ABSTRACT
Berry Phase of the H; Molecular System
Jialiang Wu

In this paper, we lay down the mathematical foundations necessary to describe
the H3 molecular system. We survey the general theories and then apply them to the

Hj case.

e We develop in parallel the mathematical formalism for classical system and
quantum system, and point out their distinguishing features. We introduce
the concepts of space, logic, observable, and state; we describe the laws of
state evolution and updating the state after observation. The formalisms for
several quantum systems are constructed: the n-spin system, the spinless H
atom and H, ion, and the real H, and Hjz molecular systems.

e The representations of molecular symmetry group is examined. We develop
the concept of the symmetries of a molecule and represent them by a group
of matrices. We also discuss the representations classification of that group,
which is summarized as its characteristic table.

e The shape space and three internal coordinate systems of the Hj3 molecule
are built up.

e Differential geometric language is introduced to describe the H3 quantum
system: fiber bundles, the special case of Hermitian vector bundles, (on
which the connections, parallel translations, and the covariant derivative are
defined), and holonomy group. The Berry phase of the Hj system is shown

to be the holonomy in the Hermitian vector bundles of H3 quantum system.

This mathematical framework provides a foundation to address many unsolved issues

of the Hj system.
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CHAPTER 1

INTRODUCTION

In this thesis we lay down a mathematical framework for the study of the Hj
molecular system. Hs denotes a system of 3 protons and 3 electrons. The protons are
treated as classical particles but the electrons must be treated quantum mechanically.
Several topics essential to the understanding of the Hjz system will be addressed in
the following chapters.

In chapter 2, we develop in parallel the mathematical formalism for classical sys-
tems and quantum systems. The former is a good preparation to understand the
latter. Quantum theory is the proper physical language to describe the phenom-
ena in the microscopic world including the Hs molecular system. We consider the

following questions.

e How do we represent the state of the quantum system, which contains all the
information the observer knows about the system at a given level of theory

and approximation?
e How does the state evolve with time?

e How do we represent the physical quantities (called observables) associated
to the system, such as position, momentum, angular momentum, energy etc.

in H37

e How do we predict the measurement outcome of some observable for a given

quantum state?



e The quantum system will change after observables are measured, therefore

how do we take the measured value into account to update the state?

In chapter 3, we apply the quantum formalism to several microscopic systems
from simple to complicated: the spin system, the artificially spinless H atom and H"
ion, and the real Hy and H3 molecule systems.

In chapter 4, the symmetry information of a molecular system is examined. This
information is important because it allows us to simplify the electron distribution

when the nuclear configuration is symmetric. The following questions are investigated.

e What are the symmetries of a molecule? How can they be mathematically
represented? We will show that the symmetries of a molecule form a group
called the symmetry group.

e How can the symmetry group be represented by matrices?

e When are two matrix representations of the same symmetry group equiva-
lent?

e What type of representations of a symmetry group are the simplest?

e How can more complex representations be understood in terms of the simple

ones?

Moreover, we show that the information of a symmetry group can be organized
by a table called its character table. We explain the theory through three examples:
the isosceles triangle, the equilateral triangle and the tetrahedron.

In chapter 5, we discuss the conformation (i.e. the shape) and the configuration
(i.e. the coordinates) of the Hj system. We first discuss the shapes of the H3 system in
general Euclidean coordinates: how to mathematically represent a shape and how to
classify the shapes into the three different categories: the non-collinear, the collinear,
and the one-point-coincident. And then we discuss the shape space of the H3 system
using three particular internal coordinate systems which treat the three nuclei in a

symmetrical way.



In chapter 6 we introduce the differential geometric concepts: fiber bundles, and
the special case of Hermitian vector bundles, on which we define connections, parallel
translation, and the covariant derivative. We illustrate these concepts and results in
two concrete cases: a surface in R and the Hj system.

In chapter 7 holonomy groups and Berry phase are considered. Suppose a quantum
system undergoes an evolution so that after some time it comes back to its original
state. Such an evolution traces out a cycle in quantum mechanical state space. The
result of the evolution will be reflected in the phase of the wave function in the form
of a geometric phase factor, usually called Berry phase. This phase factor can be
measured by interfering the initial and the final states. In this chapter, we explain
the Berry phase of the Hj3 system using the geometric language i.e. in terms of
holonomy in a Hermitian vector bundle.

We will see in chapter 6 and chapter 7 that there are several unsolved problems

in the H3 system mentioned.

e Given a nuclear conformation, what is the dimension of the vector space of
all ground state electronic wave functions of the Hj system?

e The ground state electronic energy is a function of the conformation, so where
on the shape space is it a smooth function? Where are its singularities, if
any?

e For each conformation, the symmetry group of that conformation has a rep-
resentation in the vector space of all electronic wave functions. How can the
representation be understood in terms of irreducible representations?

e Does there exist an atlas of smooth local trivializations for the Hermitian
vector bundle of the Hj3 system?

e Each fiber Ej, should be a direct sum of eigenspaces of S? (since H,S;, S2
commute). How does this direct sum decomposition depend on the base

point b?



Our work in this thesis provides a mathematical foundation for this future study.



CHAPTER 2

SURVEY ON MATHEMATICAL FORMALISM OF CLASSICAL

MECHANICS AND QUANTUM MECHANICS

2.1. PRELIMINARIES: TENSOR PRODUCTS
2.1.1. Tensor Product of Two Vector Spaces.

DEFINITION. The tensor product of two F-vector spaces V and W, denoted VW,
is a vector space spanned by elements of the form v ® w, where v € V,w € W, and

such that the following rules are satisfied, for any scalar o € T,

(1) (1 +v2) @w =11 ®w+v2 @w,
(2) v® (w1 +wy) =V R Wy + v ® wy,
(3) a(vew) = (av) @w =v® (aw)

The definition is the same no matter which scalar field F is used.

Here is another equivalent definition of tensor product using the language of the

Universal Property:

DEFINITION. ( Tensor Product by Universal Property) If Vj,V, are C-vector
spaces, then V] ® V5 is another C-vector space, and ® : Vi x Vo — Vi ® V5
(v1,v9) — v ® vy is a C-bilinear mapping with property that if W is an arbitrary
C-vector space and b : V| x V5 — W is an arbitrary C-bilinear mapping, then there
exists one and only one C-linear mapping b: V; @ Vo — W s.t. b(vy,vg) = B(vl ® vg)

for all v; € V; and vy € V5.



EXAMPLE. Let V; = V5, = C?. We can define the tensor product in two ways:

definition 1: (§)® (3) = (‘g?), and V; @ Vo = C*.
bd

ac

definition 2: (§)®(§) = (33), and V@V, = C*.
bd
Both definitions have the desired properties. Also V; ® V4 is obviously isomorphic

to Vi@V, by the rule o : (ﬂ) — (2)
d

DEFINITION. Let V' be a vector space. The vector space symmetric tensor product
V ®g V is defined to be a vector space together with a symmetric bilinear mapping
®s: VXV =V ®sV such that if b: V x V — W is any bilinear and symmetric
mapping, then there is a unique linear mapping b : V ®gV — W such that b(vy,v9) =

b(v; ®g v9), for all vy, ve € V.

ExXAMPLE. For any (¢),(§) € C?, we define

(5) @s (a) =5 [(3) @ (3) +(3) ® (§)] Z%[(§)®(%)+(%)®(§)] = (a) ®@s (3).

DEFINITION. Let V be a vector space. The vector space wedge product ( or vector
space antisymmetric tensor product) VAV is defined to be a vector space together with
a antisymmetric bilinear mapping A : VxV — VAV such that if b : V' xV — W is any
bilinear and alternating mapping, then there is a unique linear mapping b: VAV > W

such that b(vy,ve) = B(vl A vg) for all vy, vy € V.

EXAMPLE. For any (§),(§) € C? we define

()N (2)=31(3)® (@) - (D@ (E)]=—3)® ()= (5)®(@)]=—(2) A ()
If we define ($)®(§) = (‘Zgl),then(ﬁi)/\(g) 1 Kg) - (zz)} 1 (ggg—fg) _

0 0

-1 <Z§_a£> Then C? A C? := {<§) b+ec=0}cCC%
0

We can see that vector space symmetric tensor product and wedge products are

vector space tensor products having addition structures: symmetry and antisymmetry

respectively.



2.1.2. Tensor Product of Two Linear Maps.

DEFINITION. Let 1211 Vi — Wh, 1212 : Vo — W5 be two linear maps between vector

spaces, then the tensor product of Ay and A, is
A1®A25V1®V2 — Wi @Ws:v @ vy — (1211?11)@(12121}2)

extended uniquely by the universal property.

EXAMPLE. Define (§)®(§) := (ZE?Z) = (‘gﬁ) For i = 1,2, define linear maps
d bd
M; : R?* — R2, where M; := (e Z ). The tensor product of these two linear maps is

defined to be
Mi@My= (0 )@ (2 k)

c1 di
b5 a)
4(% &)

az b2
— (a1<02 d2)
as bo
01(02 d2>
alaz a1b2 b1a2 b1b2
_ aicy aide bice bids
- ciaz c1by dias dibs :

cica cids dicy dids

We need to check that it is well-defined. Let (),(3) € R% On one hand, we

have
(& @) ()] e(22)@)]
= (clatan) ® (o)
(a1a+b1b)(agc+b2d)
_ ((ala+blb)(620+d2d)>
- (cra+d1b)(azc+bad) :
(cla+d1b)(020+d2d)

On the other hand, we have
(& @) e (2 &)]IE) e (@)

araz aibs biaz bibs ac
- aicz aidz bica bida ad
|\ ciaz ciba diaz dib2 be

ci1cy cids dica dids

(a1 a+by b) (a20+b2d)

o (a1a+b1b)(czc+d2d)

- (Cl a+di b) (a26+b2d) .
(cl a+dq b) (CQC+d2d)

Done.



2.1.3. Tensor Product of Two Hilbert Spaces. For the purpose of this thesis
a Hilbert space is a complete inner product space over the complex field, and is always

separable, i.e. there is a countable maximal orthogonal set (see [19]).

DEFINITION. ( Tensor Product of Two Hilbert Spaces by Universal Property)
Assume that Hi, Hs are C-Hilbert spaces. Let H; ® Hs be a C-Hilbert space, and
® :Hy X Hy — Hi @ Ha : (01, ¢2) — ¢1 ® @2 be a C-bilinear continuous mapping
with property that if W is an arbitrary C-Hilbert space and b : H; X Hy — W is
an arbitrary bilinear continuous mapping, then there exist one and only one C-linear
continuous mapping b : Hy ® Ha — W s.t. b(¢1, o) = B(¢1 ® ¢9) for all 1 € Hy and
¢2 € Ha.

Here is one construction of H; ® Hy followed by Reed and Simon [34]. Let H; and
‘Ho be Hilbert spaces. For each ¢1 € Hy, po € Ho, let @1 ® ¢ denote the conjugate

bilinear form which acts on H; x Hsy by

(A1 ® d2)(V1,02) = (U1, D1)1, (Y2, P2)mss

where (-, )z, and (-, )z, are the inner products defined on H; and Hy respectively.
Let H be the set of all finite linear combinations of such bilinear forms; we define

an inner product (-,-)z on H by defining

(@Y, @ ) = (0,M)H, (¥, 1)n,

and extending by linearity to H.
FAcT. (-, )y is well-defined and positive definite.[34]

DEFINITION. We define ‘H; ® Hy to be the completion of H under the inner
product (-, -)3 defined above, which is a subspace of the space of all conjugate bilinear

continuous functionals on H; X Hy. Hi ® Hs is called the tensor product of H; and

Ho.



Here we give an alternative construction of the Hilbert space tensor product (see

§2.2.2 and §2.2.4 for definitions of o-algebra and measures)
L2(X1, 51, 1, C) @ L2( X, g, pia, C),

where for ¢ = 1,2, X; are sets, YJ; are the sigma algebras defined on X, u; are measures
defined on 33;, £2(X;, X, i;, C) are the sets of equivalence classes of square integrable
complex valued functions defined on Xj;.

We define the bilinear mapping
® 1 L2(X1, %, 41, C) X L2( X, X, 12, C) — L2(X7 X X, X1 @ N, i1 X piz, C)

by the rule ®@(¢1,12) = Y1 ® 12, where (1 ® Vo) (21, 22) = Y1(21)¢2(22); T1 @ Xy
is the smallest sigma algebra generated by measurable rectangles [36]; 111 X po is the
product measure of p; and s (see [36] p. 304).

Then for any given continuous bilinear mapping b : £2(X1, 31, 1, C)

X L2(X5, %9, 2, C) — W, and for any Hilbert space W, we define the mapping
B : ,CQ(Xl X XQ,Zl & Zg,ul X /LQ,C) - W

by the rule b(1y @ 1s) = b(ty, 1hs).

We must check that b is well-defined and linear. To see b is linear in the range of

®,

b(t © vy + a] ® o) = b((¢1 + an)y) © )
= (1 + oy, o)
= b1, ) + ab(¥], o)
= bt @ 12) + ab(y] @ ¢n)

O

To see that b is well-defined on the range of ®, we need to show that ¥ ® ¥y =
U1 ® Py = b1, ¥2) = b(thy, 1)),



We will show that one of the following three conditions holds:

(1) Y1(z1) =0 and zzl(xl) =0 for pi-a.e. x; € Xy;

(2) pa(x2) =0 and 1;2(@) =0 for ps-a.e. 19 € Xo;

(3) There is a constant ¢ such that ¢, = CQZJQ po-a.e. on Xy, and zZ?l = ¢y j1-a.e.
on Xj.

Each of these three conditions imply that b(i1, 1) = b(@El, ).

Define S := {(z1,22) € X1 x Xo|thy (21)ha(22) = 91 (x1)Ua(z2)}. Then (pg x
p2)(S¢) = 0, where S¢ = (X7 x X3)\S. lexxz Xse dpydpy = fX1<fX2 Xse dpz)dpy = 0.

Define Sy = {z1 € Xu| [y, xse(21,22) dpa(wa) = 0}. Then 1 (X; \ Si) = 0. For
all z1 € S1, xse(x1,22) = 0 for pg-a.e. gy € Xo; xs(x1,22) = 1 iff Yy (21)he(22) =
Gr (1) a(x) for pp-ae. x3 € Xo. Sy(w1) = {w2 € Xofthy (w1)ha(w2) = b1 (1) a(x2)}
is meaningful for all z; € Sy, and pe(Xs \ Sa(x1)) = 0.

If Vo, € Sy both ¥y (1) = 0 and )y (zy) = 0 then b(yy,15) = 0 = b(ey, 1)
regardless of 15 and 1); if not then 3z* € Sy such that either ¢y (z%) # 0 or ¢y (z}) # 0.
Interchanging t; and 91 as necessary we have (%) # 0. We know that (X5 \
So(x1)) =0 for all z; € S;. If Jaf € S; such that ¢ (z7) # 0 then define ¢; := Zi&;

Define Sy := {22 € Xo [y, Xse(21,22) dus(21) = 0}. Then pp(Xy \ S2) = 0 and

(

Sa(w1) = {ws € Xolthi(a))n(w2) = Un(a])tha(2)} = {ws € Xoftha(w2) = ertha(w2)}
and fip(Xy \ Sa(x7)) = 0. If 25 € Sy N Sy(xy) then [y xse(w1,x9) dpa (1) = 0 ie,

Xse(T1,22) = 0 py-ae. 21 € Xy, xs(1,22) = 1 py-a.e. x1 € Xy, i.e. ¥y(x1)ho(x2) =
121(951)?;2(:62) for pi-a.e. 1 € Xy = clwl(xl)zzz(xg) = 1;1(351)1752(352) for pq-a.e. 1 €
Xy = [ehr (1) — ﬁl(xl)]g/;g(xg) =0 for pj-a.e. r; € X;.

If Vao € Sy N Sy(xd) &2(1‘2) = 0 then 9¥y(zy) = 0 for all such z, as well and
hence b(¢,1,) = 0 = 6(1;1,7752> regardless of ; and 121. So otherwise Jxj € S N
Sy(x7) such that 122(333) # 0, then Sy(z3) = {21 € Xi|a(z1) = 1;1(;151)} satisfies
p1( X1\ Si(x3)) = 0. Hence thy(x2) = c1ida(y) for all x5 € So(xt), pa(Se(x7)¢) = 0
and ¥y (1) = crha(as) for all zy € Sy(xh), 11 (S(2%)¢) = 0 as desired.

10



b(%, ¢2) = b(%, 0&2) = Cb(%, 1;2) and b(lgb 122) = b(0¢17 7;2) = Cb(wl, 7;2) So b is
well-defined in the range of ®. ([l

The fact below shows that b is densely defined.

FAcCT.

(2 :{Z i @Yy € L2(X) X X9, %1 @ By, piy X iz, C)

=1

Wﬁ € £2<X1,21,M1,C),

Vi € L2( Xy, Y9, 12, C), i =1,---  n}
is dense in £2(X] x Xy, %1 ® Lo, pt1 @ pia, C).(See [39] for the proof.)
Remark: the universal property ensures that
L2H(X1 X X5, %1 @ g, p11 ® pig, C) 2 L2(X1, 51, i1, €) ® L2( X, B, p1g, C).
since if we take W = £2(X,)®L2(X,), then the induced mapping b is an isomorphism.

EXAMPLE. As we will discuss in §3.2.1, £?(R3 C) is the Hilbert space of one
spinless electron system. C? is the Hilbert space of one spin. The tensor product
allows us to combine the two attributes. The Hilbert space of one real electron

system (i.e. 1 electron system with spin ) is represented by:

L*(R* C)® C* = L*(R?,C) ® L£*({0,1},P({0,1}),#,C)

= L*(R* x {0,1},C),

where P({0,1}), i.e. the power set of {0, 1}, is the sigma algebra of {0, 1}, and # is
the measure of counting.

For ¢ € L%(R3 x {0,1},C), we have ¢ (z, 9, x3,0) € C, for all 71, 29,73 € R,0 €
{0,1}.

Notation: £2(R3,C)?* = £L2(R3,C) & L*(R?,C) = L*(R3 x {0,1},C).

11



Given a Hilbert space H, define 7 : H@H — HQH as 1 ® 1y — by @

uniquely extended by the universal property. Therefore

(1) S = %(i +f), called the symmetrization operator, is the projection of H into
H 11, the eigenspace with eigenvalue +1, because i[%(i—f—i)l/]] = %(i—i—jQ)l/} =
%(i + 1)1, ie. %(i - f)w is an eigenfunction of 7 with eigenvalue +1. We
define the Hilbert space symmetric tensor product H ®s H = Hy1.

(2) A = %(i - f), called the anti-symmetrization operator, is the projection
of H into H_;, the eigenspace with eigenvalue —1, because f[%(i — 1)) =
%(ZA' — %)y = —%(i — 1)1, ie. %(i — I)i is an eigenfunction of Z with
eigenvalue —1. We define the Hilbert space wedge product (or Hilbert space

antisymmetric tensor product) H A H := H_;.

Therefore, H ®¢ H and H A ‘H are subspaces of H ® H.

2.2. MATHEMATICAL FORMALISM OF CLASSICAL STATISTICAL ME-

CHANICS

To understand the mathematical formalism of quantum mechanics, we will first dis-

cuss the corresponding concepts in classical mechanics.

2.2.1. Phase Space.

DEFINITION. The phase space determines all the constituents of the system, and
all their possible configurations and dynamical behaviors. The phase space X of a
classical mechanical system with n degrees of freedom is a 2n dimensional mani-
fold, with local coordinates qi,- -, Gn,P1,"** ,Pn, Where (q1,--+,qn) = q represent
the generalized position coordinates and (p1,--- ,p,) = p represent the generalized

momentum coordinates.

