- 1. (a) $u_2 = 4$, $u_3 = 24$, and $u_4 = 112$ (b) $-2^n + \frac{4^n}{2}$ (or $2^{2n-1} - 2^n$)
- 2. The answer is (c) since $(x 6)(x 2) = x^2 8x + 12$.
- 3. The answer is $u_{n+1} = u_n + 2u_{n-1}$ since $(x-2)(x+1) = x^2 x 2$.
- 4. Take a number M'' = MM', and take a number x''_0 greater than both x_0 and x'_0 . If $x \ge x''_0$, then $x \ge x_0$ and $x \ge x'_0$ so that both $|f(x)| \le M|g(x)|$ and $|g(x)| \le M'|h(x)|$ hold. We deduce that

$$|f(x)| \le M|g(x)| \le MM'|h(x)| = M''|h(x)|$$
 for all $x \ge x_0''$.

Hence, f(x) = O(g(x)).

- 5. (a) $x = O(x^2)$ since $x \le x^2$ for every $x \ge 1$ (b) $x^3 \ne O(x^2)$ since for every M > 0 and every x > M, we have $x^3 > Mx^2$
 - (c) $(x 1)^2 = O(x^2)$ since $(x 1)^2 \le x^2$ for every $x \ge 1$
 - (d) $(x+1)^2 = O(x^2)$ since $(x+1)^2 \le (2x)^2 = 4x^2$ for every $x \ge 1$
 - (e) $(\log_2 x)^{24} = O(x^2)$ since $(\log_2 x)^k = O(x)$ for every k and since $x = O(x^2)$

6. (a)
$$\sum_{k=1}^{n} k^4 = O(n^5)$$
 since
 $\sum_{k=1}^{n} k^4 \le (\text{the number of terms}) \times (\text{the largest term}) \le n \times n^4 = n^5 \quad \text{for all } n \ge 1.$

(b) $\sum_{k=1} k^5 \neq O(n^5)$; to see this consider any M. If n > 64M (so if n is large enough), then there are at least n/2 terms

in the sum (the largest terms) that are at least as large as $(n/2)^5$. We obtain that for n > 64M, $\sum k^5 \ge (n/2) \ge (n/2)^5 - \frac{n}{2}n^5 \ge Mn^5$

$$\sum_{k=1}^{n} k^{n} \ge (n/2) \times (n/2)^{n} - \frac{1}{64}n^{n} > Mn^{n}.$$

It follows that $\sum_{k=1}^{n} k^{5} \ne O(n^{5}).$
(c) $\sum_{k=1}^{n} k(k+1)(k+2)(k+3) = O(n^{5})$ since for all $n \ge 3$ we have
 $\sum_{k=1}^{n} k(k+1)(k+2)(k+3) \le (\text{the number of terms}) \times (\text{the largest term})$
 $\le n \times n(n+1)(n+2)(n+3) \le n \times n(2n)(2n)(2n) = 8n^{5}.$

(d) $\sum_{k=1}^{n} 2^k \neq O(n^5)$; the sum is at least as big as its largest term which is 2^n . Since $2^n > n^6$ for if n is large enough,

then for every M we have $2^n > n^6 \ge Mn^5$ for n large. It follows that $\sum_{k=1}^n 2^k \ne O(n^5)$.

- 7. The degree of A is 2, the degree of B is 4, and the degree of C is 3.
- 8. *CBADCEDFGHIBEG* (there are many correct answers, but the first and final letters must be *C* and *G* in some order)
- 9. No, it contains K_5 as a subgraph and, hence, cannot be planar.