TEST 3 PROBLEMS

1. What is the derivative of $\frac{1}{\sqrt{x}}$?

(a)
$$-\frac{1}{2}x^{-3/2}$$

(b) $\frac{1}{2}x^{1/2}$
(c) $2\sqrt{x}$
(d) $-2x^{-1/2}$

1. What is the derivative of $\frac{1}{\sqrt{x}}$?

(a)
$$-\frac{1}{2}x^{-3/2}$$
 (b) $\frac{1}{2}x^{1/2}$
(c) $2\sqrt{x}$
(d) $-2x^{-1/2}$

2. What is the derivative of xe^{-x} ?

(a)
$$e^{-x} + xe^{-x}$$

(b) $xe^{-x} + e^{-x-1}$
(c) $e^{-x} - xe^{-x-1}$
(d) $e^{-x} - xe^{-x}$

2. What is the derivative of xe^{-x} ?

3. What is the derivative of $\ln(x^3 - 3x)$?

(a)
$$\frac{1}{x^3 - 3x}$$

(b) $\frac{1}{(x^3 - 3x)^2}$
(c) $\frac{3x^2 - 3}{x^3 - 3x}$
(d) $\frac{3x^2 - 3}{(x^3 - 3x)^2}$

3. What is the derivative of $\ln(x^3 - 3x)$?

4. What is the derivative of $\frac{x}{2x-1}$?

(a)
$$\frac{1}{(2x-1)^2}$$

(b) $\frac{-1}{(2x-1)^2}$
(c) $\frac{1}{2}$
(d) $\frac{1}{4}$

4. What is the derivative of $\frac{x}{2x-1}$?

(a)
$$\frac{1}{(2x-1)^2}$$

(b) $\frac{-1}{(2x-1)^2}$

5. How many critical points are in the graph pictured in Figure 1?

Figure 1

5. How many critical points are in the graph pictured in Figure 1?

Figure 1

6. Which of the following approximates a local minimum *value* for the function graphed in Figure 2?

Figure 2

6. Which of the following approximates a local minimum *value* for the function graphed in Figure 2?

Figure 2

7. Suppose that

and
$$g(x) = (4x^3 - 6x^2 + 6x - 3)e^{2x}$$

 $g'(x) = 8x^3e^{2x}.$

You do not need to justify that the derivative of g(x) above is what I have written for g'(x). What is the derivative of $g(x)^3$?

(a)
$$24x^3(4x^3 - 6x^2 + 6x - 3)^2e^{2x}$$

(b) $24x^3(4x^3 - 6x^2 + 6x - 3)^2e^{4x}$
(c) $24x^3(4x^3 - 6x^2 + 6x - 3)^2e^{6x}$
(d) $24x^3(4x^3 - 6x^2 + 6x - 3)^2e^{8x}$

7. Suppose that

and
$$g(x) = (4x^3 - 6x^2 + 6x - 3)e^{2x}$$

 $g'(x) = 8x^3e^{2x}.$

You do not need to justify that the derivative of g(x)above is what I have written for g'(x). What is the derivative of $g(x)^3$?

(a)
$$24x^{3}(4x^{3} - 6x^{2} + 6x - 3)^{2}e^{2x}$$

(b) $24x^{3}(4x^{3} - 6x^{2} + 6x - 3)^{2}e^{4x}$
(c) $24x^{3}(4x^{3} - 6x^{2} + 6x - 3)^{2}e^{6x}$

- 8. The population in Mexico in millions is approximated by the formula $P(t) = 70e^{0.03t}$, where t is the number of years after 1980. In the year 2000, approximately how fast will the population of Mexico be increasing?
 - (a) $70e^{0.6}$ million people per year
 - (b) $27e^{0.6}$ million people per year
 - (c) $6e^{0.6}$ million people per year
 - (d) $2.1e^{0.6}$ million people per year

- 8. The population in Mexico in millions is approximated by the formula $P(t) = 70e^{0.03t}$, where t is the number of years after 1980. In the year 2000, approximately how fast will the population of Mexico be increasing?
 - (a) $70e^{0.6}$ million people per year
 - (b) $27e^{0.6}$ million people per year
 - (c) $6e^{0.6}$ million people per year
 - (d) $2.1e^{0.6}$ million people per year —

9. The slope of the tangent line to the graph of

$$y=2(ax-1)^5$$

at x = 0 is 4. What is the value of a?