12



ExXAMPLE. For a particle in R?, the phase space is R® = {(q1, q2, g3, P1, D2, D3)|
¢,pi € Ryi = 1,2,3}, where q = (¢1,¢2,¢3) is the position of the particle, p =

(p1,p2, p3) is the momentum of the particle.

2.2.2. Logic.

DEFINITION. Let X be a set. Then a o-algebra X is a collection of subsets of X
such that the following hold:
(1) The empty set is in X;
(2) If Ais in X, then so is X \ A;

(3) If A, is a sequence of elements of ¥, then the union of the A,s is in X.

If ¥ is a o-algebra and A is a subset of X, then A is called measurable if A is a
member of X. Measurable sets are also called events. If S is any collection of subsets
of X, then we can always find a o-algebra containing S, namely the power set of X.
By taking the intersection of all o-algebras containing .S, we obtain the smallest such

o-algebra, which is called the o-algebra generated by S.

DEFINITION. The Borel o-algebra B(X) is defined to be the o-algebra generated
by the collection of open sets (or equivalently, by the closed sets) of the topological

space X. A Borel set is an element of the Borel g-algebra.

DEFINITION. The logic of a classical mechanical system is ¥ = B(X), the Borel

o-algebra on the phase space X.

The events of the logic are in an idealized sense definable and testable in terms
of experimentally relevant quantities such as the coordinates ¢, -, ¢n,P1," " , Pn-
A € ¥ if there is an idealized decision algorithm for whether s € A involving only
answering questions about the values f(s) of various continuous functions f : X — R.

For A,B € ¥, we define A < B iff A C B. We define A+ := X — A. We define
AL Biff AnB = 0.

13



2.2.3. Observables. A physical quantity relative to this system is called an
observable, defined as a function f : X — R measurable with respect to the o-algebra
¥, ie. f7YR) €Y, VR € B(R).

For instance, if the system is that of a single particle of mass m which moves in
R3 under the influence of a potential force, then n = 3, X = R ¥ = B(RS), and an

important observable is the Hamiltonian H, which is given by

~

1
H(q1, G2, q3, 1, D2, P3) = %(pf +p5+p3) + Vg, g, 43).

If (q,p) = (q1, 42,43, P1,p2,p3) € RS, the function (q,p) — 7= (pi + p3 + p3) is the
kinetic energy observable of the particle. The function (q,p) — V (¢, 2, q3) is the

potential energy observable of the particle. These are also important observables.

DEFINITION. Let be w,v be any two smooth functions of the variables (q, p).

Then the expression

"\ Ou dv  Ou v
te v} = - (api 9q; N 9q; 8]%)

(2

is called the Poisson bracket of u and v.

FactT. The collection P of all smooth observables have the following properties,
for any A, B,C' € P
(1) distributive law (Leibnitz rule): {A, BC'} = {A, B}C + B{A,C};
(2) antisymmetric law: {A, B} = —{B, A};
(3) linearity: {A, B1B1 + (2Ba} = (i{A, B1} + (2{ A, Ba};
(4) Jacobi identity: {A,{B,C}} = {{A,B},C}+{B,{A,C}}.

2.2.4. State.

DEFINITION. A measure is a map m : ¥ — RT U {0} such that m(0) = 0 and, if

A, is a countable sequence in ¥ and the A,, are pairwise disjoint, then

14



If, in addition, m(X) = 1 for X a measure space, then m is said to be a probability

measure.

DEFINITION. A state in classical statistical mechanics is defined as a probability
measure on the phase space:
we X — [0, 1].
The pure states are the extreme points of the convex set of all states, which are

1, if(q,p) €S
represented by the Dirac delta measures d(q,p)(S) = .

0, otherwise.
The state represents the observer’s partial knowledge of the phase point (q, p)

and/or describes an ensemble of identically prepared systems.

DEFINITION. A measure v is absolutely continuous with respect to another mea-

sure p, denoted as v << p, if for every set E with u(E) = 0, we have v(E) = 0.

This makes sense as long as p is a positive measure, such as Lebesgue measure,
but v can be any measure, possibly a complex measure.

By the Radon-Nikodym theorem [36], v << u implies that

I/(E):/Efd,u, VE € X

where the integral is the Lebesgue integral, for some integrable function f. The
function f, uniquely determined p a.e. on X by p and v, is like a derivative, and is
called the Radon-Nikodym derivative j—l’:.

For an example of an absolutely continuous state, i.e. a state which is absolutely

continuous with respect to Lebesgue measure d"qd"p = dq; - --dq,dp:,- - - dp,, we

e—BH(a,p)

Z(B)
proportional to the temperature, and Z(() = fR% e~PH(aP) d"qd"p is called the par-

define the density function p(q,p) = , where 3 > 0 is a parameter inversely

tition function. p is a nonnegative real valued function, and fRQn pd'qd"p = 1. The

state dpu = p(q, p) d"qd™p is usually called the canonical ensemble.

15



2.2.5. State Evolution. The law of evolution in time of the state of the sys-
tem is specified by a smooth function H : X — R, called the Hamiltonian. Let

(a(t),p(®) = (¢1(t), -+ . qu(t), p1(t), - -, pa(t)) be a dynamical trajectory of the sys-

tem; such a trajectory satisfies the Hamilton’s equations of motion :

g .
2=Vl
i .
&=Vl
o o
daqy p1
where Vg = | : |, Vpi= ;
o b
9gn Opn
Let ¢¢(qo, po) := (q(t), p(t)) be the solution of these classical equations of motion,

where (q(0), p(0)) = (qo, Po)- Denote the initial state as uo, and the state after time
t as pg. Let S € B(X), then define

For a pure initial state, i.e. if 19 = d(q,p), then

Mt(5> = 5¢t(q7p) (S)

For a given absolutely continuous initial state dug = pod™qd™p, the density function

pe of the state du, = p; d*qd™p at time t satisfies the Liouville’s equation [9] :

ExAMPLE. For a 1-dimensional harmonic oscillator, the Hamiltonian is given by

2 2

H(q,p) = % +1k¢? = (\/’2)——771)2 + &? = FE, where m is the mass of the system, k is a

constant, ¢ is the displacement, p is the momentum, % represents the kinetic energy;,
%qu represents the potential energy, E is the total energy of the system. For different
E values, the level curves of the Hamiltonian correspond to different ellipses having

the same major axis and minor axis. Then qu[ = fIq = kq, fo[ = flp = p/m and

16



hence the Hamilton’s equation is

d A~
d—(tz :Hp:p/m7

J .
F=—-H,=—kq.

Given the initial state (qo,po), the state (G(¢; qo, po), P(t; Go, po)) at time ¢ can be
solved from the above equations as ¢ = C cos(wt + ¢), p = —mCw sin(wt + ¢), where
W =4/ %; C, ¢ are constants calculated as follows.

Do
Cmw’

go = C cos ¢, pgp = —Cmwsin ¢ = cos ¢ = qo/C, sinp = —

. 2 1 C2m2uw? 1
H(qo,p0) = % + §kq§ = gznw sin? ¢ + §/€C’2 cos® ¢ = kC?/2.
2H
:>C _ (i:(%p())’

¢ = arg(qo/C — ipo/ (Cmw)) = arg(qo — ipo/ (mw)).

Therefore,
2H (qo, k . :
1= Cecos(wt +6) =\ P o[y 4 gt — o 0m)) = (000, 0),
- [k
p = —Cmwsin(wt + ¢) = —\/ 2H (qo, po)m sin( Et + arg(qo — ipo/(Mmw)))
= p(t; 40, Po)-

Suppose the initial density function po(q,p) = p(q,p,0) is given. The Liouville’s

equation is % = —%g—g +kqg—g. We claim that the solution for the Liouville’s equation

is p(q,p,t) = p(q(=t;q,p), p(—t; 4, p),0) = po(G(—t;q,p), D(—t; q, D))

To see,

p(q(t;q,p),B(t;4,p),t) = po(q, p)

d 9 "
0= apo(q,p) = aﬁ(é](t,q,p),p(t,qm),t)

R
“oq ot Topor ot
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2.2.6. Predicting Measurement Outcomes. Suppose the observable f : X —
R is to be measured and we wish to predict the distribution of the measured values of
this observable when the system is in the state p: X — [0, 1]. If we suppose the mea-
surement is noiseless then the probability distribution of the values of f is the so-called
marginal distribution vy: B(R) — [0,1], defined by the rule: v¢(R) = p(f~*(R)) for
all R € B(R).

EXAMPLE. X is a product space R?, with coordinates (¢,p), f(q,p) = q, du =

p(q,p) dpdg then
dvs(q) = </ p(q,p) dp) dg,

where ffooo p(q,p) dp is called the marginal density function. We will use the notation
dv(q) and vs(dq) interchangeably.

Realistic measurements all have some noise, which means that instead of measur-
ing f(z) the measurement apparatus introduces small perturbations, which we model

using a normally distributed random variable with mean zero and small variance €.

Define
1 y?
ac(y) = W eXP[—@]-
Then a.(y)? is the probability density function for the noise perturbations. The

predicted probability distribution of the noisy measured values is v; * 2. Thus the

probability that the noisy measured values will be in the set R € B(R) is given by

el = [ xae) [ aule =2yl a:

/ / a(2)a(z — y)? dz vy( dy)

:/_ (v * 02)(y) vy ().

18



In the limit as € — 07 this expression tends to v¢(R) as expected.

2.2.7. Updating the state after the measurement. First let us suppose
a noiseless measurement of the observable f has been conducted while the system
is in the state p, and the outcome of the measurement is an observed probability
distribution 7 of the measured values of f. This observed distribution 7 may be
different from the predicted distribution v¢, and our problem is to know how to take
this new information into account. If there is some R € B(R) such that v¢(R) = 0
and 7(R) > 0 then there is a genuine conflict between theoretical prediction and
observation. Let us assume the contrary, namely that 7 << vy.

The experimentally obtained information o concerns the possible values y = f(x)
of the observable, if the phase point x is in X. However, the experiment yields no
information about which z € f~({y}) gives rise to a particular y value. The state u
does however provide such information by means of the fibre measures p,, which will
altogether satisfy

*) u(s) = / " () dvs(y)

for all S € . This can be understood as follows. Suppose S € ¥ and define
vig: B(R) — [0, u(S)] by the rule vy s(R) = p(SN f71(R)) for all R € B(R). Clearly

vs.s s a positive measure and vy ¢ << vy. Therefore by the Radon-Nikodym theorem

[36]
) =vps(R) = [ dvps(y) = s (y) dvy(y)-
This suggests that 1, (5) = d;ff (y) except for y in some v¢-null set (depending on 5).

The fact that there exists a universal vp-null set N € B(R) such that for all y € R\ N
the fibre probability measure y, exists and satisfies 1, (5) = %(y) forall S € ¥ is
a nontrivial theorem in measure theory, proved for example in [31] (Parthasarathy).

py is also called a conditional probability. It is concentrated on on the set f~'({y})

in the sense that p, (X \ f~'({y})) = 0.
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No experimental information gives us any reason to modify the fibre measures f,,

so we define the updated state ji by the rule:

i(5) = | m($)arty)
for all S € ¥. This makes sense since p,(S) is defined for all y € R\ N, and
7(N) = 0. Hence we essentially replace vy in (*) by 7. It is not difficult to check that
a(f~'(R)) = v(R) for all R € B(R), and i, = p, for all y € R\ N. The updated state
thus encodes all the information the observer possesses about the system immediately
after the measurement.

If the measurement is noisy, this does not affect the formula for the updated state,
since in classical mechanics we do not suppose that the noise in the measurement ap-
paratus actually perturbs the system, so as to modify the fibre measures p,,. However
in a noisy measurement one would expect the observed distribution 7 to be “blurred”
when compared to the distribution of noiselessly measured values. Thus the updated
state represents what the observer knows about the system, not what “really is”.
Because of this it is not surprising that the state might need to be updated after a

measurement.

EXAMPLE. Let X = {1,2,3,4} x {1,2,3,4,5,6} = {(1,1),(1,2),--- , (1,6),
(2,1),(2,2),---,(2,6),---,(4,1),(4,2),---,(4,6)}. Let us see a formalistic construc-

tion on this classical system:

e define the logic to be ¥ = P(X), the power set of X;

e define an observable to be f: X — {1,--- 6} : (¢,)) — 7J;

e assume that the atomic probability at (i,j) € X is P, ;, where 0 < P, ; <
LY, 25:1 Py =1

e the state before measurement is u(S) = Z(m)es P, ;VS €3
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e for R C {1,2,3,4,5,6}, the predicted distribution of the measured values is

v(R)=p(f{(R)= D> Py= > Py=> > P,

(i,5)€f~1(R) f@.j)eRr =1 j=ljeR
SN IR St
j=1jeR i=1 j=1,j€ER

4
where ij = Z P, ; is the marginal probability;
i=1

vis(R) =p(f{(R)NS)= > Py= (> Py

(i)ef~H(R)NS Jj= IJER i=1;(4,5)€S

24 1;(4,5)€s %J : 2{1_1(' ')eSPij
s i gy oy Zmtges P p

(2 f 7
j= Z’L 1 =1 Pj

6
1,j€R
6
Z 1 (S) P!
j=1,7€R

j=1,jeER

4

define 11,(S) = =
j

e assume that the observed distribution of measured value at j € {1,---,6}
is 7({j}) = P;, where 0 < lf’J < 1,26:1}% = 1 and PJ = (0 whenever

St P, = 0 (the absolute continuity condition). Then the observed distri-

bution of measured value at R C {1,---,6} is 7(R) = Z] 1jer - Then

the updated state defined for any S € P(X) is ui(S) = ZJ . ”;‘fs{y}]; v({j}) =

6 le t. (¢ P'L I
Zj:1¢]) Z(” €s PfP Z” es ”,WherePw = i({(i,5)})
= 1;]; f’] is updated probability distribution. For instance, if S = {(1, 2),(2,2),

(3,2),(3,3),(3,4)}, then i(S) = %PQ + zzpi; Ps+ Zfi; Py =

Py o+Po2+P32 15 P33 P34

EXAMPLE. Let X = R? with coordinates (x1, z3), and we are suppose to measure
f(z1,29) = 3. Let p(xg) be the predicted density function of xs, and p(zy) the

observed density function of z5. Let n(x1,z2) be the density function of the state u
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prior to the measurement, and 7 the density function of the updated state fi. Then

dp = n(xy, x2) deidey, dip = 1(xq, x2) dridxs,

plx2) = / n(x1, 22) dvy, dvy = p(a2) das,

[e.9]

p(ra) = / (w1, w2) dry, dvy = p(x2) dxs,

[e.9]

= (yo) = lim vrs([yo — €90 +€)
—0t vi([yo — €90 + ¢€])

Yo+e€
= lim ==
e—0t

fj;o XS(I17172)77(I17I2)d$1d$2
Yo+e€
Yo—€

fj;o xs(1, yo)n (w1, yo) dz12e
=0t p(yo)2e

fj;o Xs(71, Yo0)n (w1, yo)day

P(Yo) '

p(x9)dxs

Then we find the updated state to be

~ dl/f S ;-
= = d
fi(S) / dvy i

(l'z)dl'g

/ f s(@1, wo)n(w1, 22) dy

p(x2)

//XS T1,T)N xl,xg)pg ;dxldxg

By the definition of 7, for all S € B(R?)

://XS($1,902)77($1,352)d$1d962,
RJR

and therefore we have the relation 7(z;, z5)2 e ; n(xy, x2).

2.3. MATHEMATICAL FORMALISM OF QUANTUM MECHANICS

2.3.1. Hilbert Space. Each system is associated to a seperable Hilbert space

‘H, which is not strictly analogous to the classical phase space, but plays roughly the
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same role in quantum mechanics as the phase space plays in classical mechanics. It
is difficult to give a systematic theory of the Hilbert spaces for each particle type,
so we will assume that they are known and focus on deriving the Hilbert space for a
system of many particles.

Let A be the set of all particle types, such as ’electron’, 'proton’, 'neutron’, "Helium
nucleus’, etc. Also assume A = Aposon U Afermion- Assume that H,, is the Hilbert space
for a single particle of type a € A. Let N be the set of all particles in the system.
Then N = UgeaN,, where N, NN, = 0 if a1 # o, where N, is the set of all
particles in N of type a.

Then we have the following rules:

(1) Suppose & € Agermion- Then the Hilbert space for the system of particles N,
is Har, = Ha /1\ e W7\|_1 ‘H,, where A is the Hilbert space wedge product.

(2) Suppose a € Aposon, then the Hilbert space for the system of particles N, is
Hy, = Ha és e ‘A(%‘;l H., where ®g is the Hilbert space symmetric tensor
product.

(3) The Hilbert space for the entire system of particles N is Hy = Hn,, ®

-+ ® My, , where A={ay, -+ ,ax} and ® is ordinary Hilbert space tensor
product.
2.3.2. Logic.

DEFINITION. A bounded linear operator T : V — W between two Banach spaces

V, W satisfies the inequality
IT()lw < Clolv, Vo eV,
where C' is a constant independent of v.

Fact. For any bounded linear functional [ : H — R, where H is a Hilbert space,
there is an unique z € H such that I(y) = (z,y) for all y € H, where (z,y) is the

inner product of z and y. We write [ = 2.
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For any fixed x € H, a bounded linear operator P on Hilbert space H defines a
linear functional [(y) := (z, Py),Vy € H. By the above fact, for any fixed x € H,
there is an unique z € H such that (z, Py) = l(y) = (z,y) for all y € H. We define
the Hermitian conjugate (or adjoint) of P, denoted as PT, by the rule PTz = z. It is

also a bounded linear operator on Hilbert space.

DEFINITION. Let ‘H be a Hilbert space. We define the set of orthogonal projection
operators as £ = {P : H — H|P is linear and bounded, P = P' = P2}. The
Logic £ of a quantum mechanical system is the set of all linear bounded Hermitian
projection operators on H. We say that orthogonal projection operators P and Q are
perpendicular, denoted as P1Q, if and only if range(ﬁ) L range(@). For P,Q € L,

A

we define P < Q if range(P) C range(Q). We define P+ := — P.

A

FacT. For P,Q € £, P < Q iff QP = P.

~ ~ ~ A A A A

FacT. For P,Qe £, P<Q+if P LQif QP =0 iff PQ =
FacT. For P,Q € £,if P L (), then P+ Q € L.

FacT. The set of orthogonal projection operators £ on H has the following prop-
erties:
(1) The zero projection 0 : H — {0} is in £;
(2) if P € £, then PL =1 — Pisin L;
(3) If a sequence of projectors P, Py, € L sit. Pinj, Vi # j, then ZZP, is
in L.

These properties are analogous to those of a o-algebra.

2.3.3. Observables. A physical quantity A relating to this system is called

an observable, which is represented by a Hermitian unbounded linear operator A
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DomA — ‘H, where DomA is the domain of A. Observables are closed and densely de-
fined in H (the following definitions of DomA, observables closed and densely defined
are found in [19]).

