MATH 174, LECTURE 19

- Return tests (30 total, plus 8, 80% ave., high 104.5; 4 A's, 12 B's, 10 C's, 3 D's, 1 F) Grades Before Final (2 quizzes dropped, high 97.2%; 7 A's, 16 B's, 2 C's, 3 D's, 3 unknowns) Final Comments: 50% if it helps
- 2. Go over homework.
- 3. Homework: pages 493–494, numbers 9, 11, 13, 25 Read over examples from class.
- 4. Definition and Notation: The function f(x) is big-oh of the function g(x) provided there are real numbers x_0 and M such that

$$|f(x)| \le M|g(x)|$$
 for $x \ge x_0$.

- 5. **Examples:** (1) 1/x = O(1)
 - (2) $(x-1)^2 = O(x^2)$
 - (3) $(x+1)^2 = O(x^2)$ (note that $x+1 \le 2x$ for $x \ge 1$)
 - (4) $20(x+12)^4 = O(x^4)$
 - $(5) \ 20(x+12)^4 = O(x^{12})$
 - (6) $f(x) = O(x^n)$ if f(x) is a polynomial of degree n

(7)
$$\sum_{k=1}^{n} k^r = O(n^{r+1})$$

6. Some Inequalities:

- $k+1 \le 2^{k-1}$ for $k \ge 3$ (by induction)
- $x < 2^{x/2}$ for x > 8 (consider $k \ge 3$ such that $2^k < x \le 2^{k+1}$ and use the above)
- $C(x+1) < 2^x$ for $x \ge x_1$ (take x_1 so that $2^{x/2} > 2C$ and then use $C(x+1) < C(x+x) = 2Cx < 2^{x/2}2^{x/2} = 2^x$)
- $x^C < 2^x$ for $x \ge x_2$ (for $k > x_1$ and $2^k < x \le 2^{k+1}$, $x^C < 2^{C(k+1)} < 2^{2^k} < 2^x$)
- $f(x) = O(a^x)$ whenever f(x) is a polynomial and a > 1
- $(\log_2 x)^C = O(x)$ (let $t = x^{1/C}$ and $t^C < 2^t$ for t large)
- 7. Further Examples: (1) page 493, number 10

(2) page 493, number 12