MATH 174, LECTURE 10

- Return quizzes (28 total, 113.9% ave.; 24 A's, 1 B, 1 C, 1 D, 1 F) (Note: of the 28 students taking the quiz, 15 currently have A's for their total quiz grades.)
- 2. Go over homework questions.
- 3. Handout practice test problems.
- 4. Homework: pages 153, numbers 1, 3, 10(a) (old problems) practice test problems pages 192–193, numbers 1, 3, 5, 10, 11, 12, 19, 24, 29, 35, 37 (due 10/04) Test: Tuesday (10/02)
- Old 5. Definitions and Notations: The floor of x, denoted $\lfloor x \rfloor$, is the unique integer n such that $n \le x < n + 1$. The ceiling of x, denoted $\lceil x \rceil$, is the unique integer n such that $n 1 < x \le n$.

Comment: Sometimes the floor function is referred to as the greatest integer function and the notation [x] is used.

6. Examples: (1) Compute |x| and $\lceil x \rceil$ for $x \in \{3.7, 35/8, \sqrt{2}, \sqrt{119}, -3.2, -44/5, -0.999\}$.

(2) If n = qd + r as in Theorem 3.4.1, then write q and r using $\lfloor x \rfloor$ and mod notations.

- 7. **Proofs by Contradiction:** Explain again and give the examples that $\sqrt{2}$ is irrational and that there are infinitely many primes.
- New 8. **Definitions:** A sequence $a_m, a_{m+1}, a_{m+2}, \ldots, a_n$ is an ordered list consisting of an *initial term* a_m and sometimes a *final term* a_n . If there is no final term, the sequence $a_m, a_{m+1}, a_{m+2}, \ldots$ is said to be an *infinite sequence*.
 - 9. **Examples:** (1) Consider $a_1, a_2, ...$ given by 1, -1, 1, -1, ... What's a_k ?
 - (2) Consider a_0, a_1, \ldots given by $1, -1, 1, -1, \ldots$ What's a_k ?
 - (3) Consider $a_0, a_1, ...$ given by 1, 2, 3, 4, ... What's a_j ?
 - (4) If $b_n = \lfloor n/3 \rfloor$, what are the first few terms of the sequence b_1, b_2, \ldots ?
 - (5) Find an "explicit formula" for the sequence $1, 1/2, 1/4, \ldots$
 - 10. Notation: Let n and m be (nonnegative) integers with $m \le n$. The notation $\sum_{k=m}^{n} a_k$ denotes the sum of the elements of the sequence $a_m, a_{m+1}, \ldots, a_n$. In other words,

$$\sum_{k=m}^{n} a_k = a_m + a_{m+1} + \dots + a_n.$$

In the case that m > n, the sum is said to be (vacuously) 0.

11. Examples: (1) Compute $\sum_{k=1}^{5} k$ and $\sum_{j=0}^{5} j$. (2) Compute $\sum_{k=1}^{5} 1$ and $\sum_{j=0}^{5} 1$. (3) Compute $\sum_{n=1}^{5} ((n+1)^2 - n^2)$. (4) How would you write $1 + 2 + 2^2 + \dots + 2^n$ using summation notation? 12. **Definition and Notation:** The product of the first n positive integers is n factorial and is denoted by n!. Also, we define 0! to be 1.

Examples: 3! = 6, 5! = 120, 10! = 3628800, 30! = 265252859812191058636308480000000