Thus the set of observables is ¢ = {A : Dom(A) € H — H|Dom(A) is a dense
subspace of H, A is linear, graph(fl) is closed in H x H, and Dom(fﬂ) ={z €

HlsupyEDom(A),y;éOl(x|[;\|y)| < OO} = DOIH(A), and (AI’, y) = (‘Tu Ay) VCL’, /S Dom(fl)}

By spectral decomposition theorem [19], there is a spectral decomposition Fj :
B(R) — L s.t.
A= / ANdF;(N).
R
Moreover, F'; has the following properties:
(1) F;(0) =0, F4(R) = 1.
(2) if U,V eBR)st. UNV =0, (ie. UL V), then F;(U) L F4(V).
(3) If {U,}>2, is a sequence of sets in B(R) and U, NU,, = 0,Vn # m, U =
U Uy, then Fi(U) =3 F4(Uy).
This shows that F; is the quantum analog of the mapping R +— f~!(R) when f is a
classical observable.

Bounded observables form a Jordan-Lie algebra (Landsman [23]) with the follow-
ing two binary operations. If A, B are bounded observables on Hilbert space ‘H, then
define Ao B = %(AB + EA), which is analogous to fg of classical observables f and
g; also define {4, B} = {(AB — BA), where i = 1.055 x 10~Js is the Planck’s
constant. {A, B} is analogous to {f, ¢}, the Poisson bracket of classical observables

f and ¢g. The following properties hold:
AoB—Bok (AB) = (B A)
Ao (BB + 3:B,) = iAo By + oA o By
{A,B1B1 + $:B>} = Bi{A, B} + 5{A, By}
Leibnitz rule: {4, BoC} = {A,B}oC + Bo{A,C}
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Jacobi identity: {4, {B,C}} = {{A,B},C} +{B,{A,C}}

In the quantum case we have

A ~ N

A
(AoB)oC —Ao(Bo()= Z{{A,C’},B}
whereas in the classical case we have (fg)h — f(gh) = 0.

FacT. If A and B are bounded observables, and Fj;, F5 are their spectral de-
compositions, then F;(U)Fs(U) = F5(U)F;(U), YU € B(R), iff AB = BA [40]. We

usually use [A, B] := AB — BA = 0 to represent that A and B commute.

This fact give us a hint about how to extend the notion of commuting bounded

operators to the context of unbounded operators.

DEFINITION. Observables Ay, - , A, are commuting if VR € B(R),

FA_(R)FA (R) = FA_(R)FA_(R),Vl <1,75<n.

J 7

THEOREM. (Simultaneous Diagonalization theorem [19])
Suppose 1211, e ,AN are commuting observables. Then there exists a projection

valued measure 7 Y B(RY) — L such that

~

Aj:/ AJdF(Al,,AN)(A)7 j:]_7"' ,N
AERN

A1
where \ = : .

AN

Moreover, if A; = [°° dF; (A) then

F(Ah'“,AN)((a'la bl] X oo X (CI,N, bN]) = FAl((al, bl]) 0-++0 FAN((G’N’ bN])

2.3.4. State. A state of a quantum system is given by a mapping p : £ — [0, 1]
st p(0) = O,u(f) = 1, and if {15]} is a sequence of projection in £, such that
P; L Py, whenever j # k then 1>, P = > 1(P;). This concept is analogous to

the classical state i.e. a probability measure.
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DEFINITION. A bounded operator D on the Hilbert space H is of trace class if,

for any orthonormal basis {e;} of H, the series
Z |(e;, Dey)| < o0;

In this case the sum

tr(D) = Z(ei, Dei)

exists for any orthonormal basis {e;}, and is independent of the basis used; it is called

the trace of D. [40]

DEFINITION. A bounded operator D on the Hilbert space ‘H is non-negative if

(h, DR) > 0 for all h € H.

Gleason’s theorem [40] asserts that for every state p there is a density operator

A

D, i.e. a Hermitian, non-negative, trace class operator with unit trace, such that
w(P) = tr(DP), VP € L.

w1 is identified with D, so we usually write i as pip. Moreover, D is analogous to the
classical density function for an absolutely continuous state. The trace is analogous
to integration with respect to Lebesgue measure d"pd"q.

A pure state is an extreme point of the convex set of all states. Gleason’s Theorem
also identifies all the pure states to be exactly those of the form D = fff, f €
H, |f| =1, where ff: H — C: g— (f,g). Let us check that D = f T is a density
operator:

(1) Dg = ff1(g) = f(f,9) is a linear function of ¢ with values in H;

(2) 1Dgl = 1£11(£ )] < IFH1F1 gl = lgll so D is bounded;

(3) (Dg.h) = (f(£.9).h) = (F.9)(f.h) = (9. S)(£. 1) = (g, F(f. 1))
= (g, Dh), so D is Hermitian;

(4) because (g,Dg) = (g, f(f.9)) = (9. F)(f.9) = (9, f)]> > 0, so D is non-

negative.
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(5) tr(D) = 3202 (ens Den) = 3002 (ens f)(fren) = 3oniy (ens )P = | £
= 1, where {¢;} is any orthonormal basis of H.
Remark: For the pure state D = i, D is not to be identified with the unit
vector in f € H. To see, if € € S, then fe(fe) = feie"f1 = ffT. Thus fe'
and f determine the same pure state. For this reason, pure states are often defined

as rays in H.

2.3.5. State Evolution. The state of an isolated system with a known Hamil-

tonian operator H evolves according to the rule:
D(t) = U()DO)U ()™,

where the unitary group {U(¢)} is the solution of the initial value problem for the
differential equation(Schrodinger’s equation)( Reference: converse of Stone’s Theorem

[19] for the existence of U(t)):

It is clear that D'(t) = —%[ﬁ[,f?(t)] = —{H,D(t)} which is called Liouville-von
Neumann equation, and hence this evolution is analogous to classical density function
evolution. If D(0) = fofi, then D(t) = f,f), where f, = U(t)fy, since flg = (fi.g) =
(U(t)fo,9) = (fo, U(t)Tg) = feU(t)" g for all g € H.

By spectral decomposition theorem ([19] p.270), H f(t) = [Z XdFz(N) f(t), and
f= f dFy(X)f. The Schrédinger’s equation

inf'() = F ()
i [ am 0 = [ adms

[e.9] [e.9]

i [ (N (0] ~ AdFa () F(0)] = 0
d IA
7]+
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d T i
e f@] =0
e'" dFy f(t) — dFy f(0) = 0

i

dFg(N) f(t) = e~ dFy(\) £(0)

S f(t) = / T AR, (N (0) = U (0)),

At

where U(t) = [ e n dFg()).

2.3.6. Predicting Measurement Outcomes.
Noiseless Measurement. Suppose the observable A= ffooo AdF;(X) is to be mea-
sured and we wish to predict the distribution of the measured values of this observ-
able when the system is in the state D. If we suppose the measurement is noise-
less then the probability that the measured values will be in the set R € B(R) is
vi(R) = tr [F4(R)D].

Suppose we wish to predict the outcome of simultaneous measurements of n com-

~

muting observables A;,--- , A,; denote A = (1211, -, Ay). Let Fy : B(R") — L be
the associated spectral measure s.t. flj = fAeR" Aj dF(Al,-.-,An)()‘)vl < 7 < n. The

predicted joint distribution of measured values is

for all R € B(R™).

For instance the predicted mean of the measured values of observable Aj is
< A; > :/ Ajdva ()
AERR
= / Ajbp(dFR(A))
AER™
- / Ajtr(D dF5(N)
AER™
— tr(D A dF5(N))
AER™
= tI‘(DAJ)
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Noisy Measurement. If the measurement apparatus has noise with mean zero
and variance €2 then by analogy with the classical expression we agree that the prob-

ability that the noisy measured values will be in the set R € B(R) is given by
arad)(B) = [ (Wi,

This prescription has been justified in [30]. Various equivalent expressions exist for

this probability:

/ T (xx a2 (N) vi(dn) = / ) / T r)adA — ) dy tr [Fy(dN) D]

o0

= [l oty - N2Ei a0 Dy

o0

~ A

= / tr [ (yl — A)2D] dy
R

A A

= tr [/R a(yl — A)Da(yl — A) dy]
= tr [/R a(yl — A)?dyD).

Thus we predict that the noisily measured values will be continuously distributed on

the real y line with the density function

~ ~

vi(y) = tr [a(yl — A)D].

However, this continuous probability distribution will tend to v4;, which can have

probability atoms, in the limit as ¢ — 0.

2.3.7. Updating the state after the measurement. In quantum mechanics
one must be much more careful about the process of measurement and its theoretical
treatment than was the case in classical mechanics. Measurements of atoms, and
in particular electrons, could only be explained if one admits that the measurement
process might perturb the system in ways which may be impossible to completely
control, and this may necessitate a fundamental revision in the theoretical treatment

of physical quantities (such as position and momentum). However the insistence of
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most of the founders of quantum mechanics that the state of the system represents “all
that can be known about the system” (i.e. “what really is”) as opposed to “what an
observer knows about the system at a particular level of physical theory and approxi-
mation” has lead to much murky philosophy (i.e the Copenhagen interpretation) and
has helped give the entire subject a reputation of mystery and incomprehensibility.
Perhaps therefore it should not be surprising that in order to give an account
of how to update the state after a measurement of an arbitrary observable A =
ffooo AF;(dX) one must also admit that all real measurements have some noise. The
noiseless case represents an idealized limit which may fail to exist in some cases. In the
following we will describe how to update the state after a canonical measurement [30]
(M. Ozawa). A measurement is canonical if it can be modeled as a particularly simple
type of interaction between the system and an apparatus pointer. This interaction
is treated quantum mechanically. The Hilbert space of the apparatus pointer is
K = L*(R). If a(q) is a square-integrable complex-valued function of ¢ € R then
« € K. The pointer position observable is Q, defined by (Qa)(q) = qa(q). The pointer
momentum observable is P, defined by (Pa)(q) = —iha/(¢). We assume the system
(being measured) and the apparatus pointer interact for a time period of duration At.
During this interaction we must treat the system and the apparatus as a composite
system, with the Hilbert space H® K = L*(R,H). Most importantly, we assume that
during this interaction the evolution is governed by Schrodinger’s equation with the
Hamiltonian Hyy, = (At)*lfl ® P. This interaction Hamiltonian is not easy to justify
on physical grounds, as might be expected since the actual measurement interaction
is between the system and a complex apparatus which contains the pointer as a
rather small part. This Hamiltonian was chosen (by von Neumann [29]) because it
yields an explicitly solvable evolution of the composite system, and it leads to results
which are consistent with experimental observations. Other choices of K and other

interaction Hamiltonians have been proposed in various cases, but the choices we have
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listed above characterize canonical measurements. Canonical measurements seem to
be adequate for the realm of atoms and molecules.

If the state of the system just prior to the beginning of the interaction between
the system and the apparatus is ,u(p) =tr (ﬁﬁ) for all P € £, where D is a density
operator, and the state of the apparatus pointer at this time is given by the density
operator a.a (where a. is defined in section §2.2.6), then the state of the composite
system is D ® (aeof). If {U(t)} is the unitary evolution group for the composite
system under the Hamiltonian H, then the state of the composite system at the end

of the interaction is (c.f. [30] M. Ozawa)
U(AH)[D @ (eal)|U(AL)

This state contains all the information about the correlations between the system and
the pointer which exist at the end of the measurement interaction. If we ignore all
information concerning the pointer we can obtain a state D' of the system at the end

of the measurement:
D' = tri{U(AD)[D @ (cea))|U(AL)TY.

We may think of the partial trace tri as the operation of “averaging over the pointer
degrees of freedom”. If {e,}°°, is a complete orthonormal set in I then the partial
trace of a trace-class operator B in H ® K is an operator in H, which when applied

to ¥ € 'H yields

e Bl =) (1@ ef)B(Y ©ey).

n=1

It is shown in [30] (M. Ozawa) that

D = / o (¢l — A) Do (¢ — A)T dg.

~

In the above the operator a.(ql — 121) is computed using the spectral theorem:

adai-A)= [ " aulg = N) Fy(dn).



Clearly, in this case we have o (¢l — A)f = a.(¢1 — A). D’ would be the state of
the system after the (canonical) measurement interaction if we were to throw away
all the measured data. (Remember, the state encodes the observer’s knowledge of
the system!) The fact that undergoing a measurement interaction causes a state
change from D to D' is a marked contrast with the classical case, and underlines the
point that in quantum mechanics we cannot ignore the effect of the measurement
interaction on the system. The transition D — D’ is often called the dynamical state
change.

Now we come to the issue of observing the pointer. Since we have treated the
pointer as a quantum system, must we hypothesize another apparatus to measure it?
To make this unnecessary we assume that the pointer is heavy enough to be accurately
treated as a classical system. (The nature and accuracy of this approximation is
discussed in [35] and in Balian [9].) Hence we hypothesize a noiseless measurement
(for the composite system) of the position of the pointer which incurs no perturbation
of the state of the composite system. The observable in the Hilbert space H ® K
corresponding to the pointer position is 1® Q. If R € B (R) then the probability that

the outcome of this noiseless measurement will lie in R is
tryerc{[1 ® Fo(R){U(A)[D & (acad)|U(A) T}

Using the identities presented in [30] (M. Ozawa) this probability can be reexpressed
as:
tryy [/ ac (gl — A)? dqﬁ] = / Vi (q)dg.
R R

This is exactly the probability that we gave in section §2.3.6 that a noisy (variance €2)
measurement of A gives values in the set R when the system is in the state D before
the measurement. That formula we derived by analogy with the classical case, but
we see now that it also arises from the formalism of canonical measurement where
the state of the pointer before the measurement is a.al. This result bolsters our

confidence in the canonical measurement formalism.
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Now suppose that the measured values are observed to be distributed according
to the density function 7(gq) instead of according to the predicted density function
vi.(q). How should the state of the system be updated to take this new information
into account? By analogy with the classical case we note that the state D’ of the

system after the measurement can be written

* (gl — A)Dac(q1 — A)t
,_/ (gl = A)Dac(ql - 4) Vi (q)dg
—oo tr e (ql — A)Da(ql — A)T] &
The quotient
~ adql — A)Dac(ql — A)f

T tr [ae(gl — A)Da(ql — A)i]

we interpret as a conditional density operator, analogous to the fibre measure in the
classical case. We have assumed that the process of observing the pointer does not
perturb the composite system at all, hence we have every reason to believe that
the conditional density operators D; should be unaffected by the observation of the

pointer. Hence, as in the classical case, we define the updated state to be:
X SN
— 5y
b= [ Dipta)dn
— o

and ji(P) = tr (DP) for all P € £. The transition D’ — D is often called state
reduction.
In the very special case where A= Yo NA;, where A; = Fi({\;}), we can make

sense of the noiseless limit ¢ — 0% of these results. In this case D’ becomes
D=3 [ ada=Nada - A)daAiDA;

When € is small when compared to min;,;|\; — A;| the off-diagonal (i # j) coefficient
ffooo ac(q — N)ac(g — Aj) dg is very small, and hence the noiseless limit of D' is given
by:

i=1
“NL” stands for Neumann-Liders, since von Neumann (and later Liiders) derived this

formula for the dynamical state change from various auxiliary postulates about the
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measurement process, such as its repeatability. If p; = tr [AiﬁAi] then then noiseless
limit of vy *aZisvy = > o0 pidy,. If 7 << v then we must have 7 =" | p;dy,, for
some nonnegative numbers p;, where > 7" p; = 1. Also if for some i we have p; = 0
then we must also have p; = 0. Thus the noiseless limit of the reduced state lg) should

be:

Dy = S 224

i=1 ‘
In order to show that this is indeed the limit as ¢ — 0T of our general formula for
the reduced state we must hypothesize that the observed distribution 7(q) dgq varies
with € (the noise level of the apparatus), and tends to o =Y ." | p;0), as € — 0T. For

example it is reasonable to suppose that
7(q) = pice(q — Xi).
i=1

Then the reduced state becomes

A > Z .ae(q - Az)ae(q - )\J)AlﬁA]
D:/ 2, ﬁkaeq_)\k2dq7
T St e
The quotient in the above integral is the conditional density operator ﬁfw and it is

not difficult to see that lim,_ ¢+ ﬁfl is a piecewise constant function of ¢:

oy ADA; -
elirélJrD;: o if |¢ — \i| <|g— A;| for all j # .

Thus the desired convergence is now clear.

Suppose the state D before the measurement is arbitrary and for some 1 <7 <m
we have that A; is a projection onto a one-dimensional subspace of ‘H spanned by the
unit vector v;, and p; = (¢, le) > (. If the system is a large ensemble of “identical”
subsystems, and the apparatus is designed to select only those subsystems with the
measured value )\;, discarding the other subsystems, then we have p, = 1 for the
selected subensemble. The result of the measurement is that the state of the selected

subensemble has been changed to Dyp, = 0], Thus the (noiseless) measurement
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process (of a family of commuting observables) can be used to prepare a system in a
specific pure state.

If A= 32 MFi({\}), where the eigenvalues ); have an accumulation point
then the noiseless limit is more delicate. Examples of this case, as well as that of

observables with continuous spectrum, will only be briefly discussed at §3.2.9.
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CHAPTER 3

EXAMPLES OF QUANTUM SYSTEMS

In this chapter, we apply the quantum formalism to several microscopic systems
from simple to complicate: the spin system, the artificially spinless H atom and H,

ion, and the real Hy and H3 molecule systems.

3.1. SPIN SYSTEMS

Comments on the Idea of Spin If a system is composed of multiple subsystems
capable of relative motion and if those subsystems rotate around one another then the
system gains angular momentum. Spin is the name for angular momentum possessed
by a system without any attempt to attribute it to a rotary motion of subsystems
about an axis. In the case of an electron there are no detectable subsystems, and
yet there is a detectable angular momentum. If the subsystems were charged then
their rotary motion would create a magnetic field. Spin angular momentum is also
associated with a magnetic field created by the system, and experimental detection
of spin is usually related to how this field affects overall motion of the system.
(Adapted from [46]) In 1921, Otto Stern and Walter Gerlach performed an ex-
periment which showed the quantization of electron spin into two orientations. This
made a major contribution to the development of the quantum theory of the atom.
The actual experiment was carried out with a beam of silver atoms from a hot
oven because they could be readily detected using a photographic emulsion. The

silver atoms allowed Stern and Gerlach to study the magnetic properties of a single
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electron because these atoms have a single outer electron which moves in the Coulomb
potential caused by the 47 protons of the nucleus shielded by the 46 inner electrons.
Since this electron has zero orbital angular momentum (orbital quantum number
[ =0), one would expect there to be no interaction with an external magnetic field.

Stern and Gerlach directed the beam of silver atoms into a region of nonuniform
magnetic field. A magnetic dipole moment will experience a force proportional to the
field gradient since the two “poles” will be subject to different fields. Classically one
would expect all possible orientations of the dipoles so that a continuous smear would
be produced on the photographic plate, but they found that the field separated the
beam into two distinct parts, indicating just two possible orientations of the magnetic
moment of the electron.

But how does the electron obtain a magnetic moment if it has zero orbital angular
momentum and therefore produces no “current loop” to produce a magnetic moment?
In 1925, Samuel A. Goudsmit and George E. Uhlenbeck postulated that the electron
had an intrinsic angular momentum, independent of its orbital characteristics. In
classical terms, a ball of charge could have a magnetic moment if it were spinning
such that the charge at the edges produced an effective current loop. This kind of

reasoning led to the use of “electron spin” to describe the intrinsic angular momentum.

3.1.1. Hilbert Space. The internal angular momentum of a particle is called its
spin. For a system of n spins i.e. n-particles with spin and with unknown positions

1 n—1
and momenta, the Hilbert space is H =C*" 2 C?® --- @ C2.

3.1.2. Logic. Logicis £ = {P € C¥"*?"|Pt = P = P?}, where P! is the complex

conjugate transpose of P.

