = 3. It follows that every integer belongs to exactly onedfB, or C' so that4, B, andC
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form a partition ofZ.

{0.{a}, {0}, {c}.{a, b}, {a, c}, {b.c}. {a,b,c}}
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23. Let P(n) be the statement that
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We prove thatP(n) is true for every positive integer by using|induction|. We first show that P(1) |is true.
SinceV/1 = 1, we see that/v/1 > /1. Thus| P(1) |is in fact true. Next, we suppose thiais an integer> 1
such that P(k) |is true. This is called our induction hypothesis. Thus, our induction hypothesis is asserting that
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From the induction hypothesis, we obtain that
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Observe that/k(k + 1) > Vk2 = k so that
VEGEFD) +1>k+1.

Dividing by vk + 1, we deduce that
1
Vk |+ ——=>|Vk+1|

We deduce that
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We have shown that iP(k) is true, then P(k + 1) | is true. This completes the induction argument. Therefore,
P(n) is true for every integen > 1. B
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