Comprehensive Exam: Math 788F & 788K

Definitions/Notation (for the second part of the test): $\mathbb{N} = \{0, 1, 2, ...\}$; \mathcal{A} and \mathcal{B} are subsets of \mathbb{N} ; $\sigma(\mathcal{A})$ is the Schnirelmann density of \mathcal{A} ; $\underline{d}(\mathcal{A})$ and $\overline{d}(\mathcal{A})$ are the lower and upper asymptotic densities of \mathcal{A} , respectively.

1. Let n and m be integers satisfying n > m > 0. Let

$$f(x) = x^n - 738x^m - 9000,$$

and observe that $738 = 2 \times 3^2 \times 41$ and $9000 = 2^3 \times 3^2 \times 5^3$. Prove that f(x) is reducible if and only if n is even and m = n/2. In the case that n is even and m = n/2, find an explicit factorization of f(x) into irreducibles. (Hint: Even for the latter, it would help to make use of information obtained from Newton polygons of f(x) with respect to primes.)

- 2. Let g(x) be a non-zero polynomial with integer coefficients.
 - (a) Prove that there is an integer K (depending on g(x)) such that if $k \ge K$, then every root α of xg(x) + k satisfies $|\alpha| > 1$.
 - (b) Prove that there is an integer P (depending on g(x)) such that if p is a prime $\geq P$, then xg(x) + p is irreducible over the rationals.
 - (c) Prove that there is an integer P' (depending on g(x)) such that if p is a prime $\geq P'$, then xg(x) + 2p is irreducible over the rationals.
 - (d) Fix integers a and d with $d \neq 0$. Prove that there is an integer N = N(a, d, g(x)) such that if p is a prime $\geq N$, then (x a)g(x) + dp is irreducible over the rationals.
- 3. (a) Let $f_1(x)$, $f_2(x)$ and g(x) be polynomials with complex coefficients. Prove that $R(f_1f_2,g) = R(f_1,g)R(f_2,g).$
 - (b) Let f(x), $g_1(x)$ and $g_2(x)$ be polynomials with complex coefficients. Prove that $R(f, g_1g_2) = R(f, g_1)R(f, g_2).$
 - (c) Let f(x) and g(x) be polynomials with complex coefficients and of degrees n and r, respectively. Prove that $R(f,g) = (-1)^{nr}R(g,f)$.
 - (d) Let f(x), g(x) and h(x) be polynomials with complex coefficients with f(x) = g(x)h(x). Prove that R(f, f') = R(g, h)R(h, g)R(g, g')R(h, h').
 - (e) Let f(x) = g(x)h(x) where $g(x) = x^2 + ax + b$ and h(x) = x + c (with a, b, and c complex numbers). Prove that $R(f, f') = -(a^2 4b)R(g, h)^2$.
 - (f) Let a and b be integers. Prove that if $a^2 4b$ is a square modulo an odd prime p, then $x^2 + ax + b$ is reducible modulo p.
 - (g) Let $f(x) = x^3 x^2 2x + 1$. Show that R(f, f') = -49.
 - (h) Let $f(x) = x^3 x^2 2x + 1$, and let p be a prime. Using the information just obtained, explain why f(x) cannot factor as a product of exactly two irreducible polynomials (one of degree 2 and one of degree 1) modulo p.

- 4. (a) For which primes p does the cyclotomic polynomial $\Phi_7(x)$ have a root modulo p?
 - (b) For which primes p does $\Phi_7(x)$ have an irreducible quadratic factor modulo p?
 - (c) Let p be a prime. Suppose a, b, and c are integers satisfying

 $a+b+c \equiv 1 \pmod{p}$, $ab+ac+bc \equiv -2 \pmod{p}$, and $abc \equiv -1 \pmod{p}$.

Prove that

$$\Phi_7(x) \equiv (x^2 + ax + 1)(x^2 + bx + 1)(x^2 + cx + 1) \pmod{p},$$

where the quadratic factors shown are not necessarily irreducible.