3.1.3. Observables. The observables are members of the set i = {A € C2"*2"|Af =

A

Al
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By spectral decomposition theorem [19], for A € U, we have AX = XA, where
X = (X1, -+ ,Xy) is unitary, A = diag(A\,--- ,Ay), N = 2" and \; € R is the eigen-
value of A with corresponding eigenvector x; € CV. We define U(A) ={A, -, AN}

to be the spectrum of A, and [I'; to be the atomic measure supported on a(/l) defined

as follows.
Fi(R):= Y F4({\}), where R € B(R),
XER
F) = Y xadaer
1<i<N, A=)
Therefore
N
A= )" AF (M) =D Axix!.
Aeo(A) i=1
0 1 0 —i 10
Recall that the Pauli matrices are &y = , 09 = Oy =
10 v 0 0 -1

DEFINITION. For a n-spin system consisting n electrons, let gj(z) be the jth

component of the spin of the ith electron, where j =1, 2, 3,

~

1 i
S](Z) =I® - ® —O'j®"' ® I.
Sj Yoy Sj(i), which is the jth component of the spin of the n-spin system.

S? .= S’f + SE + 5’% is the total squared spin of the n spin system.

Here we will work out the explicit formulae for the joint spectral decompositions

of S2 and Sy for the cases of n = 1,2, 3 respectively. See [32] for general n.

ExXAMPLE. For a single spin, n = 1, the members of the Hilbert space are spin

s
functions s : {0,1} — C, which we can identify with vectors in C%.

s(1)

(1) The x-component of the spin is Sy = g&l;
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(2) The y-component of the spin is Sy =

262;
(3) The z-component of the spin is S5 = B6s.
Then
S? =57+ 52+ 853
h 10 10 10
= (5)2 + +
01 0 1 0 1
32 (10
4 \o 1

. 1
S1 has two eigenvalues g and —g, and their corresponding eigenvectors are %
1
1 1 . .y AN .
and 7 respectively. Then the spectral decomposition of S is
-1

ho o ho h B
sty - trou-ty
T T
A AT R SR
C2ve i) v y) 2ve o) Vel
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N 1
S5 has two eigenvalues g and —g, and their corresponding eigenvectors are \/LE

i

1 .
and % respectively. Then the spectral decomposition of Sy is

—1

h h h h
Sy = §FSQ({§}) §Fs2({—§})
T T
RN AN R SR
2 2 7 \/5 2 2 \/§ —1 \/§ —1
hl (1 —i R1 ([ 1 i
io1) 22\-i
h[O0 —2
2\ 0
h
= —0
502
. 1
S5 has two eigenvalues g and —g , and their corresponding eigenvectors are
0
0 .
and respectively. The spectral decomposition of S3 is
1

DO |
()
=}

[\
[
—_

Do |
o

|
—_

41



Q2 : 3h? : : l
S* has only one eigenvalue =;-, there are two corresponding eigenvectors .
and . Then the spectral decomposition of S2 is
1
3h? 3h?

§ = TR ))

ap2 | (1 0 0 0
=T +
AURC 0 1
32 (1 0
4 \o 1
2
_ 3,
4

It is easy to check that S382 = Szgg, so we have the joint spectral decomposition

. . 1 0
of S5 and S2. For X = we have
01
- 3h% 3h?

&X:megg—g

Therefore, the joint spectral decomposition of Sy and S? is

3n* h Ly (1
F(S?,ﬁg)({(77§)}): 0 0
10
0 0
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32 h 0} (0
F(S2,§3)<{(T7—§)}) . .
0 0
01

ExXAMPLE. For n = 2, the members of the Hilbert space are spin functions: s

5(0,0)
{0,1}?* — C, which we can identify with vectors (

$1(0)s2(0)
(Sl(O)) ® <82(0)> _ <81(0)82(1)>
s1(1) s2(1) ) 7| s1(1)s2(0)
s1(

D)s2(1)

ZE%%) in C*. This is because
s(1,1)

)

(s1®s2)(
(s1®s2)(
((51®52)(
(

0,0
0,1
1,0
(s1®s2)(1,1

The z-component of the first spin is

Therefore

The y-component of the first spin is

N

hA h 00
Sy(1) 502 ®1 =3 70
01

The y-component of the second spin is

R 0-i0 0
52(2) I®§O'2 5(68801)
0040
Then the y-component of the 2-spin system is
) . . VAR
s-5m+5e-%(1711).
01 1 0



Therefore

The z-component of the first spin is

The z-component of the second spin is

The z-component of the 2-spin system is

cocoT
cooco
cooco
—~ooco
N———
ity
Il
—
(@]
S~—
&
+
—~
—
S—
S
Il
N
)
b
NS
<)
b
[eb}
=
=

Finally

SoOoN
OoO—H—HO
O—=—=HO
NOCOO

2 (
2S5. We can find X =

|
o

o2
3

2
2

S

S? =52+

) such that

oo~
O—— O
—Oo0 O

i
0170

(

A ~

A

~

It is easy to check that S3S?

OO~
O—=H—= O
—O0O0 O

—
01_0

[ejenjenia)]
O—=—=O
OS—=—=O
NOOO

SoOoON
oo
NOOO
[eelele)

)

(0,2h%, 2h%, 2R%)

SoOoON
coNo
ONOO
(el

oo —
OO
—O0O O

—
01,0

X - diag
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) coo
\"/

|
N
o LHO
[sXelelog
OO
—OoOO0OO
~~
OO O
OO0
[es]es]en)en]

||
:o
m

S%’s eigenvalues can be parameterized by h25(S + 1), where S € {0,1}, and Ss’s
eigenvalues can be parameterized by hmg, where |mg| < S,mg € {—1,0,1}.

The column vectors of X, i.e. joint normalized eigenvectors of S? and S are:
0 0
W ( 1 ) =7 () ~H(D=sem-maegis=-o
m
L
E (

We call the state xx” represented by the first column vector x the singlet state,

[l CI}

||

O»—A

®

o»—t

nn

I

\')—‘

OO
OO0

S~
+
Sl
N

N——
I
@ S

—OoOO0O
>—AC>

,SizlﬂnS::—l.

because there is only one allowed value of mg i.e. 0. We call the states represented
by the last three column vectors triplet states, because there are three allowed values
of mg ie. —1,0,1, with the same value of S, ie. S =1.

Therefore, the joint spectral decomposition for S? and S is
(Y
Fes(0.00) =3 (1)

F s, ({212, 1)}) = (

oo N~—— /N
e
Il
N
coo~
cooco

1
0
0
0
Fige g, ({(217,0)}) = 4 (
0
0
0
1

—rooOo  _—— OooOo~

Fige gy ({(21°, —h)}) = ( ) <

Given the eigenvalue and corresponding eigenvector(s), we construct Sy and S2

by spectral decomposition theorem as follows.

=33 (1)
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[lejaly]
SoCOoO
[e]elel]
Qoo O

[e>]eleven]
O——O
O——O
[e=]elenfen)

—N

[e]elel]
SoOoO
oo O
—OOoO

VRS

oo O~
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— o O O

N———

VRS

SO O -
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— o O O

7N

oo ©
O=lN—HINO
O =HN—HNO
— o O O

N~
[a\]
s
™

SoOoOo
SOoO—=HO
OoO—HOO
SoOoOo

(o]l
oo O
[ejenjenlen)
—OO0O

N
[elelely}
[ev]en]en)en]
[ev]enlen)en]
[ev]es]es)en]

Fy (R)o F4,(5) as

Now we are able to illustrate the relationship Fi 4, 4,,(R x S)

follows.

OO OO
0%10
o—"To
[e]eYeNe)

Fo sy 10,00 = (
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[e]ejenien)
[e]enjenien)
[ejejenlen)
—O0O

Fo 5, ({22, 1)) = (

[ejer]elen)
[ejerlenlen)
[ejenlenlen)
—OO0O

N———
VR

oo O~
[elolla Bl Yen)
OHIN—HNO
— o O O

N—
I

= Fo ({2} Fg,({h}),

Flge 5y({(20%,0)}) = § (

oo O
O——O
OO
[e]ejele]

SooOo
SOoO—HO
O—HOO
SoOoOo

N———
VR

oo O~
OO
OHlN—HINDO
— o O O

N———

OO~
[e=jenjenlen)
[e=jelelen)
[e>jelenlen)

Figs, ({(20%,—h)}) = (

SOoO—
SoOoO
[ejenjenlen)
[e]ejenlen)

N————
VR

oo O~
[enolla Ealla fen)
O-HN—HINDO
— o O O

~—
I

= Fe({2h°}) Fy,({—1}).

ExAMPLE. For n = 3, through a similar process as in the previous example, we

can construct

(1) the z-component of the first spin is

Soo-oooo
corooooo
ocroooooo
~coococooo
cocoocoo—
coocooco~o
coocoo~oco
cooconooo

N—
N[\

Si)=60Ix1 =

(2) the z-component of the second spin is

~/
OO OoOHOO
OO OHOOO
[elelelelelelel ]
OO OoOoOO—HO
O—HOOOOOO
lnlelelelelelele]
OO —HOOOO
OO—HOODODOO

N—

LN [a\]

=I®0nel=

51(2)
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(3) the z-component of the third spin is

~
OO OOHO
[elelelelelelely]
OO OHOOO
OO OoOO—HOO
SO—HOOOOO
OO —HOOOO
inlelelelelelele]
Or—HOODODODOO

N—
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o1 =

=I®I®

51(3)

Then the total xz-component of the three spin system is

~/
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N—
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(1) the y-component of the first spin is

—

coco Joococo
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o Jooocooco
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coocococoow
coocooowo
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cooo~ooo

N—

<Ll

S(1) =6, 011 =

(2) the y-component of the second spin is

~—

coooco oo

cococofooo

OO OO
OO0 O =0

o'{oocococoo

Tooocoocoo

OO =000
SO 200000

N——
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=1I®0,®1=

S(2)

~

(3) the y-component of the third spin is

~—
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cocoocowo0
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N—

<Ll
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Then the total y-component of the three spin system is

o e
coojojJo
- e
cojojoos

S S

o joco oo
S
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(1) the z-component of the first spin is
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(2) the z-component of the second spin is

—_

N

S52)=I®6;01 =1

| cocoocoo

—_

—
OO OO0
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(3) the z-component of the third spin is
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(=l elelelelale)
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Then the total z-component of the three spin system is

—_
[=lelelolalale)]

R
I
R
—~
[—
S~—
+
R
—~
[\
S~—
+
R
—~
w
N~——
I
NS
cococococoow
=

coococoor~o
coocooroo
cooco !l coco
Ju
coorocooo
col coococo
ol coocooo

|
o

A A A A 2
S N

coocooook;
coohoORNO
Sl=TFNEN N
I NI (etate)
[SISISEN [P NING)
ok~oproOO
o~khoproOOO
elelelelelel)

The eigenvalues of S are 3,1,1,1,—1,—1, —1, —3 multiplied g‘

by & respectively. The
eigenvalues of S? are 15,15, 15,15 (which correspond to S = %) 3,3,3,3 (which cor-

respond to S = %) multiplied by %2 respectively.
000 0

10 0 0
00100 1 0 O
- 00101 0 O O
We can find X = | 999485 % & 8 | such that

0001 0 0O O 1
0001 0 0 —-1-1
0100 0 O O O

Aoy o~ ~ h2

S2X = X -diag(15,15,15,15,3,3,3,3) x —

4
N h
83X = X - ding(3,-3,1,-1,1,1, -1, ~1) x 5

as we show at Figure 1. The joint spectral decomposition for S? andS; is:
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Unnormalized Simultaneous Eigenvector
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FIGURE 1. Simultaneous Transposed Eigenvectors of S? and Ss of a

3-spin electron system.
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3.1.4. State. The set of states is S = {15 S (CQnX2n|lA)T = D,y'Dy > 0,Vy €
H,tr(f?) = 1}. The condition y'Dy > 0,Vy € 'H can be rephrased for Hermitian
matrices to say that all eigenvalues of D are greater than or equal to 0.

Pure states can be represented by D = yy', where y € C¥", |y| = 1.

3.1.5. State Evolution. H = 0,U(t) = I so D(t) = D(0) unless the system is
measured. This is because in most atoms and molecules (except in strong magnetic

fields) spins do not interact except very weakly.

3.1.6. Predicting Measurement Outcomes.

ExAMPLE. When n = 1, assume that we intend to noiselessly measure the z-

component of the spin for a single electron in the pure state D = yy', |y| = 1 s.t.

follows.

Sly = gy We want to predict the distribution of the measured values of S; on D as
2 A 1
A solution for y is y = <Vf), then D = yy! = (i
2

2 )

The probabilities that the outcome of the measurement of gg = 263 are ;—i and —g

N[ o=

respectively are



EXAMPLE. When n = 2, consider the pure state D = yy', where y satisfies

), and

~Se

0 0 0
0 -5 0
0 0 0
h

The probabilities that the outcome of the measurement of 5'3(1) are 5 and —g re-

ly| = 1, Ssy = 0, and S%y = 0; a solution for y is <

=s

N=O
[NIES

On|=

spectively are

h - h
V({§}) = tr<DF53(1)({§}>>

00 00

IR ETANGTTTIS
o1 o )L
00 00
0000
0200

:tr(<0_2%00>)
0000

1

=5

—h . h
V({T ):tT(DFgg(l)({—i}))

00 00

RSV
o+ 1o ) LBES
00 00
00 0 0
oo-%o0

:tr(<00 %20))
000 0

3.1.7. Updating the state after the measurement. As before, we take the

measurement as noiseless. We define the state ENL after the measurement in the
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i D, = DD A — Fa(WDF; () 53
discrete case to be Dni, = 32,4y Div({A}), where D) = Atr(ﬁFA({i})) and 7 is the
observed distribution of the measured values. We need to check that it is a density

operator.

(1) To check lA?’A is of unit trace.
(bt - BELODDFL(AD)
YT w(DE ()
(DR
 t(DF({A)
tr ( 5

({AD)
t(DE;({A})

A

(
(

F
Fy

=1

(2) To check D) is Hermitian.
(D)t = 11‘11(~{>\}A)UA7TFA({A})T
tr(DF;({A}))
_ E(DDDEAY)
tr(DF4({A}))
= D)

(3) To check D} is nonnegative.

Ay g — PEADDE({AD) _ (Fa({A)2) D(F;({A})e)

L= = = ~ >0, Vo € C*".
tr(DEF;({A}) tr(DEF;({A})

ExXAMPLE. We continue the the previous example in §3.1.6. Suppose that 5%,(1)
is measured to be %‘, we want to find the updated state right after the measurement,

it is enough to find the conditional density operator as follows.

D/

[NEy

Fé'g(l)({h}) 5(1)({3})
tr(DFg,)({5})
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3.2. SPINLESS ONE ELECTRON SYSTEMS: H AND H

Because that the ratio of the mass of the proton and that of the electron is

mass of proton  1.6726 - 10~2"kg
mass of electron  9.1095 - 10-31kg

= 1.836-10°

we can treat the proton as classical object which is fixed in space. We will model
electrons by the quantum formalism.
H, Hy are systems with only one electron, and the spin of the electron does not

affect any of the other observables, so we take the electron as spinless.

3.2.1. Hilbert Space. Consider one spinless electron in R3. This physical sys-

tem is represented by the Hilbert space
H = L*R? C),

where £2(R3, C) is the set of equivalence classes of square integrable complex valued
functions w.r.t. Lebesgue measure in R3, where the equivalence relation is equality

almost everywhere.
3.2.2. Logic. £ = {P € B(H)|P' =P = P?}.
3.2.3. Observables. By the spectral theorem [19], for each A € U, A = Jo AAF;(N),
where F'; : B(R) — L s.t.
(1) F;(0) = 0, F4(R) = I;
(3) if R=U R, RN Ry, = 0,5 #k, then F3(U2, Ry) =377 Fi(R;).

o4



The observables of the electron systems of H and H, are the same except for the

energy observable, they are:

(1) position observables

(5 )(y) =y f(¥),

where y = (y17y27y3)T € R37 .7 = 152737 f € Ha

(2) momentum observables

@qmwz—mgﬁm

where y = (y17y27y3)T S R37 j = 172737 f € H7

(3) angular momentum observables

. Ji o Zop3—ispa
J=| i |=xXp= Ezpr—i1ps |,
J3 T1p2—T2pP1

where x = (2) and p = (f%i > We also define J% = (J;)2 4 (J5)% + (J5)2.
x3 p3

(4) Energy observable of H (fixed nucleus approximation) Assume that

the coordinates of the nucleus is (0,0, 0),

Hy) = - nfly) - Kz ——
2m (v +v3 +y3)e

f(y),

where f € H,y € R3, A := (g—; + % + 88—;2) and —%A is the operator of
1 2 3

L___ is the operator of potential
(yi+ys+y3)?

energy of the electron due to its attraction to the nucleus; Ze is the charge

kinetic energy of the electron, — K Ze?

on the nucleus; K = ——, &g = 8.854--- x 10712F /m.

4meq’?

For the H; system, we assume that the two protons are at the positions
(0,0,R/2),(0,0,—R/2), where R is the distance between the two protons.

Energy observable of H; (fixed nucleus approximation)

~ h? Ke?
D) == g ) - [(y% + 43 + (s — B/2)?)
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Ke? Ke?
(y? + 3+ (ys + R/2)2)§]f(Y) +— 1),

where f € H, y € R3, —%A is the operator of kinetic energy of the electron;

Ke? Ke2 . :
— + is the operator of potential ener
(yf+y§+(y3—R/2)2)% (y§+y§+(y3+R/2)2)% P P &Y

of the electron due to its attraction to both protons;

Ke2
R

is due to proton-

proton repulsion.

ExAMPLE. We want to check the spectral decomposition theorem for the position
observables. Suppose: A= z;, for some j =1,2,3. We claim that for all R € B(R),
we have [F; (R)f](y) = xr(y;)f(y), where y = (y1,92,y3) € R® and f € H.

To see that this is correct:

K/OO WM) f ] ®= [ M)W

[e.9] o0

=lim > A{Fs, (et M) FHY)

1=—00

= lim Z AiX(Ai,l,/\i](yj)f(Y)

i=—00

= lim )\z'(y]-)f(y)
=yif(y)
= (@ /)(y),
where {\;};cz determines a partition of R, s.t. A\; < Aj41; lim is performed in the

sense that max;(A;11 — A;) — 0%; i(y;) is the index of the interval (\;_q, A;] which

contains y;.

ExXAMPLE. For another example of the spectral decomposition, consider the mo-
mentum observable p; = —iha%_. We need the Fourier transform F : H — H defined
J

as

(FR09= | fy)e ™ dy
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where k € R?, d®y = dy; dy, dys.
We are going to use the three facts about the Fourier transform [33] listed as
below.
(1) (Ff)(k) exists for almost every k € R? and Ff € H;
(2) F(p;f)(k) = hk;(Ff)(k);
(3) it (F'9)(y) = oy Jos 9(K)e™¥ &’k = F~'{g(y)}, then F~'F is the iden-

tity mapping on H.
DEFINITION. The spectral decomposition of the momentum observable is

[, (R) f] = FH{xw(hk; )(F £) (k) },

where R € B(R), f € H. In different notation
F[Fp, (R) f1(k) := xr(hk;)(F f) (k).
To check that the above definition is correct, we need to show that
pi = /(:/\dej(A)-
On one hand, (p,f)(y) = —ih%;y) by the definition of momentum operator; on

J

the other hand, by the property of Fourier transform on p;, we have:
[F (i fI(k) = hk;(F f)(k)

= lim Z AiX (-1 n] (AR5 (F f) (k)

1=—00

=lim Y NF{F, (A1, M) FH(K)

1=—00

= F{lim Y NFp (A1, M) fH(K)

1=—00

:f[/ooAdFﬁj(A)f] (k),

—00
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where {\;}icz determines a partition of R, s.t. \; < A\;;1, and lim is performed in the

sense that max; (A1 — A;) — 07. So we have p; f = [*°_AdF;, (M) f.

