
Comprehensive Exam: Math 788F & 788K

Definitions/Notation (for the second part of the test): N = {0, 1, 2, . . . }; A and B are
subsets of N; σ(A) is the Schnirelmann density of A; d

¯
(A) and d̄(A) are the lower and upper

asymptotic densities of A, respectively.

1. Let n and m be integers satisfying n > m > 0. Let

f(x) = xn − 738xm − 9000,

and observe that 738 = 2× 32× 41 and 9000 = 23× 32× 53. Prove that f(x) is reducible
if and only if n is even and m = n/2. In the case that n is even and m = n/2, find an
explicit factorization of f(x) into irreducibles. (Hint: Even for the latter, it would help to
make use of information obtained from Newton polygons of f(x) with respect to primes.)

2. Let g(x) be a non-zero polynomial with integer coefficients.

(a) Prove that there is an integer K (depending on g(x)) such that if k ≥ K, then every
root α of xg(x) + k satisfies |α| > 1.

(b) Prove that there is an integer P (depending on g(x)) such that if p is a prime ≥ P ,
then xg(x) + p is irreducible over the rationals.

(c) Prove that there is an integer P ′ (depending on g(x)) such that if p is a prime ≥ P ′,
then xg(x) + 2p is irreducible over the rationals.

(d) Fix integers a and d with d 6= 0. Prove that there is an integer N = N(a, d, g(x))
such that if p is a prime ≥ N , then (x− a)g(x) + dp is irreducible over the rationals.

3. (a) Let f1(x), f2(x) and g(x) be polynomials with complex coefficients. Prove that
R(f1f2, g) = R(f1, g)R(f2, g).

(b) Let f(x), g1(x) and g2(x) be polynomials with complex coefficients. Prove that
R(f, g1g2) = R(f, g1)R(f, g2).

(c) Let f(x) and g(x) be polynomials with complex coefficients and of degrees n and r,
respectively. Prove that R(f, g) = (−1)nrR(g, f).

(d) Let f(x), g(x) and h(x) be polynomials with complex coefficients with f(x) =
g(x)h(x). Prove that R(f, f ′) = R(g, h)R(h, g)R(g, g′)R(h, h′).

(e) Let f(x) = g(x)h(x) where g(x) = x2 + ax + b and h(x) = x + c (with a, b, and c
complex numbers). Prove that R(f, f ′) = −(a2 − 4b)R(g, h)2.

(f) Let a and b be integers. Prove that if a2 − 4b is a square modulo an odd prime p,
then x2 + ax+ b is reducible modulo p.

(g) Let f(x) = x3 − x2 − 2x+ 1. Show that R(f, f ′) = −49.

(h) Let f(x) = x3 − x2 − 2x + 1, and let p be a prime. Using the information just
obtained, explain why f(x) cannot factor as a product of exactly two irreducible
polynomials (one of degree 2 and one of degree 1) modulo p.



4. (a) For which primes p does the cyclotomic polynomial Φ7(x) have a root modulo p?

(b) For which primes p does Φ7(x) have an irreducible quadratic factor modulo p?

(c) Let p be a prime. Suppose a, b, and c are integers satisfying

a+b+c ≡ 1 (mod p), ab+ac+bc ≡ −2 (mod p), and abc ≡ −1 (mod p).

Prove that

Φ7(x) ≡ (x2 + ax+ 1)(x2 + bx+ 1)(x2 + cx+ 1) (mod p),

where the quadratic factors shown are not necessarily irreducible.

(d) Let f(x) = x3−x2−2x+1. Recall the conclusion of part (h) of the previous problem.
Deduce from the previous parts of this problem that if f(m) is divisible by a prime
p different from 7, then p ≡ ±1 (mod 7).

(e) Deduce from the above that there exist infinitely many primes ≡ −1 (mod 7).

5. (a) Let A =
∞⋃
k=0

{22k, 22k + 1, . . . , 22k+1 − 1} = {1, 4, 5, 6, 7, 16, . . . , 31, 64, . . . , 127, . . . }.

Find σ(A) = ; d
¯
(A) = ; d̄(A) = .

(b) Suppose A is the set of positive cubes, and B is a set of positive integers so that
A + B contains all integers ≥ 2. Let B(n) = #{b ∈ B : b ≤ n}. Prove that
B(n) ≥ n2/3 for all n ≥ 1.

6. (a) State the Cauchy-Davenport-Chowla theorem.

(b) Prove that for every odd prime p and 0 ≤ m ≤ p − 1, there are integers x1, x2, x3

such that x3
1 + x3

2 + x3
3 ≡ m (mod p). Use the Cauchy-Davenport-Chowla Theorem,

plus the fact that the set {xk mod p : 1 ≤ x ≤ p− 1} has cardinality p−1
(k,p−1)

for odd
primes p. Note that some of the xi may be divisible by p.

7. The main sieve result proved in class (Theorem 18) is the following:

Theorem. Suppose A is a finite set of positive integers, ω is a multiplicative function
satisfying ω(p) < p for primes p, and for some real numbers κ and A,∏

y1≤p<y2

(
1− ω(p)

p

)−1

≤
(

log y2

log y1

)κ
exp(A/ log y1), (2 ≤ y1 ≤ y2).(1)

Suppose P is a set of primes ≤ X1/8, P =
∏
p∈P

p and rd = |Ad| − ω(d)
d
X with

|r(d)| ≤ ω(d) for d|P . Then, for large X,

S(A,P) ≤ ee
κ

X
∏
p∈P

(
1− ω(p)

p

)
.

Use this theorem to prove that the number of primes p ≤ x for which p + 6 is prime, is
O(x/ log2 x). Be sure to state what ω(d) is, what P is, and to prove (1).



8. Let ω(n) be the number of distinct prime factors of n and let Ω(n) be the number of
prime factors counted with multiplicity. Let τk(n) be the divisor function that counts the
number of un-ordered (d1, d2, · · · , dk) with n = d1d2 · · · dk. For n = pe11 · · · perr , we have

τk(n) =

(
e1 + k − 1

e1

)
· · ·
(
er + k − 1

er

)
.

A theorem of Hardy and Ramanujan states that for every ε > 0,

#{n ≤ x : |ω(n)− log log x| > ε log log x or |Ω(n)− log log x| > ε log log x} = o(x).

Use this result to prove that for every ε > 0,

#{n ≤ x : k(1−ε) log logn ≤ τk(n) ≤ k(1+ε) log logn} = x− o(x);

i.e., τk(n) = k(1+o(1)) log logn for most n. Hint: first prove that k ≤
(
e+k−1
e

)
≤ ke for e ≥ 1,

and use this to show kω(n) ≤ τk(n) ≤ kΩ(n).


