MATH 174, LECTURE 9

- 1. Go over homework questions.
- Homework: pages 146, numbers 1, 5, 7(b), 8(b), 13 (includes old problems) pages 153, numbers 1, 3, 10(a) Test: Tuesday (10/02)
- Old 3. Theorem 3.4.1 If n and d are integers with d > 0, then there exist unique integers q (called the "quotient") and r (called the "remainder") satisfying

n = dq + r and $0 \le r < d$.

Note: The notation $n \mod d$ is used to denote the remainder r.

New 4. Examples: (1) $15 \mod 8 = 7$, $6 \mod 6 = 0$, $100 \mod 2 = 0$, $1234 \mod 3 = 1$

 $(2) -2 \mod 3 = 1, -5 \mod 2 = 1, -23 \mod 5 = 2$

- (3) $n \mod 4 \in \{0, 1, 2, 3\}$ (When is n odd?)
- 5. Further Examples: (1) Today is Thursday, 09/20. What day of the week is 09/20 on next year?
 - (2) Squares mod 4 are 0 or 1.
 - (3) Is 9830207487 a sum of two squares?
- 6. Definitions and Notations: The floor of x, denoted $\lfloor x \rfloor$, is the unique integer n such that $n \le x < n + 1$. The ceiling of x, denoted $\lceil x \rceil$, is the unique integer n such that $n 1 < x \le n$.

Comment: Sometimes the floor function is referred to as the greatest integer function and the notation [x] is used.

7. **Examples:** (1) Compute |x| and $\lceil x \rceil$ for $x \in \{3.7, 35/8, \sqrt{2}, \sqrt{119}, -3.2, -44/5, -0.999\}$.

(2) If n = qd + r as in Theorem 3.4.1, then write q and r using $\lfloor x \rfloor$ and mod notations.

Proofs by Contradiction: Explain again and give the examples that $\sqrt{2}$ is irrational and that there are infinitely many primes.

8. Give quiz.