3.2.4. Joint Spectral Decomposition of f[, jQ, J; for H Atom. In spherical
coordinates (r, ¢, ) [6], for H atom,

“ 0

Jg——Zh%

T N DPRY R
Jo==h [singb6¢(81n¢8¢)+Sin2(/§8gz52]
. R 1 92 1 ., KZe
e LA T

Clearly we have
JsH = HJy
JH = HJ?
j3j2 == 32j3

By the simultaneous diagonalization theorem, there is Fiz 32 j,) : B (R3) — L such

that

(1) H = fAeR3 AldF(ﬁI,j?,j3)(/\)§
(2) I = [ycms ModF i o g,y (A);
(3) J3 = fxems Al (4 52,55y (N);
where A = <§§>

According to [6] p.355, the following three quantum numbers index the the triples
A1

<§2> on which F(H 32.Js) is concentrated:
3 bl b

principle quantum number n =1,2,3,--- ;

angular momentum quantum number [ =0,1,--- ;n —1

magnetic quantum number m; = -, -+ 1,--- ,0,--- , [ — 1,1
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+2 | (422 sin? 2@

TABLE 1. The Spherical Harmonics Y}, (6, ¢)

orbital | n |l | R,y

1s 1]0]2(£)ze2r

2s 210 575(2)2(2— p)e2*

2p 21| 7=(Z)2pe2r

3s 3[0]525(2)2(6—6p+p*)e 2
3p |3 [1]525(2)2(4—p)pe 2’

3d 312 ?)()l—ﬁ(a—zo)%p%_%p

TABLE 2. Hydrogenic Radial Wavefunctions

The energy eigenvalue is related to n by
_ Z2 2
g, — =2
8n?mwega

2, . .
where a = % is the Born radius; Ze is the charge on nucleus.

The eigenvalue of the squared orbital angular momentum operator J2 is [(I + 1)k
and the eigenvalue of Jy is myh.

The wavefunctions are products of radial and angular components:

¢n,l,ml - Rn,l (T)Yz,ml (Qa ¢)

Assume that ¢, | = 1; the spectral measure is

Fag, 2,0 ({(Bn, U1+ DR, 1) }) = g m 06
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The angular wavefunctions Y are the spherical harmonics (see table 1) and the

radial wavefunctions R are the associated Laguerre functions (see table 2).

3.2.5. Joint Spectral Decomposition of H, J; for H, Ton. We define the

prolate spherical coordinates of the electron (see [1], p.752) (¢, A, p) as follows. Sup-

pose that coordinates of the protons of H, are (0,0, %) and (0,0, —%) respectively,
and those of the electron are (z,y, z). Let ¢ be the angle between the part of the zz
plane where x > 0 and the plane determined by the electron and the two protons of

.

Define 7 := /22 + y2 + (z + £)?, i.e. the distance between the electron and the

proton at (0,0, —£); define ry := \/x2 + 42+ (2 — &), ie. the distance between the

electron and the proton at (0,0, %) Define

LT \/x2+y2+(z+§)2+\/x2+y2+(z—§)2
- R R ’

R e e T Ik

pi=—p— = 7 :

then A >1and -1 < pu < 1.

It can be shown that

0 8[< 1 n 1 )3]}+K62{_ 4\
00" N2 —1 1—pu2 0¢ R A2 — p?

+ 1},
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It is clear that HJ; = J3H. Thus we have the joint spectral decomposition of
(ﬁ], jg) in the bound state sector, which is supported on the set {(F(n, [, m; R), mh) €
R%|n,l,m € Z,n > 1 > |m|}. E(n,l,m;R) are well-studied and tabulated functions,
see Bates et.al.[10]. For each (n,l,m) € Z3 s.t. n > [ > |m|, there are functions
P(n,l,m, Ry \, p, ¢) € L2(R3,C) of the form v = A(n,l,m, Ry \)M (n,l,m, R; u)e™?,
s.t. [¥]? = 1 and where the functions A and M are also well-studied and tabulated.
We have

Fi iy ({(B,mh)}) = > w(n,1,m; R)g(n, 1, m; R)'
n>1>|ml,E(n.d,m;R)—E

3.2.6. State. (The theory is the same as that in section 2.3.4)
3.2.7. State Evolution. (The theory is the same as that in section 2.3.5.)

3.2.8. Predicting Measurement Outcomes.

EXAMPLE. Suppose the system is in the pure state D = ffT, Il = 1 and we
noiselessly measure position ;, j = 1,2,3. Then the predicted probability that the

measured values will be in the interval (a, ] is
Vi, (@, B]) = prob(i; € (a,|D)

— tr(DF, ((a, b))

~

(en, DE3;((a; b])en)

[
NE

i
I

I
ME% ||M8 HM8

(en,f(f, Fi,;((a, b)en))

ena / f ab y] en(Y) dgy

(e ) / IOy

/) /yje(a,b} /¥

n=1

S

—~

—
<
+
™
S
&
S
m
-
=
o
B
<
S¥
w
=



where we set e; = f.
- [ Ty,
ij(a,b}

where {e, }°, is any orthonormal basis of the Hilbert space L*(R) with e; = f.
Using similar technique as above, we find the joint probability of simultaneous
measurement

pl"Ob(i‘l € (al,bl],:i“g € (ag,bgLfi'?, < (ag, bg”D)

=tr [BF(fl,ﬁcz,fg)((ala bi] x (az, bs] x (as, 53])]

= / / / |f(y)I? dys dys dy,
y1€(a1,b1] Jy2€(az,b2] Jys€(as,bs]

This expresses the Born interpretation of Schrodinger’s wave function: If the
normalized wavefunction of a particle is ¢, then the probability of finding the particle

in an infinitesimal volume dr = dxdydz at the point r is [¢(r)|? d.

EXAMPLE. Suppose the system is in the pure state D= ffT and we noiselessly
measure p;, j = 1,2,3. Then the predicted probability that the measured values will

be in the interval (a, b] is:

v, ((a,b]) = prob(p; € (a,b]|D)

te(DEy,((a, b))

~

(ena DFﬁj((a’ b, ])en)

M]3

i
I

]2

(ens f(f, Fﬁj((av bl)en))

3
Il
i

M8

(en, ), Fﬁj((a? bl)en)

3
Il
i

1
(27)?

WK

(en, f) (Ff, F{Fp;((a, b])en})

3
Il
—
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1 TT A1) 3
~ (NG5 [ FDE b (F 1) (k) 'k

K)|*X (a0 (Bk;) d°k,

where {e, }°, is an orthonormal basis of the Hilbert space L?(R) with e; = f.

Similarly

prob(pr € (a1, b1], P2 € (az,bs],ps € (a3,b3]|f7)

X A 2
— |\F f(k)|* dks dks dk; .
(2m)3 hk1€(a1,b1] J hkaE(az,ba] J hks€(as,bs)

0 ﬁ]]—* f(k)|*dks dkq dk; can be interpreted as the probability that the mea-

sured value of the momentum P will be such that % will be in a small region around

k of size dkg dk‘g dkl

ExAMPLE. Consider a hydrogen atom whose electron is in a pure state D = ¢!
where ¥(r, ¢,0) = ce™ " c.a > 0, ||| = 1. Suppose we noiselessly measure the
total energy observable H. What is the predicted distribution of the outcomes of this
measurement?

The spectral measure in the bound state sector for H is as follows. forn =1,2, ...

-1 1
{E} :Z Z wnlml n,l,my*
1=0 m;=—

Let v ({E,}) denote the predicted probability that the energy measurement yields

the value E,,, n > 1. Then

vi({En}) = te(DF({Ea}))

8

= Z(ej, ﬁFﬁ({En})ej)

0o n—1

= (en)(W, ) Z UV 1y €5)
J=1 =0 m;=—1
0o n—1

:Zeja Z 77bwnlml wnlmlve])'
j=1 =0 m;=-1



Since 1 depends only on r, and the spherical harmonics Y;,,, (0, ¢) are orthogonal,
and Yy 0(0,¢) = %, we have that (1, m,) = 0 unless [ = 0 and m; = 0. The
orthonormal basis {e;}52, can be chosen arbitrarily, so let e; = 1, so that (e;,?) =0

for all j > 2. Thus
va({En}) = (¥, Yno0)f, n>1

3.2.9. Updating the state after the measurement. The theory behind this
discussion is in section §2.2.7. Here we will illustrate that theory in the simplest

infinite dimensional case.

EXAMPLE. Here we resume the study of an example from the previous section,
namely that of an energy measurement of the electron of a hydrogen atom in the
state D = 1)t prior to the measurement. Suppose as a result of the measurement
the energy is found to be F; with probability 1, i.e. ¥ = dg,. What is the updated
state of the electron?

Since the energy operator H has an infinite discrete spectrum {E, | n > 1}
accumulating at 0 and a continuous spectrum [0, 00), we must take the noiseless
limit of our formulae for the updated state after a noisy measurement. Let €2 be the
variance of the noise and dg, *a? the observed distribution of noisily measured values.
The conditional density operator at energy F is

a (Bl — Hpta (E1 — H)f
tr (o (E1 — H)ypta (E1 — H)T)
(Bl - Hla(BEL - H)y)f
- (BT — H)||?

In the above we have used the identity tr ¢po! = ||¢]|2. The vector a(E1 — H) is

Dy =

computed as follows.
J(F1— Z@ﬁ (E— E,)Fs({E. )+ /Oo a (B — EFy(dE)
0
= a(E — E1)1,00(11,00, V) + YE.e,
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where

wEﬁ - Z a€(E - En)¢n,0,0(¢n,0,0a ¢) + /0 aE(E - E,)FE[( dE/)¢
n=2

Its norm can be computed as follows.

lae(BEL = H)I* = ) B = B IF ({EI + /OOO ac(E — E')?|| Fy (dE)||*

= a(E = E0)?|($1,00, ) + [zl

The updated state after the noisy measurement is:

D _/ Dya(E — E)*dE

© (B — E)?|(Y100, ¥)PY1,008] 0,0 )
- ’ 08 (E — Ey)*dE
/—oo ac(E — E1)?| (100, 9)? + ’WE,EHQQE( 1) d

+ / (B — B (1,00, ) [$1,000 k. + Vretl ool + Vm e,

a.(E — FE)*dE.
i B — B [(Ur00, OF + [0ne]? (&~ £)

Both of these integrals should be split over the intervals (—oo, 2 (E1+E»)] and (3 (E;+
E,),00). If E < 3(Ey + E») then |[¢Yg | — 0 as e — 0F. If E > (E; + E») then
|YE.| remains bounded and a.(E — E;) — 0 as ¢ — 07. Thus the noiseless limit
of D is ¢1,0,0¢I,0,0~ This result agrees with the Neumann-Liider’s formulae derived in

section 2.2.7:

FH({EI})DFH({EI}> _ wl,o,oﬂ,o,oww?ﬂl,0,0%,0,0
tr(DFg({E1})) (1, ¥1,0,0) ]2

DNL = = wl,o,owi,o,o-

Thus measurement of the total electronic energy followed by a selection of the sub-
systems which yield the answer E; is an effective way of preparing an ensemble of
hydrogen atoms whose electrons are in the pure state 1/}1,0,01#;070, i.e. the “ground

state”.
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3.3. TwWo ELECTRON SYSTEM: Hs

Hj; contains 2 electrons. The spins of these electrons will affect their spatial distribu-

tion, so we need to consider the spins of the system.

3.3.1. Hilbert Space. Let H, := L*(R? C)®C? be the Hilbert space of a single
electron with spin. Then the Hilbert space of two electron system of Hs is represented

by
H=H.NH.

Elements f € H, are (equivalence classes of) mappings f : R® x {0,1} — C such that

Z}yzo Jos [f(y, 0)? dPy < 0.

Elements f € H = H. A H. are (equivalence classes of) mappings f : R3 x

R3 x {0,1}* — C such that 2}71:0 Z;Fo Jos Jes [F(y1,¥2,01,09)? Py1dPys < o0

and f(y1,y2,01,02) = — f(y2,y1,02,01).
3.3.2. Logic. £L={P € B(H)|Pt = P = P?}.
3.3.3. Observables. The observables of the Hy system include:
(1) position observables
[2(0) (31, ¥2,01,02) = 45 f(y1,¥2, 01, 09),

where for i = 1,2, y; = (8, v5,95)7 € R? is the position of the ith electron;
feH.

(2) momentum observables

.. .0
[pj(l)f](Y17Y2,01,02) = —Zﬁa—;i(yh}’mm,@)-
J

(3) angular momentum observables

N Ji(i) 22 (1)p3 (1) — 3 (1)p2(1)
J(i) = < Ja(i ) = x(i) x p(i) = (azs(z‘)m(z')—:zl(i)zas(i)) :

~

J3(i) a1 (i)p2 (i) —d2(4)p1 (1)
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where for i = 1,2, %(i) := (#1(i), 22(i), 3())T, p(i) := (i), pad), ps (i)

~

I =J;()+J3;2),5 =1,2,3.
(4) Spin observables We represent f(y1,¥y2,01,02) in vector form as

f(y17y27170)
fly1,y2,1,1)

~

f(YI7Y2:070)
fyy201) ) 4 6 C4ovalued function of (y1,y2) € R? x R3. All the spin
operators Sl,gg,gg,s2 can be written as 4 X 4 matrices as in the n = 2

)

example of §3.1.3. For example S2 = p2 (

OO
NOOO

QooN
OO

Thus S2f in vector form is

szf(yl7y2’070) 2000 f(ylay270’0) 2f(y1’y27070)

§2f(Y17Y2,071) —p2(0o110 f(y1y2,01) | _ B2 f(y1,y2,0,1)+f(y1,y2,1,0)

S2f(y1,y2,1,0) 0110 f(y1,¥2,1,0) f(y1,¥2,0,1)+f(y1,y2,1,0) | ~
y 7y 1 O 0 0 2

§2f(y1,y2,1,1) fy1,y2,1,1) 2f(y1,y2,1,1)

(5) Energy observable (fixed nucleus approximation)

. K2
(Hf)(}’1,}’2,01>02) = —%(A1 + A2)f(3’h)’2,01,02)

Ke?
+ 7]”(}’17}’2701,02)
||Y1 - Y2||

1
Ke?——
2 1
- Ke* 7]%3’173’2»01702)’
2Ryl
where R; = <R8/2) Ry = (71?%/2) € R? and —%(Al + %Az) is the ki-

netic energy operator; for ¢ = 1, 2 representing the 1st and the 2nd electron,

o (_D? 02 2 N : : ) .
N = (3(%)2 + awE T 6(yg)Q) is the Laplacian for the ith electron’s posi
tion; K ezm is due to proton-proton repulsion;Hyf{_ie;" is due to electron-
electron repulsion; —Ke? ZZQ =1 “R%;,," is the potential energy operator of

)’ 0 7

the electrons due to their attraction to protons.

Fact. For H, system,

~

[H7 j3] - 07 [j37 g?)] = 07 [j37 S2] =0
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3.3.4. State. (The theory is the same as that in section 2.3.4.)
In numerical approximation of the electronic ground state, fix R > 0, so that H

is a fixed operator. We want to find the smallest eigenvalue E of H.

H

The minimum is attained at some eigenfunction 1 associated with F.

We use the idea of ansatz to do the approximation. An ansatz for ¢ in 'H is a
subset S C ‘H where elements of S can be more explicitly described than the general
element in H.

Given an ansatz S C H, the approximate eigenvalue of the ground state is

ES = min¢egy¢¢g%

The approximate eigenfunction ¥g is an element of S when the minimum is at-
tained. If S is a “big enough” subset of H, then Fs ~ F, g ~ 1. Computationally S
should be parameterized by a finite list of parameters, so that S is a finite dimensional
manifold in the infinite dimensional space H.

For instance, we define the generalized valence bond ansatz as

Save = {¥ € He AN He|tp = Alp1(x1)p2(x2)X (01, 02)],

where ¢y, ¢, € V, 2 € C*},

where V is a finite dimensional subspace of £L*(R?, C); ¢, is the spatial orbital for the
first electron; ¢y is the spatial orbital for the second electron space; o1,09 € {0,1};
> can be expanded in joint eigenfunction of S2 S5 and represents the spin state as a
resonance of the four possible joint eigenstates.

Another example of an ansatz is the Hartree-Fock ansatz, denoted Sy, where 1

can be explicitly represented as

_ ot ((#16:1)a(0) 1 (x2)ao)
Y(x1,0,%z,0) = det <wi<x1>ﬂ<o> 2(x2) (o) )
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1, ife=0 0, ife=0
where a(o) = , B(o) =

0, ife=1 1, ifo=1

3.3.5. State Evolution. (The theory is the same as that in section 2.3.5.)

3.3.6. Predicting Measurement Outcomes. (The theory is the same as that

in section 2.3.6.)

3.3.7. Updating the state after the measurement. (The theory is the same

as that in section 2.3.7.)

3.4. THREE ELECTRON SYSTEM Hj

3.4.1. Hilbert Space. Hj contains 3 electrons. The electron system is repre-

sented by Hilbert space

H = He /\ He /\ He
Elements f € H = H. A He A H. are (equivalence classes of) mappings [ :
R? x R? x R? x {0,1}*® — C such that
11
Z Z Z/ / £ (y1,¥2,¥3,01,02,03)]> @y 1d’yad’ys < 00
3 Jr3 JR3

01=002=003=0

and

f(y17yQ7y37017027U3) = f(YB7Y1;Y27037‘71702) = f(y27y37y1702703701)

= - f(}’27}’1,}’3,02701,<73) = —f(Y1,Y3,Y2701703702) = —f(Y3>YQ7Y1,U3,U2701)-

3.4.2. Logic. L= {P € B(H)|P' = P = P?}.
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3.4.3. Observables. The observable of the Hjz system includes:

(1) position observables

[25(0) f1(y1, Y2, ¥3,01,09,03) = y;f(Y1,Y2,Y3,01702,03)a

where for i = 1,2, 3, y; = (v, 95, y2)T € R? is the position of the ith electron;
feH.

(2) momentum observables

.. L0
[pj(l)f](}’h}’zd’?),01702,03) = —Zha—gji(}’b}’m}’:sﬂl,@,%)-

J

(3) angular momentum observables

where for i = 1,2, 3, %(i) := (21(4), 22(1), 23(2))T, p(i) := (p1(0), p2(4), p3(i))~.

