MATH 174, LECTURE 5

- 1. Go over homework questions.
- 2. Homework: previous assignment plus
 - pages 97-98, numbers 1, 2, 3(b), 5(b), 8(b), 13, 16

Quiz: Thursday (09/13)

- 3. Finish previous lecture.
- 4. Examples of Multiply Quantified Statements: (1) $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}$ such that k > n(2) \exists a person A such that \forall persons B, A is at least as nice as B
 - (3) $\forall a \in \mathbb{Q}, \forall b \in \mathbb{Q}, \exists c \in \mathbb{Q} \text{ such that } a < c < b$
 - (4) $\forall a \in \mathbb{Q}, \forall b \in \mathbb{Q} \text{ with } b > a, \exists c \in \mathbb{Q} \text{ such that } a < c < b$
 - (5) $\exists a > 1$ such that \forall positive integers $n, \underbrace{a^{\wedge}(a^{\wedge}(a^{\wedge}(a^{\wedge}\cdots)))}_{n \ a's} < 2$

- 5. Negations of Multiply Quantified Statements:
 - The negation of $\forall x, \exists y$ such that P(x, y) is $\exists x, \forall y$ such that $\sim P(x, y)$.
 - The negation of $\exists x$ such that $\forall y, P(x, y)$ is $\forall x, \exists y$ such that $\sim P(x, y)$.
- 6. Example: page 97, number 6
- 7. Contrapositive, Converse, Inverse: (of $\forall x \in D$, if P(x) then Q(x) and respectively)
 - $\forall x \in D$, if $\sim Q(x)$ then $\sim P(x)$
 - $\forall x \in D$, if Q(x) then P(x)
 - $\forall x \in D$, if $\sim P(x)$ then $\sim Q(x)$
- 8. Give quiz.