1.
$$1 + 3 + 3^2 + 3^3 + \dots + 3^{99} + 3^{100} = \sum_{k=1}^{101} 3^{k-1}$$

2. $1 - 3 + 3^2 - 3^3 + \dots - 3^{99} + 3^{100} = \sum_{k=1}^{101} (-3)^{k-1}$
3. $\frac{1}{2} - \frac{1}{22} = \frac{5}{11}$
4. 2460
5. $\frac{1}{5} (2^{12} - 1)$
6. $(A \cap B) \cup (A \cap C)$
7. $(A \cup B)^c = A^c \cap B^c$
 $(A \cap B)^c = A^c \cup B^c$
8. False
9. False
10. (a) $\{a\}$

(b)
$$\{a\}$$

- 11. $\{(1,1), (1,2), (2,1), (2,2)\}$
- 12. Yes. Every integer n can be written uniquely in the form 4q + r where q is an integer and $r \in \{0, 1, 2, 3\}$. The integer n is in B precisely when r = 0 and is in C precisely when r = 2. Since 4q + 0 = 2(2q), 4q + 1 = 2(2q) + 1, 4q + 2 = 2(2q + 1), and 4q + 3 = 2(2q + 1) + 1, we see that n is odd precisely when r is 1 or 3. In other words, n is in A precisely when r = 1 or r = 3. It follows that every integer belongs to exactly one of A, B, or C so that A, B, and C form a partition of \mathbb{Z} .

13. $\{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}$

- 14. 21
- 15. A[56]
- 16. 60
- 17.36
- 18. 60
- 19. -9

```
20. \ 1 \ 11 \ 55 \ 165 \ 330 \ 462 \ 462 \ 330 \ 165 \ 55 \ 11 \ 1
```

```
21. -2^5\binom{8}{5} = -1792
```

22. (a) 49

(b) 36 (c) 4 (d) $\sum_{k=1}^{8} k^2 = 204$

23. Let P(n) be the statement that

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots + \frac{1}{\sqrt{n-1}} + \frac{1}{\sqrt{n}} \ge \boxed{\sqrt{n}}.$$

We prove that P(n) is true for every positive integer n by using induction. We first show that P(1) is true. Since $\sqrt{1} = 1$, we see that $1/\sqrt{1} \ge \sqrt{1}$. Thus, P(1) is in fact true. Next, we suppose that k is an integer ≥ 1 such that P(k) is true. This is called our induction hypothesis. Thus, our induction hypothesis is asserting that

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots + \frac{1}{\sqrt{k-1}} + \frac{1}{\sqrt{k}} \ge \boxed{\sqrt{k}}.$$

From the induction hypothesis, we obtain that

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots + \frac{1}{\sqrt{k-1}} + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \ge \sqrt{k} + \frac{1}{\sqrt{k+1}}.$$

Observe that $\sqrt{k(k+1)} > \sqrt{k^2} = k$ so that

$$\sqrt{k(k+1)} + 1 > k+1.$$

Dividing by $\sqrt{k+1}$, we deduce that

$$\boxed{\sqrt{k}} + \frac{1}{\sqrt{k+1}} > \boxed{\sqrt{k+1}}.$$

We deduce that

$$\frac{1}{\sqrt{1}} + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots + \frac{1}{\sqrt{k-1}} + \frac{1}{\sqrt{k}} + \frac{1}{\sqrt{k+1}} \ge \boxed{\sqrt{k+1}}.$$

We have shown that if P(k) is true, then P(k+1) is true. This completes the induction argument. Therefore, P(n) is true for every integer $n \ge 1$.