(4) Spin observables We represent f(y1,¥2,¥s,01,09,03) in vector form as
f(¥y1,y2,¥3,0,0,0)
f(y1,y2,¥3,0,0,1)
f(y1,y2,¥3,0,1,0)

,y2,y3,0,1,1 : :
;gi ﬁ zz . 00; , i.e. a C®valued function of (y1,y2,y3) € R3 x R? x R3.
f(y1,¥2,¥3,1,0,1)
f(y1,52,¥3,1,1,0)
f(y1,y2,¥3,1,1,1)

All the spin operators 51, Ss, S3, S? can be writte

o
(0.¢]
X

ai

ot

COORORO
COOROIRO

n = 3 example of §3.1.3. For example S2 =

coococoook P

Thus S2f in vector form is

YI7y27y3707070)
¥1,¥2,¥3,0,0,1)
¥1,¥2,¥3,0,1,0)
¥1,¥2,y3,0,1,1)
¥1,¥2,¥3,1,0,0)
y1,¥2,¥3,1,0,1)
y1,¥2,¥3,1,1,0)
y1,¥2,¥3,1,1,1)

=== ====<
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f(y1,¥2,¥3,0,0,0)

15000000 0 f(y1,¥2,¥3,0,0,1)

72 8 7 ‘% 8 1 8 8 8 F(y1,y2,¥3,0,1,0)
_" 1 00070440 f(y1,y2,y3,0,1,1)
= 0440700 0 ¥2,y3,1,0,0
4\ 00040740 f(y1,y2.55.1,0.0)
0004047 0 f(y1,y2,y3,1,0,1)
000000015 f(y1,¥2,¥3,1,1,0)
f(y1,y2,¥3,1,1,1)

15f(y1,y2,¥3,0,0,0)
7f(y1,¥2,¥3,0,0,1)+4f(y1,y2,¥3,0,1,0)+4f (y1,y2,¥3,1,0,0)
72 4f(y1,y2,¥3,0,0,1)+7f(y1,y2,¥3,0,1,0)+4f(y1,y2,¥3,1,0,0)
7f(yl 7Y2,Y370,171)+4f(YI ’y27y3»170’1)+4f(y1 7y2’y371a170)
4f(y1 7YZ,YB70,071)+4f(}’1 1y27y3)07110)+7f(y1 7y2’y371a070)
4f(y1,y2,¥3,0,1,1)+7f(y1,y2,¥3,1,0,1)+4f (y1,y2,y3,1,1,0)
4f(y17y27y3707171)+4f(y17y27yi3717071)+7f(y17y27y3717170)
15f(y1,y2,¥3,1,1,1)

(5) Energy observable(fixed nucleus approximation)

(ﬁf)(}’b Y2,¥s3,01, 02, 03)
h2

== 5 (D14 Do+ 89) f(¥1,Y2. V3,01, 02, 73)

3
1
— Keé? = f(¥1,¥2,¥3,01,02,03)
ZJ&—WH

i,j=1
+ Ke( ! + = + ! )f(Y1,¥2,¥3,01,02,03)
[Ri —Ro| ' [Ro—Rg| ' [Rs— Ry 1727800020
1 1 1
+ Ke*( )f(y1,¥2,¥3,01,02,03),

+ +
lyi =yl ly2—vysl  lys—yil

where —%(Al + Ao+ A\3) are the kinetic energy operator; for i = 1,2, 3 rep-

resenting the 1st, the 2nd and the 3rd electrons, A\; := (3(2,2-)2 + 8(2,2-)2 + 3(23)2)
1 2 3

1

are the Laplacian for the ith electron’s position; —Ke? Zf’ AT is
’ i~y

the potential energy operator of the electrons due to attraction to pro-

) 2 1 1 1 : ) .
tons; Ke (HRrRzll + mm T HRS*RIH) is due to proton-proton repulsion;

Ke?( is due to electron-electron repulsion.

1 1 1
vioval T Taval T el

FACT.

~ A

[H,S8% =0,[H, S5 =0

3.4.4. State. (The theory is the same as that in section 2.3.4.)
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3.4.5. State Evolution. (The theory is the same as that in section 2.3.5.)

3.4.6. Predicting Measurement Outcomes. (The theory is the same as that

in section 2.3.6.)

3.4.7. Updating the state after the measurement. (The theory is the same

as that in section 2.3.7.)
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CHAPTER 4

SYMMETRY (GROUPS OF MOLECULAR SYSTEMS

4.1. PREPARATION: ROTATION AND REFLECTION MATRICES

We develop two lemmas in this section, which show that any rotation matrix A can

be identified with a 3 x 3 matrix R(e?,u), for some # € R, some unit vector u € R3.

DEFINITION. We define
SO(3) := {Ais a 3 x 3 real matrix |ATA = I,detA = 1}
where [ is the 3 x 3 identity matrix. We call A € SO(3) a rotation matriz.

LEMMA. If A € SO(3) then there exists a matrix U € SO(3) such that AU = UR,
cosf —sinf 0

where R = <5189 cas (1)) , 0 < 60 < . The third column of the matrix U is the axis

of the right-handed rotation through the angle 6 performed by A in R3.

PROOF. If x,y € R? then (Ax)T Ay = xT AT Ay = x"y, so in particular ||Ax|| =
|x|| and the angle between Ax and Ay is the same as the angle between x and
y. The cubic polynomial det(Al — A) has real coefficients, so A has at least one
real eigenvalue, and any nonreal eigenvalues must form a complex conjugate pair.
If X is any eigenvalue of A with eigenvector x, then ||Ax| = ||x|| implies |A| = 1.
Thus the real eigenvalues are from the set {1, —1}. If —1 is the only real eigenvalue,
it cannot occur with algebraic multiplicity two, since the other eigenvalue would
have to be real, and yet could not be 1 or —1. Since det(A) is the product of the

eigenvalues, we see that the product of the eigenvalues is 1. If —1 has multiplicity
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one, then there must be a nonreal complex conjugate pair e, e~ of eigenvalues. But
since the product of e and its complex conjugate is 1, we obtain the contradiction
that (—1)e?e~® = 1. If —1 has multiplicity three then we obtain the contradiction
(—=1)> = 1. Thus 1 must be an eigenvalue. Let ti3 be a normalized eigenvector
of A belonging to the eigenvalue 1, and let iy, 1y be an orthonormal basis of the
plane perpendicular to 013, so that @y, 01z, i13) forms a positively oriented frame of R3.
(@, 0y, 0g) ul Au; >0,
Define (uy,uy, u3) = Clearly (uy,ug, us) is a positively
(0g, 1y, —u3) udAu; < 0.
oriented orthonormal basis. In the first case above we clearly have ugAul > (. In the
second case we claim that ul Au; > 0. To see this, let P = span{u;,uy}. A maps P
into itself. The ordered pairs (uj, us) and (Auy, Auy) determine the same orientation
of P, i.e. they are related by a 2 x 2 matrix with positive determinant. (To see
this note that A(uy,ug,u3z) = (Auy, Auy, Auz) = (uy, uy, uz) (%3 Zg; §> . Now take
the determinant of both sides of this equation.) Let the plane P be coordinatized
by the components with respect to the vectors (@i;,t12). Then the second case is
characterized by the inequality ul Atn; < 0, which means that Au, = Aq, is in
the third or fourth quadrant. Hence Au; = Au, is in the first or fourth quadrant,
and hence the angle between uy and Au; is less than 7/2, as claimed. Now define

0 < 6 < 7 such that cosf = uf Au;. Tt follows that Au; = uy cosf + uysinf and

Auy = uy(—sinf) + uy cos . Setting U = (uy, uy, ug) we get the result. O

DEFINITION. We define

R(e” u) =uu” + [I — uu’]cosf + [ux]sin 6,

. ul 3 - . 0 —u3 U9
where 6 is real, u = (2 ) € R is a unit vector and [ux] = ( us o0 o) For
—u2 Ul

0 € (—m, 7], we simplify the notation R(e?,u) as R(#,u).

LEMMA. If A € SO(3), then there exists a pair (e, u), uniquely determined

(when A # I) up to reflection (e~ —u), where 6 is real and u € R? is a unit vector,
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such that

A = R(e” u)

and hence for all x € R* we have Ax = u(u-x) + [x —u(u-x)]cosf + (u x x) sin 6.

PrOOF. We define u to be the third column vector us of the matrix U in the

above lemma. Now let x € R? be given. Since U € SO(3) we have U~! = U”. Thus

T

T cosf —sinf 0 u; x
AX:URU X:(u1u2u)<si80 0059 0 ugx
T

x

1

cos Gu?xfsin Gugx

= ( up uz u) (sin Gu'{x%»cos Gugx)

uTx

= uy(cos ful x — sin fu x) + uy(sin ful x + cos fuj x) + uu’x

=uu’x + (wul x + wyul x) cos § + (—uyul x + wyui x) sin 4.

Since I = UUT = uyu! + upul + uu? we have that wyuf + upul = 7 — uu’ and
therefore ujulx + wpul'x = x —uu’x. Alsoux x = ux (mulx+wulx+uulx) =
(u x up)ufx + (u x up)ul'x = upul'x — ujulx. This demonstrates the existence of
the pair (e, u) with the desired properties.

Clearly if the pair (¢, u) works then so does (e=* —u). The vector u must be
an eigenvector of A associated to the eigenvalue 1, and this eigenvalue cannot have
algebraic or geometric multiplicity two, since then the other eigenvalue would have to
be —1, contradicting the fact that detA = 1. (The geometric multiplicity is equal to
the algebraic multiplicity since A is clearly diagonalizable.) If the multiplicity is 3 then
A = 1. If A +# I then the multiplicity is 1, and hence the eigenspace of 1 contains only
two real unit eigenvectors u and —u. Suppose X is a unit vector perpendicular to u.
Then Ax = x cosf+u x xsin# is an expansion in an orthonormal basis {u, x, u x x},
and hence cosf = x - Ax and sinf = (u x x) - Ax. If A = R(e’,u) = R(¢”' | u), then
Ax = xcosf +u x xsinf) = xcos® +u x xsinf = cosf = cost,sinfh = sinf’ =

e? = ¢ The same values of cos§ and sin § are obtained independently of the choice
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of x. Thus both cosf and sinf are determined by u. This proves the uniqueness

claim. =

DEFINITION. Consider a plane which is perpendicular to the axis u and passes
through 0. The matrix of reflection through this plane is R, = I — 2uu’, where I
is the identify matrix. (if it does not cause confusion, later we will not mention that

the plan passes through 0.)

4.2. REPRESENTATIONS OF MOLECULAR SYMMETRY GROUPS
4.2.1. Point symmetries and Conjugacy.

DEFINITION. Let V' be a finite dimensional complex vector space. We define
GL(V):={A:V — V]|A is linear and invertible };
GL(C") := the set of all n x n complex invertible matrices ;

GL(R™) := the set of all n x n real invertible matrices ;

O(3) :={A e R¥*3|ATA =T}.
Fact. GL(V) is a group under composition of linear transformations.

DEFINITION. An n dimensional complex representation of a group G is a group

homomorphism p : G — GL(V), where V is n-dimensional complex vector space.

According to [6], a distance preserving transformation of space that leaves an
object looking the same after it has been applied is called a symmetry operation of the
object. There is a corresponding symmetry element for each symmetry operation; this
is the point, line, or plane with respect to which the symmetry operation is performed.
If a particular point is chosen as the center of symmetry then the symmetry operations
which fix this point are called point symmetries. The identity I means doing nothing;

the corresponding symmetry element is the entire space. An n-fold rotation C,, (the
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operation) about an n-fold axis of symmetry (the corresponding symmetry element) is
arotation through 27 /n. The principal azis of a molecule is an n-fold axis of symmetry
where n is as large as possible. A reflection o (the operation) in a plane of symmetry
or a mirror plane (the symmetry element) may be either parallel or perpendicular
to a principle axis of a molecule. If the plane is parallel to the principal axis, it is
called wvertical and denoted o,. When the plane of symmetry is perpendicular to the
principal axis it is called horizontal and denoted o,. A vertical mirror plane that
bisects the angle between two C'y axes is called a dihedral plane and denoted 4. In an
inversion ¢ (the operation) through the center of symmetry (the symmetry element)
we imagine taking each point in a molecule, moving it to its center, and then moving
it out the same distance on the other side. An improper rotation or rotary-refiection
Sy, (the operation) about an axis of improper rotation or a rotary-reflection axis (the
symmetry element) consists of rotation through 27 /n about an n-fold rotation axis

followed by a horizontal reflection.

DEFINITION. Let G be a group, ¢1,92 € G. If there is x € G such that g; =
2 gox, then we say that ¢; is conjugate to g, denoted as g; ~ go. ~ is an equivalence

relation in G. A ~ equivalence class in G is called a conjugacy class.

For the purpose of point symmetries we may identify space with a 3-dimensional R-
inner product space X where the zero vector 0 € X represents the center of symmetry.

Define
O(X) :={g: X — X is R-linear and inner product preserving i.e. isometric}.

There is a natural left action of O(X) on X.

Let M C X be a finite set of vectors. Define the point symmetry group G(M) as
GM) :={g€ O(X)|g-m e M,Vm € M}.

It is clear that G(M) is a subgroup of O(X).
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R3 PecP X

T €0(3) g € 0(X)

PeP

R3 X

F1GURE 2. Given P € P, there exists a group isomorphism between
O(X) and O(3) defined as pp(g) :== P~togo P.

Define
P :={P:R* — X|P is a R-linear isomorphism which is inner product preserving}.

P is called the set of poses. P € P can be identified with the ordered 3-tuple
(P(é1), P(&y), P(é3)), where {€;,&,,&3} is the canonical orthonormal basis of R?.

O(X) acts on P on the left by the rule
gP = (gP(&), gP(&y), gP(&3)),ie. go P:R®* 5 X % X where g € O(X).
O(3) acts on P on the right by the rule
PT=PoT:R* LR L X, where T € O(3).

Given P € P, define a mapping pp : O(X) — O(3) as pp(g) := P~ ogo P. This
mapping is clearly a group isomorphism (see Figure 2). When we restrict the domain
of pp from O(X) to G(M), the above isomorphism gives a mapping pp : G(M) —
0(3).

Fact. If G(M) is a group of point symmetries of a molecule, then we have an

injective (faithful) 3-dimensional real orthogonal representation: pp : G(M) — O(3).
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Y

= :

(A) (B)

FIGURE 3. (A). The isosceles triangle group is Cy, = {E, Cy,0,,0.}.

(B). The equilateral triangle group is D3, = {E, oy, 2C5,2S3,3C%, 30, }.
Note that in these figures a definite pose P € P is given and fixed, so
we can identify symmetry operations with matrices in O(3).
Suppose P; € P,i = 1,2 are poses and T; = (P;)"'ogo P, then P,oT;o(P) ' =g
and T} = P logo Py =P ' o(PyoTho(P) oP = (PyloP)oTyo (P oPy).
Note that Py 'o P, € O(3), and thus T} ~ T, are conjugate in O(3) and correspond to

the same symmetry operation g with respect to two different poses P; and P,. This

is the geometric meaning of conjugacy.

4.2.2. Examples. From now on we will use the symmetry group names F, Cy,,, D3y, Ty, 0,

etc.; they follow standard chemical nomenclature [6].

ExaMPLE. We consider the symmetry group Cs, = {E, Cy, 0,0, } of the isosceles
triangle AABC, where A = (0,0,1),B = (0,—1,0),C = (0,1,0) (see Figure 3 (A)).
Recall that the rotation matrix R(¢,u) represents the rotation of a vector about the
axis u through an angle of § € (—m, 7], and the reflection matrix R, represents the
reflection of a vector through the plane which is orthogonal to u and passes though

the origin of the coordinates.
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We denote the matrix representation of a group element g € G as p(g). By

the meaning of conjugacy, we classify the symmetry group elements for the isosceles

).

) is represented by

triangle by conjugacy classes as follows.

(1) The identity E is represented by p(F) = (é :13

—OoOO

[ ==

(2) The 180° rotation about the axis u = (
p(Cs) = R(180°, u)
=uu’ + (I — uu’)cos(180°) + [ux]sin(180°)
= (8) 0o )+ = (§) (00 1)(-1)
G4

(3) The reflection through the plane perpendicular to the axis u = ( ) is rep-

OO

resented by

p(oy) = I —2uu’

(—1 0 O)
= 0o 10].
0 01

The reflection through the plane perpendicular to the axis u = (

oo

) is

represented by

plal) =1 —2uu”

ExXAMPLE. We consider the symmetry group Djy, of the equilateral triangle ADEF,
where D = (0,0,1),E = (0, =%, 1), F = (0,2, -

2 172

) (see Figure 3 (B)). Then the

1
2

elements of the group classified by conjugacy classes are as follows.

(1) The identity E is represented by p/(E) = (é g E)l)).

(2) The 180° rotation about the axis u; = <§> is represented by
p'(Co(D,0)) = R(180°, uy)
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! + (I —uul) cos(180°) + [uy x| sin(180°)

5%

The 180° rotation about the axis uy = ( ) is represented by

[SIE N

P(Co(E,0)) = R(180°, up)

= wug + (I — upul) cos(180%) + [uyx] sin(180°)

:(‘g )

The 180° rotation about the axis us = < 5

w|§ =)

(V) D=
-
(I

e

) is represented by

(NI

P (Co(F,0)) = R(180°, u3)

= ugus + (I —uzul)cos(180°) + [uzx]sin(180°)
-1 0 0
(o 5 5.
(3) The 120° rotation around the axis u = (é) is represented by

p'(C3(+1)) = R(120°,u)

=uu’ + (I — uu’)cos(120°) + [ux]sin(120°)

(%)

The 240° rotation around the axis u = (é) is represented by

5%

=

N[= N

of
Wl

p/(Cs(—1)) = R(240°,u)

= uu’ + (I —uu”) cos(240°) + [ux]sin(240°)

) |
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(4) The reflection through the plane perpendicular to u = ( ) ,i.e. “horizontal”

reflection, is represented by
P (o) =1 —2uu”
<—1 0 0>
=0 10).
0 01
(5) The reflection through the plane perpendicular to u = <g> is represented

by
P (o) =1 —2uu”
(42 9)
= -1 0.
0 1

The reflection through the plane perpendicular to u = <

[Nty

0

=

) is repre-

e

sented by

P (02) = I —2uu’

10
1
=10 3 .
z
O T -

The reflection through the plane perpendicular to u = (

mho

S
=

) is repre-

w|§m»—to

sented by

P (o) = I —2uu”

1 0
— (o =ar
0 - -}

(6) The 120° rotation around the x axis followed by a horizontal reflection is

g
w

represented by :



vy«

F1GURE 4. The T, group on the molecule C' H,.

Il
VRS
o o |,
S ©

| |
N|= w|§o
N——

The 240° rotation around the x axis followed by a horizontal reflection is

represented by :

p'(S32) = p'(o0)p'(Cs

—~
|
—_
~—
~—

oo
—O O
SN——

[ e R
Lo
e

N—

=

Il
7 N
o o |l
|
w|§w\>— <
oS o
N———

ExAMPLE. We want to construct a faithful 3 dimensional orthogonal represen-

tation of the symmetry group T, of the Tetrahedron, and we will also classify the
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following 24 elements of T, into conjugacy classes according to their geometric mean-

ings:

{£;

C3(1,+1),C5(1, —1),C5(2, +1),C3(2, —1),
C3(3,41), C5(3, +1), C3(4, —1), C3(4, —1);

C5(1,2) = 05(3,4),Cs(1,3) = C5(2,4), Ca(1,4) = Cy(2,3);
04(1,2),04(1,3),04(1,4),04(2,3),04(2,4),04(3,4);

Su(1,2), S4(1,3), Su(1,4), S4(2,3), Su(2,4), S4(3,4)}.

To simplify the notation, we will consider T; on a model of the molecule C'H, (see

Figure 4).

The 24 elements of Ty classified by conjugacy classes by the geometric viewpoint

are as follows.

(1)
(2)

The identity F.

The 120° rotations about the axis C' — H;,i = 1,2,3,4, denoted as Cs(7, +1)
and the —120° rotations about the axis C' — H;,i = 1,2,3,4, denoted as
C5(i, —1). They are {C5(1,+1),C3(1,—1),C5(2,+1),C3(2,—1),
C3(3,4+1),C5(3,—1),C3(4,+1),C3(4, —1) }.

