MATH 174, ANSWERS TO PRACTICE PROBLEMS FOR TEST 1

1.	p	q	$p \wedge q$	$\sim p$	$\sim q$	$p \lor \sim q$	$\sim p \lor q$	$\sim p \lor (p \land q)$	$\sim q \lor (p \land q)$	$(p \lor \sim q) \lor (\sim p \lor q)$
	Т	Т	Т	F	F	Т	Т	Т	Т	Т
	Т	F	F	F	Т	Т	F	F	Т	Т
	F	Т	F	Т	F	F	Т	Т	F	Т
	F	F	F	Т	Т	Т	Т	Т	Т	Т

2. $p \lor \sim q \equiv \sim q \lor (p \land q)$ and $\sim p \lor q \equiv \sim p \lor (p \land q)$

- 3. $(p \lor \sim q) \lor (\sim p \lor q)$
- 4. There are no contradictions.
- 5. $\sim p \wedge \sim q$
- 6. $\sim p \lor \sim q$
- 7. There are two variables, *p* and *q*, so the truth table would have 4 rows (like above). Thus, in each column, there are 4 rows of spaces each of which is either filled with "T" or "F". There are 16 different ways to fill the 4 spaces with T's and F's. It follows that if there are 17 or more columns (each representing a statment form), at least two of the columns must have the 4 spaces filled in exactly the same way. In other words, at least two of the statement forms in a collection of 17 or more forms would have to be equivalent.
- 8. if q then p (that is, $q \rightarrow p$)
- 9. if not p then not q (that is, $\sim p \rightarrow \sim q$)
- 10. p and not q (that is, $p \land \sim q$)
- 11. if not q then not p (that is, $\sim q \rightarrow \sim p$)
- 12. the contrapositive

13.	p	q	$p \wedge q$	$\sim q$	$\sim q \rightarrow p \wedge q$
	Т	Т	Т	F	Т
	Т	F	F	Т	F
	F	Т	F	F	Т
	F	F	F	Т	F

- 14. The first two arguments are valid (the second two are invalid).
- 15. $\exists x \in D$ such that $\sim P(x)$
- 16. $\forall x \in D, \sim P(x)$
- 17. \exists positive integers n such that \forall integers a, b, c, and $d, n \neq a^2 + b^2 + c^2 + d^2$
- 18. $\exists a \in \mathbb{Q}$ and $\exists b \in \mathbb{Q}$ such that $\forall c \in \mathbb{Q}, c \leq a \text{ or } c \geq b$.

19.
$$\sim Q(x) \implies P(x)$$
 and $P(x) \iff \sim Q(x)$

- 20. For x = 0, if 8x + 13y = 1 then y = 1/13 so no *integer* y satisfies 8x + 13y = 1 (in this case). For x = 1, if 8x + 13y = 1 then y = -7/13 so no integer y satisfies 8x + 13y = 1 (in this case). For x = 2, if 8x + 13y = 1 then y = -15/13 so no integer y satisfies 8x + 13y = 1 (in this case). For x = 3, if 8x + 13y = 1 then y = -23/13 so no integer y satisfies 8x + 13y = 1 (in this case). For x = 4, if 8x + 13y = 1 then y = -31/13 so no integer y satisfies 8x + 13y = 1 (in this case). Thus, by the method of exhaustion, $\forall x \in \{0, 1, 2, 3, 4\}$, there does not exist an integer y such that 8x + 13y = 1.
- 21. Since $8 \times 5 + 13 \times (-3) = 1$, there exist x and y such that 8x + 13y = 1 (namely, x = 5 and y = -3 work).
- 22. 1, 2, 3, 4, 6, and 12
- 23. 3, 5, and 13

24. $2^4 \cdot 5$.

- 25. Yes. Since 9 + 8 + 7 + 6 + 5 + 4 + 3 + 2 + 1 = 45 and 45 is divisible by 3, the number 987654321 is divisible by 3.
- 26. Since $200 \mod 7 = 4$, it will be the same as four days from today. If you are reading this on Thursday, the answer is "Monday".
- 27. Yes. To check if 241 is prime, we need only see if 241 is divisible by a prime $\leq \sqrt{241}$. Since $16^2 = 256$, we need only consider dvisibility by primes < 16. One checks directly that 241 is not divisible by 2, 3, 5, 7, 11, and 13, which then justifies that 241 is prime.
- 28. 73 mod 5 = 3, $-73 \mod 5 = 2$, 29 mod 4 = 1, $-29 \mod 4 = 3$

29.
$$\lfloor 3.6 \rfloor = 3$$
, $\lceil 3.6 \rceil = 4$, $\lfloor -1.9 \rfloor = -2$, $\lceil -1.9 \rceil = -1$

30. Assume $\sqrt{2}$ is rational. Then there exist **integers** a and b with $b \neq 0$, with $\sqrt{2} = a/b$, and with a/b reduced (so that a and b have no common prime factors). Since $\sqrt{2} = a/b$, we obtain

$$b\sqrt{2} = a$$
 so that $2b^2 = a^2$.

We deduce that a is even. Therefore, there is an integer k such that a = 2k. Substituting this into $2b^2 = a^2$, we obtain $2b^2 = (2k)^2 = 4k^2$ so that $b^2 = 2k^2$. We deduce that b is even. This is a contradiction since a/b is reduced and a and b are even. Therefore, our assumption is wrong and $\sqrt{2}$ is irrational.