(a)
$$2/5$$

(b) $1/5$
(c) $-1/10$
(d) $-1/5$

9. The slope of the tangent line to the graph of

$$y = 2(ax-1)^5$$

at x = 0 is 4. What is the value of a?

(a)
$$2/5$$
 (b) $1/5$
(c) $-1/10$
(d) $-1/5$

10. The cost of producing a quantity, q, of a product is given by

 $C(q) = 1000 + 30e^{0.02q}$

dollars. Which of following is an estimate for the marginal cost (in dollars per item) when q = 20? The choices are based on one or more of the estimates given in the table to the right.

- (a) **0.612** (b) **0.9**
- (c) **6.12** (d) **45**

Approximate Values
$e^{0.01} \approx 1.01$
$e^{0.02} \approx 1.02$
$e^{0.04} \approx 1.04$
$e^{0.06} \approx 1.06$
$e^{0.1} \approx 1.1$
$e^{0.2} \approx 1.2$
$e^{0.4} \approx 1.5$
$e^{0.6} \approx 1.8$

10. The cost of producing a quantity, q, of a product is given by

 $C(q) = 1000 + 30e^{0.02q}$

dollars. Which of following is an estimate for the marginal cost (in dollars per item) when q = 20? The choices are based on one or more of the estimates given in the table to the right.

Approximate Values
$e^{0.01} \approx 1.01$
$e^{0.02} \approx 1.02$
$e^{0.04} \approx 1.04$
$e^{0.06} \approx 1.06$
$e^{0.1} \approx 1.1$
$e^{0.2} \approx 1.2$
$e^{0.4} \approx 1.5$
$e^{0.6} \approx 1.8$

- (a) **0.612** (b) **0.9**

(c) **6.12** (d) 45 11. At what x does the function $x^3 - 3x$ have a local maximum value?

- (a) **0** and **3**
- (b) **0** only
- (c) -1 and 1
- (d) -1 only

11. At what x does the function $x^3 - 3x$ have a local maximum value?

- (a) **0** and **3**
- (b) **0** only
- (c) -1 and 1

- 12. For the graph pictured to the right, at which value of x below is there an inflection point?
 - (a) **10** (b) **200**
 - (c) 400 (d) 600

12. For the graph pictured to the right, at which value of x below is there an inflection point?

13. Which of the following is true about the functions $f(x) = (x - 1)^5$ and $g(x) = (x - 1)^6$?

- (a) The function f(x) has an inflection point at x = 1, but the function g(x) does not.
- (b) The function g(x) has an inflection point at x = 1, but the function f(x) does not.
- (c) Both f(x) and g(x) have an inflection point at x = 1.
- (d) Neither f(x) nor g(x) has an inflection point at x = 1.

13. Which of the following is true about the functions $f(x) = (x-1)^5$ and $g(x) = (x-1)^6$?

- (a) The function f(x) has an inflection point at x = 1, but the function g(x) does not.
- (b) The function g(x) has an inflection point at x = 1, but the function f(x) does not.
- (c) Both f(x) and g(x) have an inflection point at x = 1.
- (d) Neither f(x) nor g(x) has an inflection point at x = 1.

14. A function f(x) has a continuous derivative f'(x) with values indicated in the table below. If f(x) has a local maximum value at x = A and for no other value of x, then which of the following is true?

\boldsymbol{x}	0	1	2	3	4	5	6	7	8	9	10
f'(x)	1.5	0.8	0.2	-0.6	-1.2	-2.1	-1.5	-0.7	0.5	1.1	1.8

(a)
$$0 \leq A \leq 1$$

(b)
$$2 \leq A \leq 3$$

(c) $4 \le A \le 6$

(d) $7 \le A \le 8$

14. A function f(x) has a continuous derivative f'(x) with values indicated in the table below. If f(x) has a local maximum value at x = A and for no other value of x, then which of the following is true?

$egin{array}{c} egin{array}{c} egin{array}$	0	1	2	3	4	5	6	7	8	9	10
f'(x)	1.5	0.8	0.2	-0.6	-1.2	-2.1	-1.5	-0.7	0.5	1.1	1.8