The 180" rotations about the axis bisecting the H; — C'— H; angle, denoted
as Cq(i, j). They are {Cs(1,2) = Cy(3,4),Ca(1,3) = C(2,4),

Cy(1,4) = C1(2,3)}.

The reflections through the plane of H; — C' — H;, denoted as o4(i, 7). They
are {04(1,2),04(1,3),04(1,4),04(2,3),0a(2,4),04(3,4) }.

The rotations of 90° about the axis bisecting H; — C' — H;, followed by the
reflection through the plane perpendicular to this axis, denoted as Sy(i, 7).

They are {54(17 2)a S4(1a 3)a S4(L 4)7 54(27 3)7 54(27 4)7 54(37 4)}
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Suppose the positions of the atoms in CHy are : H;(0,0,0), H»(2,0,2), H3(2,2,0),
H,(0,2,2),C(1,1,1), which is the center of the symmetry. We will show how to
compute p”(C5(2,+1)) —the matrix of the rotation around the axis C' — H, by 120°.

The axis C' — Hy is represented by unit vector u = \%((é) + (8) - (?)) =

1 0
1 1
V3 (_11>'

T 1 (1 T T T
Then we have uu'! = 31t 1 =3 -1 1 -1).
1 1 1 211

p"(C3(2,+1)) =uu’ + (I — uu’) cosd + [ux]sinf

11 a1 100 Lo -1 0
_g( 711 B 711)+{( 01 (1)> —§<711 B 711)}005120

= “E)

In similar way we can compute the matrices representation of the other tetrahedral

—=OoOO
col

group members as follows.

p"(Cs(1,+1)) = ( 1o %2),
0

P'(Cy(2.+1)) = (
o(Cy(2,—1)) = (

The six matrices above belong to one conjugacy class, the elements of which

1
2
0o 3 -}
PG, =1) == [ 4 0 5| = =p"(G(1, 41T,
0
0
0
1
0
1
0

elements represent the +120° rotations about the axis C' — H;,i = 1,2, 3, 4.
PF(Ca(1,2)) = (9 1 8) = p"(Ca(3,4),
P(Ca13) = (g 18 ) = p(Cal2.4),
P(Ca(1,4) = (0 8) = p"(Ca2,3)).

0
The six matrices above belong to one conjugacy class, the elements of which

0
0
-1
0
0

OO»—‘O oo

represent the 180" rotations about the axis bisecting the H; — C' — H; angle.
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pv(g) € GL(V)

! ]
pw(g) € GL(W)

w w

FIGURE 5. py is isomorphic with py .

The six matrices above belong to one conjugacy class, the elements of which

represent the reflections through the plane of H; — C' — H;.

p"(S4(1,2)) = ( 81 —81 é) p"(S4(1,3)) = (2

1 0

S = (0 o) i) = (
g = (b 8), e =(3 0.

0
The six matrices above belong to one conjugacy class, the elements of which

OO~ OO

represent the rotations of 90° about the axis bisecting H; — C' — H;, followed by the

reflection through the plane perpendicular to this axis.

4.2.3. Isomorphic Representations.

DEFINITION. Let py : G — GL(V), pw : G — GL(W) be two group repre-
sentations of group G, we say that py is isomorphic with py if there is a C-linear
isomorphism ¢ : V' — W such that for any given g € G, [ppv(9)](v) = [pw(g)9](v)
or py(g)(v) = [¢~ pw(g)¢](v) for all v € V (as illustrated at Figure 5). Particularly,
if V=W =C", then ¢ € GL(C").

EXAMPLE. A molecule having the symmetries of Dgj, is PCl5 (Phosphorus Pen-
tachloride) , we will first use it as our model to compute a group representation p"”

/11

of D3,. And then, we will show that this representation p"” for PCly is isomorphic to

the earlier representation p’ of Dsj, for the equilateral triangle ADEF.

86



Ve

FIGURE 6. The group D3, for the molecule PCl5

Suppose the positions for the atoms of PCly are as follows. P(0,0,0),Cl;(0,0,1),
Cly(0,0,—1), Cls(L, —¥3,0), Cly(~1,—2L.,0), Cl5(0,1,0) (see Figure 6). Dy, =
{E,0p,2C5,255,3C%,30,}. To distinguish the matrix representation for PCl5 from

the previous one for equilateral triangle, we denote the matrix representation for PCl;

):

of g € Dy, as p"(g).

oo
(==

(1) The identity E is represented by p”(E) = (é
(2) For o, u = (?f),

p"(on) = I — 2uu”

(3) For Cs(+1),u = (@) .0 =120°,
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p"(Cy(+1)) = uu’ + (I —uu’) cos 120° + [ux]sin 120°

I
>
Om’lﬂw“‘

w
ONIH M|DJ
- o o
N——



(6) For S5 and S,

§"(85) = 0" (on)p"(C)

Now we introduce ¢ : R® — R3 such that

o(z,
to a rotation matrix R(—120°, % (1>) = <§ é §>’ and hence ¢! corresponds to

1
1
01 0\! 00 1 , 1w
(9 0 (1)> = <(1] 0 8). We need to check as follows that pf, (¢9) = ¢~ 'p{/(g)0, Vg €

Dsy,, where pf,, p{/ denote the previous and the present Ds, matrix representation

respectively:

(1) For the identity E,

1 (o1 o0\t/100) /010
o= (85E) I )
—(31%)
001
—p/”(E).

(2) For oy,

oo
oo
N—
|
—
/N
ool
—_
oo
—o O
N~—~
VN
—oo
oo
oo
v



i
00_

o—O
—OoO

_ Pm<0'h)-

(3) For 203,

o—O
—OO

SO
N———

VRS

Oﬁ_Z 1_2
I

e en
o G
- o O

N———

—

VY

o O -
G 1"20
1;2%720
N———

I

" (Cs(+1)),

S
I

o—O
—OO

SO
N————

VRS

|
o e
|

— O O

(4) For 2Ss,

/N
o~

—OO

SO
N———

Y

OﬁTA 1"2
I

o g

—
700

N———

VR

i
007

T "o

1"2ﬁ_20

N———
I

p/// (53) ,

o—HO
—OO

SO
N———

Y
oG
o 1"2ﬁ72

I
—

700

N———

Y

i
007

ﬁTA 1_20
|
I
RIS
N——
I

(1)

(5) For 3C,,
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—
007
o —O

—
,00

:0”/(02(37 4))7

o—HO
—0O

SO
N———

/N

S

(e} .I:Zﬁ_né
i

(6) For the 30,,

¢_1PI(UU1>¢ = (

(Rl
o —HO

—
_00

p"(00(1,5)),

O—HO
—OO

OO
N————

VRS

o e

— o O
(\

—
|
/N
oo
Lal=]=}

OO

70 (0)o = (

N

oS O -

o o

I_QﬁTﬁU

N—
Il

"(00(1,3)),

SE
I

o o -
ﬁT 1"20
|

»

1_2f_20
|

N——
I

"(oy(1,4)).

SE
I

91



Therefore p’ and p’ are isomorphic representations.

4.2.4. Characters.

DEFINITION. If p : G — GL(V) is a representation of G, its character x, is the

complex-valued function on the group defined by

Xo(9) = tr(p(9)),

i.e. the trace of g on V. We sometimes write xy instead of yx, if there is no possible

confusion.

In particular, for any g, h € G, we have
Xo(hgh™") = x,(9),

so that x, is constant on a conjugacy classes of G; a complex-valued function on G
which is constant on each conjugacy class of G is called a class function. Denote

Celass(G) = {class functions on G'}. Note that x,(e) = dimV/, where e is the identity

element in G.

ExAMPLE. Consider the character of the matrix representation of Cy, = {F, Cs, 0, 0 }

by the model of isosceles triangle AABC' (see Figure 3).

(1) p(E) = (8 1 8). Then x,(1) = tr(p(E)) =
1 (

oo

2) ,0(02):<_8 _2 §) Then x,(Cy) = tr(p(Cy)) = —1.
3) p(on) = (9 1 0). Then x (o) = tr(p(cr)) =
plo’) = (é 4 §) Then (")) = tr(p(c")) = 1.

ExAMPLE. Consider the character of the matrix representation p’ of Dsj, by the

model of equilateral triangle ADEF (see Figure 3).



o

. Then x,(C3(+1)) = tr(p/(Cs5(+1))) = 0.

—~
w
SN~—
b\
—
K
—~
+
—_
N~—
N—
I
N
o o~
|
=3
|
ol m|§o
~_

o
Wl

p'(Cs(—1)) = (2 :g i) Then x,(C3(—1)) = tr(p'(C3(—1))) =0
(4) ¢/(Ss1) = (E ‘L; ‘f) Then X,/ (S31) = tr(p'(S51)) = —2

P (Sg2) = (g ,i f) Then x,(Ss2) = tr(p/(Ss)) = —2
(5) p'(Ca(D,0)) = (_81 9 § . Then

P (Co(E, 0)) =

ExAMPLE. Consider the character of the matrix representation p” of Ds, =

{E,op,2C5,283,3C%, 30,} for PCls.

(1) p"(E) = (8 / §> Then x,(I) = tr(p"(E)) = 3.
(2) p"(on) = (§1 8,). Then xp(on) = tr(p"(02)) = 1.

=1 3
(3) p"(Cs(+1)) = ( V5 1 0>. Then x,~(C3(+1)) = tr(p”(C3(+1))) = 0.

3 F o
Pr(Cs(=1)) = (i - ) Then x,(C3(~1)) = tr(p"(C(~1))) = 0.
0 0 1
-4 F 0
(4) p"(S5) = <f 1 > Then X (Ss) = tr(p”(Ss)) = —2.
0 0 —1
p"(S4) = (L -3 ) Then x,n(S§) = tx(p"(S})) = —2.
0 0o -1
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0 ) Then x,m(Ca(3,4)) = tr(p"(Cy(3,4))) = —1.

¥3

p"(Ca(4,5)) = (w 5 ) Then x,(Co(4,5)) = tr(p"(Ch(4,5))) =

B ) Then X, (Ca(5.3)) = tr(p"(Ch(5.3))) =
0

p///(UU(1,4)) = (—;ﬁ —21 0) . Then Xp”’(gv(174)) = tr(plll(av(174))) =1

N
»

0
L 0
#(0(1,3)) = (“ - ) Then xn(04(1,3)) = tr(p"(0(1,3))) = 1
0 1
Remark: These characters of Cy, and D3, are seen to be class functions. Through
the example of Dsj,, we see an illustration of the fact that the isomorphic representa-

tions have the same character.

DEFINITION. A representation p : G — GL(V) is called irreducible if whenever
W C V is a vector subspace such that p(g)/W C W,Vg € G, then either W = {0} or

W = V. pis reducible if it is not irreducible.

DEFINITION. Define the Hermitian inner product of o and 3 in Ceass(G) by:
1 — 1 —
(a, B) = il > alg)Blg) = il > |cla(e)B(c).
geG c is a conjugacy class

THEOREM. Consider the set Zg of all equivalence classes [V] of irreducible finite
dimensional representations V' of a finite group G, with the equivalence relation being
isomorphism of representations. Then |Zg| equals the number of conjugacy classes of
G. Furthermore if Zg = {[Vi],- -+, [V4]}, then {xv,, -+, xv, } is an orthonormal basis

of the vector space Cepas5(G) of class functions.

4.2.5. Character Tables. We follow [44] [6] to develop this subsection. A finite
group G has a finite number of conjugacy classes and the same finite number of non-

isomorphic irreducible representations. The character of a group representation is
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) (2)

Sa

Coy E Co oy 0'; h=4

A 1 1 1 1 2,22, 12, y?

Ao 1 1 -1 —1 Ty R,

(3)

By 1 -1 1 -1 T, T2 Ry

Ba 1 -1 -1 1 Y, Yz R,
n 4

(4) (5) (6)

FIGURE 7. The Character Table of C,

constant on each conjugacy class. Hence, the values of the characters can be written
as an array, known as a character table. Typically, the rows are given by the irreducible
non-isomorphic representations and the columns are given by the conjugacy classes.

A character table often contains enough information to identify a given abstract
group and distinguish it from others. However, there exist non-isomorphic groups
which nevertheless have the same character table, for example Dg (the symmetry

group of the square) and Ag (the quaternion group)[6].

EXAMPLE. [44] Chemists and physicists use a special convention for representing
character tables which is applied especially to the so-called point groups, which are
the 32 finite symmetry groups possible in a lattice. In the table 7, the numbered

regions contain the following contents ([20] pp. 90 — 92).

(1) The symbol used to represent the group in question (in this case Cs,).
(2) The conjugacy classes, indicated by number and symbol, where the sum of
the coefficients gives the order h of the group.

(3) Mulliken symbols one for each irreducible representation.
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Dan E on 205 255 3¢, 304 h=12
A 1 1 1 ! 1 1 2% g2
Al 1 1 1 1 -1 -1 R.
Al 1 —1 1 ~1 1 -1
AY 1 ~1 1 -1 -1 1 z
(@, 9),

E' 2 2 -1 -1 0 0 (zy, 22 — y?)

E” 2 -2 -1 1 0 0 (z2,yz2) (Rz, Ry)

(4) An array of the group characters of the non-isomorphic irreducible represen-
tations of the group, with one column for each conjugacy class, and one row
for each irreducible representation.

(5) and (6) are not going to be used in this thesis, so we do not discuss them.

ExAMPLE. We know by the above theorem that two rows in a character table

are orthogonal with respect to the inner product defined above. For instance, in the

F1GURE 8. The Character Table of D5,

character table of D3, (see Figure 8), the two rows A and E” satisfy:

B 1
| D3|

(XA’{) XE”)

T 12

D

c is a conjugacy class

|C\XA’1’ (e)xer(c)

+3x1x0+4+3x(—1)x0]

=0.

T X241 % (=1) X (=2) 42 x 1% (=1) 42 x (=1) x 1




4.2.6. Decomposition of Representations.

DEFINITION. Let py : G — GL(V), pw : G — GL(W) be two representations of

the same group G, then the direct sum of these two representations is defined as:

pv©pw:G—GLVOW): g py(g)®pw(9g).

Let V = C", W = C™, then py(g9) € C™", pw(g) € C™™, and (py ® pw)(9) €

n+m)x(n+m :
Clm)x(mtm) (5 & pyr)(g) = ( 'y pw<g>>'

LEMMA. Let py : G — GL(V) and pw : G — GL(W) be representations of G.
Then xvew = x, + xw-

1 —1
DEFINITION. Let V' be a vector space. Define V% = V @ ... a@ V', where

a € N,a>2.

THEOREM. Suppose Zg = {[Vi], -+ ,[Va]}, where G is a finite group. Suppose
V is an arbitrary finite dimensional representation of G. If xy = > | a;xy, where

a; = (xv, Xv), then a; > 0 is an integer and V = V2" @ ... ¢ VPan,

ExAMPLE. We continue the the last example in §4.2.4 where Dg;, for PCly is

discussed. For the representation p"” for the character is x,» = (3,1,0,—2,—1,1)".

Then
(ar Xprrr)
al (XA/27XP///)
as _ | Garxpn)
Zg (xAg,xpm)
as (XEr X pr)
(XX )
rr 1 1 1 1 100000 3
1 1 1 1 1 -1 -1 010000 1
_ 1 -1 1 -1 1 -1 002000 0
" Dol 11 -1 000200 -2
|3h‘ 2 2 -1 -1 0 0 000030 -1
2 -2 -1 1 0 0 00000 3 1
11 1 1 1 1 3
1 11 1 1 -1 -1 it
_ 1 -1 1 -1 1 -1 04
= 1 -1 1 -1 -1 1 —
1212 2 2121 0 o -3
2 -2 -1 1 0 0 3



" 71 2 0 %1 @
P (Cs(+1)) = =5 1o | =\ - ® (1),
0 01 2 2
" %1%/50 _TI_T\/E
PO =5 o) = (50 )e().
0 0 1 2 2
_1 ¥3 9 1 V3
2 2 —= X2
p(Ss) = | _vs )—(L)@H
0 0 -1 22
—1_¥3 1 V3
2 2 —s X2
sy =4 >:(£ e,
0 0 -1 2 2
-1

b\
N
—

Q

<
—~
=

(O8]

N~—
N—

I
N
om‘aww

|

oto\»—‘ M‘w
- o o
N~

Il

Y

where the 2 x 2 matrices are the irreducible representation E’ of D3, and the 1 x 1

matrices are the irreducible representation Aj of Ds,.
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CHAPTER 5

THE CONFORMATION AND CONFIGURATION OF THE Hj
SYSTEM

In this chapter we first discuss the shapes (conformations) of the Hj system in
general coordinates: how to mathematically represent a shape and how to mathe-
matically classify the shapes into the three different categories: the non-collinear, the
collinear, and the one-point-coincident, and then we build up three particular internal

coordinate systems which treat the three hydrogen nuclei in a symmetrical way.

5.1. THE SHAPE SPACE OF THE H3 SYSTEM

In this section, we will discuss the mathematical representation of the conformations
of the Hj system. After rigid motion, the conformation (or shape) of a particular
molecule does not change. To identify the mathematical representation of the con-
formation of a molecule, we introduce the concept of orbit. We also investigate the
categories within the set of all orbits of configurations of H3 according to the orbit’s
dimensionality.

Let R = (R, Rg, R3) € (R?)3 be the position vectors of the three nuclei of the
Hj system. R is called a configuration. Let b € R?® be a translation vector. Let
A € SO(3) be a rotation matrix. We define G, := R? x SO(3), which is the group of

rigid motions of R3. The group law for G, is, for any by, by € R? and A, A, € SO(3),
(b1, A1) (b2, A2) = (b1 + Aibs, A1 A)
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(b, A) € G, acts on the left of (R*)? by the rule
(b, A)(R1,Ry,R3) = (b + ARy, b+ ARy, b + ARjy),

which represents the configuration R of the molecular system after the rigid motion
(b, A) is applied.
Let’s check that this is a left action:
[(by, A1) (b2, A2)](R1, Rz, Rs)
= (b1 + A1by, A1 42)(Ry, Ry, R3)
= (bl + Albg + A1A2R1, b1 + Albg + A1A2R2, bl + Ale + A1A2R3),
(bla A1>[<b27 A2)<R17 R27 R3)]
= (b1, A1)(bz + ARy, by + A2Rg, by + A2R3)

= (by + A1by + A1 ARy, by + A1by + A1 AsRy, by + A1by + A1 A3R3). O

To identify the conformation of a molecule, we introduce the concept of orbit as

follows.

DEFINITION. The orbit of a three-atom molecule configuration R = (Ry, R,
Rj;) is defined as
G.R :={(b,A)R c (R*)*|(b, A) € G,}

R is called a representative of the orbit.

DEFINITION. The Shape space of the three-atom molecule is the set of all its orbits
in (R?)3, denoted by G,\\(R?)?,
G.\\(R*)® := {G,R|R € (R*)*}.
With the notations defined above, we now start to investigate the classifications

of the orbits of the H3 molecule. We claim that there are three categories of orbits

in shape space:
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(
6, if R is a non-collinear configuration;

dim G,R = {3, if R; = R, = Ry;

\5, if R is a collinear configuration but not R; = Ry = Rj.

where dim G, R denotes the dimension of the obit GG, R thought of as a manifold, i.e.

the number of independent variables needed to parameterize G,R.

