COMPREHENSIVE ExaM: MATH 788F & 788K

Definitions/Notation (for the second part of the test): N = {0,1,2,...}; A and B are
subsets of N; o(.A) is the Schnirelmann density of A; d(.A) and d(.A) are the lower and upper
asymptotic densities of A, respectively.

1. Let n and m be integers satisfying n > m > 0. Let
f(z) =a™ —738z™ — 9000,

and observe that 738 = 2 x 3% x 41 and 9000 = 2° x 3? x 5%. Prove that f(z) is reducible
if and only if n is even and m = n/2. In the case that n is even and m = n/2, find an
explicit factorization of f(x) into irreducibles. (Hint: Even for the latter, it would help to
make use of information obtained from Newton polygons of f(z) with respect to primes.)

2. Let g(x) be a non-zero polynomial with integer coefficients.

(a) Prove that there is an integer K (depending on g(z)) such that if & > K, then every
root a of xg(z) + k satisfies |a| > 1.

(b) Prove that there is an integer P (depending on g(x)) such that if p is a prime > P,
then zg(z) + p is irreducible over the rationals.

(¢) Prove that there is an integer P’ (depending on g(x)) such that if p is a prime > P/,
then zg(z) + 2p is irreducible over the rationals.

(d) Fix integers a and d with d # 0. Prove that there is an integer N = N(a,d, g(x))
such that if p is a prime > N, then (z — a)g(z) 4 dp is irreducible over the rationals.

3. (a) Let fi(z), fo(x) and g(z) be polynomials with complex coefficients. Prove that
R(f1f2,9) = R(f1,9)R(f2, 9)-

(b) Let f(z), gi(x) and g2(z) be polynomials with complex coefficients. Prove that
R(f.g192) = R(f, 91)R(f, 92)-

(¢) Let f(z) and g(x) be polynomials with complex coefficients and of degrees n and r,
respectively. Prove that R(f,g) = (—1)""R(g, f).

(d) Let f(z), g(x) and h(z) be polynomials with complex coefficients with f(z) =
g(@)h(x). Prove that R(f, f') = R(g, h)R(h, g)R(g, g')R(h, ).

(e) Let f(z) = g(x)h(x) where g(x) = 2* + ax + b and h(z) = z + ¢ (with a, b, and ¢
complex numbers). Prove that R(f, f') = —(a® — 4b)R(g, h)>.

(f) Let a and b be integers. Prove that if a* — 4b is a square modulo an odd prime p,
then 22 + ax + b is reducible modulo p.

(g) Let f(z) = 2® —2® — 2z + 1. Show that R(f, f') = —49.
(h) Let f(z) = 2® — 2% — 2z + 1, and let p be a prime. Using the information just

obtained, explain why f(z) cannot factor as a product of exactly two irreducible
polynomials (one of degree 2 and one of degree 1) modulo p.



4.

(a) For which primes p does the cyclotomic polynomial ®;(z) have a root modulo p?
(b) For which primes p does ®7(x) have an irreducible quadratic factor modulo p?

(c) Let p be a prime. Suppose a, b, and ¢ are integers satisfying
a+b+c=1 (modp), ab+act+bc=—-2 (modp), and abc=-1 (mod p).
Prove that

Or(z) = (2* +ar + 1)(2® +bxr + 1)(z® +cx +1) (mod p),

where the quadratic factors shown are not necessarily irreducible.

(d) Let f(x) = 23 —2*—2z+1. Recall the conclusion of part (h) of the previous problem.

Deduce from the previous parts of this problem that if f(m) is divisible by a prime

p different from 7, then p = £1 (mod 7).

(e) Deduce from the above that there exist infinitely many primes = —1 (mod 7).

(a) Let A = U{22’“,22’f+1,... 2%+ 1} = {1,4,5,6,7,16,... ,31,64,...,127,...}.
k=0

Findo(A)=___ ;dA)=__ ;dA)=___

(b) Suppose A is the set of positive cubes, and B is a set of positive integers so that

A + B contains all integers > 2. Let B(n) = #{b € B : b < n}. Prove that
B(n) > n?3 for all n > 1.

(a) State the Cauchy-Davenport-Chowla theorem.

(b) Prove that for every odd prime p and 0 < m < p — 1, there are integers 1, s, T3
such that 3 + 23 + 23 = m (mod p). Use the Cauchy-Davenport-Chowla Theorem,
plus the fact that the set {¥ mod p:1 < x < p— 1} has cardinality % for odd
primes p. Note that some of the x; may be divisible by p.

7. The main sieve result proved in class (Theorem 18) is the following:

Theorem. Suppose A is a finite set of positive integers, w is a multiplicative function

satisfying w(p) < p for primes p, and for some real numbers x and A,

o I (1—@)_12(m—”)ﬁexpwlogyl), (< <)

y1<p<y2 p log b

Suppose P is a set of primes < X8, P = Hp and 74 = |Ag| — @X with
peEP
|r(d)] < w(d) for d|P. Then, for large X,

S(AP) <" X ] (1 - @) .

peEP p

Use this theorem to prove that the number of primes p < x for which p 4 6 is prime, is
O(z/log? z). Be sure to state what w(d) is, what P is, and to prove (1).



8. Let w(n) be the number of distinct prime factors of n and let ©(n) be the number of
prime factors counted with multiplicity. Let 7,(n) be the divisor function that counts the
number of un-ordered (dy, ds, - - - ,dy) with n = dyds - - - dj.. For n = p{* - - p&, we have

e1r+k—1 e, +k—1
€1 €r
A theorem of Hardy and Ramanujan states that for every ¢ > 0,
#{n <z :|w(n)—loglogz| > cloglogx or |2(n) — loglog x| > eloglogx} = o(x).
Use this result to prove that for every € > 0,
#{TL <z: k(l—e)loglogn < Tk(n) < k(1+€)loglogn} -7 — O(l’);

Le., Tp(n) = k(telogloen for most n. Hint: first prove that k < (“**~') < k¢ for e > 1,
and use this to show k(" < 7;.(n) < kM.



