MATH 174, LECTURE 13

- 1. Go over homework questions.
- 2. Homework: pages 256–257, numbers 1, 2(a), 11, 13, 15, 18, 25(a)

true or false, use Venn diagrams pages 266–267, numbers 1, 6(a), 20(a), 36, 38 Quiz: Thursday (10/25)

- 3. Theorem 5.2.1: For all sets A, B, and C, the following are true:
 - 1. $A \cap B \subseteq A$ and $A \cap B \subseteq B$.
 - 2. $A \subseteq A \cup B$ and $B \subseteq A \cup B$.
 - 3. if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- 4. Theorem 5.2.2: Let A, B, and C be subsets of a universal set U. Then
 - 1. $A \cap B = B \cap A$ and $A \cup B = B \cup A$ (cummutative law)
 - 2. $A \cap (B \cap C) = (A \cap B) \cap C$ and $A \cup (B \cup C) = (A \cup B) \cup C$ (associative law)
 - 3. $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ and $A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$ (distributive law)
 - 5. $(A^c)^c = A$ (double complement law)
 - 7. $(A \cup B)^c = A^c \cap B^c$ and $(A \cap B)^c = A^c \cup B^c$ (De Morgan's Laws)
 - 10. $A B = A \cap B^c$ (alternative representation of set difference)

5. Notes on Theorem 5.2.2:

- 2. Illustrate with a Venn Diagram. Note that we can deduce that we do not need parentheses here.
- 3. Prove this different from book with following steps:
 - What does it mean for the sets to be equal? What does the book do?
 - Does this look familiar? Recall that p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r). Note that one is true if and only if the other one is true.
 - Let p be the statement x ∈ A, q the statement x ∈ B, and r the statement x ∈ C. Note that q ∧ r is the same as x ∈ B ∩ C and p ∨ (q ∧ r) is the same as x ∈ A ∪ (B ∩ C).
 - What is $p \lor q$? What about $p \lor r$? What about $(p \lor q) \land (p \lor r)$?
 - Tie the above together.
- 5. Illustrate with a Venn Diagram.
- 7. How would we prove this as above? Use that $\sim (p \lor q) \equiv \sim p \land \sim q$ where p is that $x \in A$ and q is that $x \in B$.
- 10. Illustrate with a Venn Diagram.
- 6. Examples: (1) page 257, number 14

(2) page 257, number 16

- 7. Theorem 5.3.3: Let A be a subset of a universal set U. Then
- 1 & 3. $A \cup \emptyset = A$ and $A \cap \emptyset = \emptyset$
 - 2. $A \cap A^c = \emptyset$ and $A \cup A^c = U$
 - 4. $U^c = \emptyset$ and $\emptyset^c = U$
- Definition: Two sets A and B are *disjoint* if A ∩ B = Ø. More than two sets are said to be *mutually disjoint* (or *pairwise disjoint*) if no two of them share a common element (i.e., A₁,..., A_n are mutually disjoint if for all i and j with 1 ≤ i < j ≤ n, A_i ∩ A_j = Ø).

- 9. **Definition:** A collection of nonempty sets $\{A_1, \ldots, A_n\}$ is a *partition* of a set A if the sets are mutually disjoint and $A = A_1 \cup \ldots \cup A_n$.
- 10. **Example:** The sets $\{1, 4, 5\}$ and $\{2, 3, 6\}$ form a partition of the integers from 1 to 6 (inclusive).
- 11. **Definition:** Given a set A, the *power set* of A, denoted $\mathcal{P}(A)$, is the set of all subsets of A.
- 12. **Examples:** (1) If $A = \{0, 1\}$, then what is $\mathcal{P}(A)$?
 - (2) If $A = \{0, 1, 2\}$, then what is $\mathcal{P}(A)$?
 - (3) If $A = \{0\}$, then what is $\mathcal{P}(A)$?
 - (4) If $A = \{\}$, then what is $\mathcal{P}(A)$?
 - (5) If A is a set with n elements, how many elements does $\mathcal{P}(A)$ have? Why?
- 13. **Comment:** If $A \subseteq B$, then $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- 14. Give quiz.