- (d) Let $f(x) = x^3 x^2 2x + 1$. Recall the conclusion of part (h) of the previous problem. Deduce from the previous parts of this problem that if f(m) is divisible by a prime p different from 7, then $p \equiv \pm 1 \pmod{7}$.
- (e) Deduce from the above that there exist infinitely many primes $\equiv -1 \pmod{7}$.
- 5. (a) Let $\mathcal{A} = \bigcup_{k=0}^{\infty} \{2^{2k}, 2^{2k} + 1, \dots, 2^{2k+1} 1\} = \{1, 4, 5, 6, 7, 16, \dots, 31, 64, \dots, 127, \dots\}.$ Find $\sigma(\mathcal{A}) = \underline{\qquad}; \underline{d}(\mathcal{A}) = \underline{\qquad}; \overline{d}(\mathcal{A}) = \underline{\qquad}.$
 - (b) Suppose \mathcal{A} is the set of **positive** cubes, and \mathcal{B} is a set of **positive** integers so that $\mathcal{A} + \mathcal{B}$ contains all integers ≥ 2 . Let $B(n) = \#\{b \in \mathcal{B} : b \leq n\}$. Prove that $B(n) \geq n^{2/3}$ for all $n \geq 1$.
- 6. (a) State the Cauchy-Davenport-Chowla theorem.
 - (b) Prove that for every **odd** prime p and $0 \le m \le p-1$, there are integers x_1, x_2, x_3 such that $x_1^3 + x_2^3 + x_3^3 \equiv m \pmod{p}$. Use the Cauchy-Davenport-Chowla Theorem, plus the fact that the set $\{x^k \mod p : 1 \le x \le p-1\}$ has cardinality $\frac{p-1}{(k,p-1)}$ for odd primes p. Note that some of the x_i may be divisible by p.
- 7. The main sieve result proved in class (Theorem 18) is the following:
 - **Theorem.** Suppose \mathcal{A} is a finite set of positive integers, ω is a multiplicative function satisfying $\omega(p) < p$ for primes p, and for some real numbers κ and A,

(1)
$$\prod_{y_1 \le p < y_2} \left(1 - \frac{\omega(p)}{p} \right)^{-1} \le \left(\frac{\log y_2}{\log y_1} \right)^{\kappa} \exp(A/\log y_1), \quad (2 \le y_1 \le y_2)$$

Suppose \mathcal{P} is a set of primes $\leq X^{1/8}$, $P = \prod_{p \in \mathcal{P}} p$ and $r_d = |\mathcal{A}_d| - \frac{\omega(d)}{d} X$ with $|r(d)| \leq \omega(d)$ for d|P. Then, for large X,

$$S(\mathcal{A}, \mathcal{P}) \le e^{e^{\kappa}} X \prod_{p \in \mathcal{P}} \left(1 - \frac{\omega(p)}{p} \right)$$

Use this theorem to prove that the number of primes $p \leq x$ for which p + 6 is prime, is $O(x/\log^2 x)$. Be sure to state what $\omega(d)$ is, what \mathcal{P} is, and to prove (1).

8. Let $\omega(n)$ be the number of distinct prime factors of n and let $\Omega(n)$ be the number of prime factors counted with multiplicity. Let $\tau_k(n)$ be the divisor function that counts the number of un-ordered (d_1, d_2, \dots, d_k) with $n = d_1 d_2 \cdots d_k$. For $n = p_1^{e_1} \cdots p_r^{e_r}$, we have

$$\tau_k(n) = \binom{e_1 + k - 1}{e_1} \cdots \binom{e_r + k - 1}{e_r}.$$

A theorem of Hardy and Ramanujan states that for every $\varepsilon > 0$,

$$\#\{n \le x : |\omega(n) - \log \log x| > \varepsilon \log \log x \text{ or } |\Omega(n) - \log \log x| > \varepsilon \log \log x\} = o(x).$$

Use this result to prove that for every $\varepsilon > 0$,

$$#\{n \le x : k^{(1-\varepsilon)\log\log n} \le \tau_k(n) \le k^{(1+\varepsilon)\log\log n}\} = x - o(x);$$

i.e., $\tau_k(n) = k^{(1+o(1))\log\log n}$ for most n. Hint: first prove that $k \leq \binom{e+k-1}{e} \leq k^e$ for $e \geq 1$, and use this to show $k^{\omega(n)} \leq \tau_k(n) \leq k^{\Omega(n)}$.