DEFINITION. Given a configuration R, its isotropy subgroup within the group G,
is defined as

Isog, R :={(b,A) € G, | (b,A)R = R}.
Fact. Given a configuration R, the mapping of the group onto the orbit:
Gy, — G,R:(b,A)— (b,A)R
is always surjective. It induces a one-to-one and onto mapping:
[ Gafflsog, R — G.R: (b, A)lsog, R +— (b, A)R,

where G, //Isog, R is the quotient set of Isog, R in G.

This bijective mapping is well-defined since if (b’, A’) = (b, A)g, g € Isog, R, then
(b’, A)Isog, R = (b, A)lsog, R and (b’, A)R = (b, A)gR = (b, A)R.

This fact tells us that we can identify the members of the class of rigid motions
(b, A)Isog, R because after acting on the configuration R they all produce the same
outcome (b, A)R.

Now we consider the orbit classification problem of the Hj system. There are three
situations for the configuration R: non-collinear, collinear and one-point-coincident.
We will show in a theorem that the isotropy subgroups corresponding to these three
kinds of R are of different dimensions, and consequently so are the orbits. We need

the following lemma and corollary as a preparation.

101



LEMMA. If A € SO(3), and e, e, € R3, then A(e; X ey) = Ae; x Aes.

PROOF. : For A € SO(3), by the lemma in the previous chapter, we assume that
A = R(e? u) = uu’ + [I — uu’]cosf + [ux]sinf, where R(e? u) represents the

rotation along the axis u through an angle #. Then we have
Ae; X e2) =ufu- (e; X ey)] +{e; x e —ufu-(e; x €3)]}cosf +u x (e; X ez)sinb,
and

(Aep) x (Aey)
={u(u-e;)+[e; —u(u-e;)cosfd +uxesinh}
x {u(u-ez) +[ex —u(u-ey)cosf +u x eysinfh}
=cosfle; x u(u-ey) +u x ey(u-e)]
+sinffu x (u x e)(u-e)+ (uxe;) xu(u- ey
+ (cosf)’[e; X e; — e X u(u-e;) —u x ey(u-e)]
+ (sin#)%(u x e;) x (u x ey)
+sinfcosfle; X (uxe) —ux(uxey)(u-e)—(uxey)xu(u-ey)
+ (u X e1) X €3]
=-.. (we will show the calculation details after this equation)
=ufu-(e; X ey)] +{e1 x e —ufu-(e; x ez)]}cosf +u x (e; x ey)sinb.

Here are the calculation details: because of the identity (a x b) x ¢ = —a(b-c) +

b(a - c), the coefficient of cosf is (denoted as equ.1.)
e; Xxu(u-e)+uxeyu-e)
= [61(82 . 11) — 82(81 : ll)] xXu

= [(ey X €1) xu] X u
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= —(ey x e1)(u-u)+ uf(ey x ;) - u]

=€ X ey — u[u . (81 X eg)].
The coeflicient of sin 6 is (denoted as equ.2.)

ux (uxe)(u-e)+(uxe)xu(u-e)
= [uxese;-u)] xu+[uxees u)]xu
= {u x [~es(e; - u) +ej(e;-u)} x u
— {ux [(ey x ;) xu]} x u
= {[(e1 x &) x u] x u} x u
={—e; xey(u-u)+ufu- (e xe)}xu
= —(e; x &) X u
—ux (e X e).
The coefficient of sin®§ is
(uxe)x (uxey)
—eifu- (uxe)] —uler - (uxen)
= ufe; - (e X u)
= uf(e; x e») - ul.
Combining the terms involving cos? § and sin® § we get
cos?0{e, x ey — (e, x u)(u-ey) — (u x ey)(u-e;)}
+ (1 — cos2f)uf(e; x e») - u]
—cos? B{e; X e; — (e x u)(u-ey) — (U x e)(u-e;)
—uf(e; x e2) - ul} +ul(e; x e3) - ]
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=cos” 0{e; x e; —uf(e; x e3) - u] — (e; x u)(u-ey)
—(uxey)(u-e)} +uf(e; xey)-u
=uf(e; X e3) - u]

The last step of the above equality is because the coefficient of cos?# vanishes by

equ.l.

The coefficient of sin 0 cos 0 is:

e X (uxe)—ux(uxe)(u-e)—(uxe)xu(u-e)+(uxe;) xey
=e; X (uxey) + (e xe) xu+ (uxep) xey (by equ.2)
=—(uxey) xe —(eyxe)xu— (e xu) X ey

= 0 (by Jacobi identity).

O

COROLLARY. If A € SO(3), and Ax; = x;, AXy = X3, where X, Xy are orthogonal

unit vectors of R?, then A = 1.

PROOF. We define x3 = x; X Xa, then X = (x3, X9, X3) is an orthonormal basis of

R®. By the lemma, AX = X, then A = A(XX7T) = (AX)XT =XXT =1. O
THEOREM.
(
{(0,1)}, if R is a non-collinear
configuration.
Isog, R =
{((I = R(e",u))Ry, R(e? ,u))|0 € [0,27)}, otherwise.

\

where in the 3rd case u is a unit vector in span{Ry; — R;, R3 — R4 }.
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PROOF. : Suppose (b, A) € Isog, R. In the case that R is non-collinear, {Ry —

R;,R3 — R} is a linearly independent set in R3. Since

b+AR1 :Rl,
b+AR2 :R27
b+ AR; = Rs.

We have that

AR: —Ry) =Ry — Ry,

AR; —Ry) =R; — Ry,

i.e. A has the eigenvalue 1, and its eigenspace is at least 2 dimensional. Let {x;, x5}
be orthonormal basis of span{R; — Ry, R3 — R;}, then Ax; = x;, Axy = x3. By
the corollary, we have A = I. Together with b + AR; = R;, we have b = 0 and
(b, A) = (0, ). Thus, Isog, R = {(0,1)}, which is 0 dimensional.

Let’s consider the second case: Ry = Ry = R3. We have (b, A)R; = b + AR, =
R; = b= (I - A)R,. Then Isog, R C {(({ — ARy, A), A € SO(3)}; it is quite clear
that the reverse inclusion also holds, thus Isog, R = {((I — A)R4, A), A € SO(3)}; it
is 3 dimensional since A = R(e, u) has 3 free variables.

The third case is that R is collinear but it is not the case that R; = Ry = R;.
Let u be a unit vector in span{Rs — Ry, R3 — R} (the space is one dimensional). We
have Au = u. By the argument in the Lemmas developed in the previous section,
for the eigenvalue 1 of A, the corresponding eigenspace is either 3 dimensional, in
which case A = I, or 1 dimensional, in which case A = R(e%, u), for some 6 € (0, 27).
Summing up these two cases, we can represent A = R(e, u), for some 6 € [0, 27).
So A has one free variable 6 € [0,27). (b,A)R1 =b+ AR, =R; = b= (I — A)R,.
Then we have shown that Isog, (R) C {((I — R(¢?,u))Ry, R(¢?,1))|0 € [0,27)}.
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We are going to show the reverse inclusion. Suppose ((I — A)Ry, A) € {((I —
R(e? )Ry, R(e? 1))|0 € [0,2m)}, we claim ((I — A)Ry, A)R; = R;,i = 1,2, 3, and
hence {((I — R(¢?,u))Ry, R(¢?,1))|0 € [0,27)} C Isog, (R).

To see,

(I — AR, AR, = (I — AR, + AR,
= Ry;

(1~ ARy, ARy = (I — AR, + AR,
=R, + ARy — Ry)
=R, + (R2 — Ry)
— Ry;

(I — AR, ARz = (I — A)R; + AR3
=R; + ARz — Ry)
=R, + (R3 — Ry)

In sum, we have Isog, (R) = {((I — R(e??,u))Ry, R(e?,u))|0 € [0,27)}. O

By the theorem above, we have
dim G, R

= dim (G,//1sog,R)

= dim G, — dim Isog, R

(
6 —0=06, if R is non-collinear configuration;

:<6—3:3, llezRQZRg,

\6 — 1 =25, otherwise.
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In the next section we will see that the 6 dimensional orbits form the interior of a
cone, the 5 dimensional orbits form the surface of the cone, and the 3 dimensional

orbit form the tip of the cone.

5.2. DIFFERENT COORDINATES ON THE SHAPE SPACE OF THE Hj

SYSTEM.

In this section we discuss the shape space of the Hj system using three particular
coordinate systems. Because the conformation (or shape) of the Hz molecule only
depends on the relative positions of its nuclei, the coordinates need to be internal.
It is also desirable to define a coordinate system that treats the three nuclei in a
symmetrical way. There are three internuclear distances for three nuclei. We are going
to use them and some appropriate functions of them to define internal coordinates.

The first coordinate system on the shape space is (l12, 13, l23), where [;; = |R; —
R;|,7,5 =1,2,3,1 # j (see figure 9). These are constrained by the triangle inequalities
laz < lyg + l13, 113 < lig + 1oz, l12 < la3 + 113,

The conformation of the molecular system can be identified by the 3 internuclear
distances (ly2, a3, l13). We claim that these distances of the H3 molecular system do
not change after any rigid motion (b, A) and hence we can identify them with an
orbit. To see this, after the rigid motion (b, A) is applied, the square of the new

internuclear distances are:

li; = IR; — RJ?
= [(b+ AR;) — (b + AR;)|?
= |AR; - Ry)J?
= [AR; - R)]"A(R; - R))
= (R; — R;)"ATA(R; — R;)
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l23

l13 = l23,l12 =0

|
|

log = l12, 113 = 0
23 = 2,03 log = li2 + l13 '
|

l13

liz =l13,1l23 =0

FIGURE 9. (llg, llg,l23> Coordinate.

=R, -R)"(R; - R))
=|R; - Ri|”

72
=12,

where 7,5 = 1,2,3,1 # 7.
The second coordinate system on the shape space is (135,133, 13;). (See figure 10.)
In the following lemma, we will show that the collinear configurations are on the

surface of a cone in this coordinate system.

LEMMA. We define
]2 72 72
Sl T 112782 - l13783 . l237
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53
s3 = 83,81 =0

s1 = 83,52 =0

52

A (s1,s2,53)

S1
s1 = 82,53 =0

F1GURE 10. The Collinear configurations are on the surface of the cone
C. The intersection of the plane s;+ so+s3 = () with the three surfaces
81+ \/S2 = \/83,/S2 + /83 = /51, and /51 + /s3 = /52 is a circle
centered at C' = (Q/3,Q/3,Q/3) with radius <%. Hence the cone C is

NG

bounded by the three surfaces \/si + /s2 = /53,/52 + /S3 = /51,
and /s1 + /s3 = \/s3. The axis of the cone is 51 = 59 = s3.

Q = {(la, l13,123) € R3|l1g + log > lig, Lz + log > lio, lia + L1z > log; lig, L3, lag > 0},

S1+ So +83)2

3
(81 -+ So -+ 53)2
)? < p 2

C :={(s1,59,83) € R3‘51752, s3> 0;(s1 —

S1 + So + S3
3

81+ S9 + S3
3

+ (89 — )2+ (53—

Then the mapping (l12, 113, la3) — (1, S2, 83) maps Q bijectively onto C.

PROOF. Because the mapping (112, l13, la3) — (81, S2, s3) maps {(l12, 13, l23)]
l12, 113,123 > 0} bijectively onto {(s1, s2, $3)|s1, $2, 53 > 0}, it is enough to show, for
every point (l12,l13,l23) on the boundary of Q, its image is on the boundary of C.
Let C' be the point on the intersection of the plane s; + sy + s3 = ) with the line
s1 = Sy = s3; then C' = (Q/3,Q/3,Q/3). Let A = (s1, S2,S3) be an arbitrary point
on the intersection of the plane s; + s + s3 = @) with the surface /sy + /s2 = {/53.
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Note that
Uy + s + (Lo + Liz)* = 2(11y + 13) + 613,015 + 413513 + 4l1al3,.
For the point (s1, s2,s3) on the surface of \/s1 + /52 = /53,

Q* = (51 + 59 + 83)*
= (lfz + l%s& + 533)2
= [By + 115 + (L2 + 113)?)?
=1y + s + (Lo 4+ Lig)* + 202,02, + 213, (1o + 113)? + 2035 (112 + [13)?
= Uty + Uy 4 (g + Lig)* + 2(1y + 1) + 613,02, + 4l 113 + 415013,

= 2[l}y + li5 + (lia + 113)*] (by the previous equality).

:>l1112 -+ lil3 + (l12 + l13)4 = %2
AP = (51— D)2+ (52~ 22 + (35— 27
= B P (= P+ (- P

= Dot + ig? + I — 2%(1122 + I3 + 5232) + 3(%)2
QQ
="+l + (e + i)' — ER

(the above equality holds because that A is on the plane I3, + I35 + I3, = Q

and A is on the surface l15 + l13 = la3)

Therefore |AC| = % is a constant, and hence the intersection of the plane s; + so +
S3 = Q with each of the three surfaces l12 + l13 = l23, 113 + l23 = 112 and l23 + l12 = l13
is a circular arc centered at C' = (Q/3,Q/3,Q/3) with radius %. So A is on the

boundary of C. In the other words, the collinear configurations are on the surface of

the cone C. 0
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The third coordinate system is (Q,s,0) (see figure 10) where @ € [0,4+00),s €

[0,1],8 € [0, 27], are defined as follows:
Q=1+ 115+ 15, =5, + 55+ 53,
Qscosl = 255 — I3, — I35 = 253 — 51 — 8o,
Qssinf = V3(1% — 12,) = V3(s2 — 51).

We will explain the meaning of this coordinate system as follows. As we showed

above, the intersection of the plane s; + so + s3 = @) with C is a circle together with

its interior. The radius of this circle is |AC| = 7 (see figure 10).

We define e; to be the unit vector pointing from C( g 3) to (0,0, Q); then

o) — (0,0,Q) — (gag g)
[(0,0,Q) = (3,3, 3)I
_ 58 )
_ o
= L( 17 1’2)

oo (9 _Q Q1
3 3 3’ 379
1 1 1

We define

= (- ) % (-1, -1,2)
V3 V3 VBT Ve T
1 1
= _—7—70 .
( NN )
Let v be a vector pointing from C' to A(sy, S2, S3), one point in the cone C; then
v = (s1m) ~ (5,2, 9)
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Let 6 be the angle between v and e, then

v=ei(e;-v)+eyey-Vv)
= e1|v] cosf + ex|v]sinb,

[v]cosf =e;-v

_ %(_1, —1,2)(s1 — %,32 - %,83 — %)
|

= %(283 — 81— S2),
Qscosh = 253 — 55 — 51 = V6|v| cos b

vl

= 5= \/66
If C' is on the bounding circle |v| = % and s = 1. A similar calculation confirms
that e; X v = e3|e;||v]sind. In summary, in the third coordinate system (@, s, ),
Q = V3|0C|,s = V6., and 6 is the angle between e, and vector v measured as
a positive rotation around the axis e3. This coordinate system is used in the papers

2], [15], [45] and [41].

Standard Configuration. In §6.3.1, we will find it necessary to introduce
the concept of a standard configuration. Given a conformation, we want to define a
particular configuration that is a member of that conformation, and we will use that
configuration to define the Hamiltonian. Moreover, we will find that when a symmetry

operation acts on a three-atom molecule, it is desirable to have the geometric center

of the triangle to be the origin.

DEFINITION. Given the conformation b = (ly2,113,l23) of the non-collinear Hj

l13 cos 6

system, and given Ry(b) = <§> JRy(b) = <l§2> ,Rs(b) = <l13[s)in9>, where 0 =
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Cos 1(4l12+113 B3 we define a standard configuration (Ry(b), Ry(b), Rs(b)) of the Hij

2112113
system by giving the three nuclel (Rl(b)’f{2(b)af{3(b)) specific new coordinates as
_ Ri(0)+R2(b)+Ra(b) _ (%(l12+l13 0059)>
= 2 _ |

follows. The origin of the coordinates is at f{(b) i3 sin6
0
Thus define
- - —%(112+l13 cos )
R1<b) = R1<b) — R(b) = 7%l1gsin9 )
0
~ - %(2[12 l13 cos 0)
Rg(b) = Rg(b) — R(b) = ——l1551n6 )
0
~ ~ %(71124»2[13 COS@)
R3<b) - R3(b) - R(b) - %llg sin 6 Y
0
where we understand that cosf = 12;;?213 25 and sinf = \/1 — %ﬁ'm%) This 0

is different from the 6 in the previous section.

Therefore (R4(b), R2(b), R3(b)) is completely determined by the conformation

(l12, 113, l23) of the non-collinear Hj system.
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CHAPTER 6

FIBER BUNDLES AND CONNECTIONS IN H3 SYSTEM

In this chapter we introduce the differential geometry concepts: fiber bundles, and
the special case of Hermitian vector bundles, on which we define connections, parallel
translation, and the covariant derivative. We illustrate these concepts and results in

two concrete cases: a surface in R and the Hj system.

6.1. FIBER BUNDLES AND CONNECTIONS

DEFINITION. A fiber of a map f : X — Y is the pre-image of a point y € Y :
7 ) = {z € X[f(2) = y}.

DEFINITION. Suppose M is a Hausdorff topological space and n > 1 is an integer.
Suppose {¢; }ier is a collection of homeomorphisms (a bijective map between two
topological spaces which is continuous in both directions) from open sets of M to
open sets of R", where

(1) Vi € Z,¢; : dom(¢;) — codom(¢;), dom(¢;) is open in M, and codom(¢;) is
open in R".

(2) M = Ujez dom(;).

(3) Foralli,j € Z, ¢; 0 ¢j_1 : ¢;(dom(¢;) N dom(e;)) — ¢i(dom(ep;) N dom(e;))
is C* smooth; notice that ¢;(dom(¢;) N dom(¢;)) is open in R™, Vi, j € Z.

(4) (Maximality) If U is open in M and V is open in R" and ¢ : U — V
is a homeomorphism and if for all i € Z, ¢; o ¢~ : ¢(dom(g;) NU) —

¢i(dom(¢;) N U) is a diffeomorphism (a map between open subsets of R"™
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which is infinitely differentiable and has a infinitely differentiable inverse),

then there exists j € Z such that ¢ = ¢;.

Then (M, {¢;}ier) is called a n-dimensional smooth manifold. 1If it will not cause
confusion, we denote a n-dimensional smooth manifold as M, or just M when the

dimensionality of the manifold is not in focus.

DEFINITION. Suppose m-dimensional (M, {¢;}icz) and n-dimensional

(N,{%:}jer) are smooth manifolds and f : M,, — N, satisfies:

(1) f is continuous.
(2) Vi € I,Vj € T, ;0 fod;" 1 ¢y(dom(e) N f~(dom(eh;))) € R™ — R™ is
smooth.

Then f is called a smooth map between M,, and N,,.

DEerINITION. If f: M,, — N, is a bijective smooth map between smooth mani-
folds M,, and N,, and f=': N, — M,, is a smooth map also, then f is a diffeomor-

phism. This implies that n = m.

DEFINITION. Let E, B and F' be three smooth manifolds; let 7 : £ — B be
a smooth map; let U be an open subset of B. A local trivialization over U is a
diffeomorphism 7 : U x F' — 77 1(U) s.t. Vb € U,Vy € F,n(7(b,y)) = b (see figure
11).

DEFINITION. Let G be a Lie group (a smooth manifold which is also a group
and which satisfies the additional condition that the group operations are smooth)
and F' be a smooth manifold. A (smooth) left action of G on F is a (smooth) map
G x F — F defined as (g,y) — ¢ -y which satisfies g- (h-y) = (gh) -y and e -y = v,
for all y € F, where e is the identity of G. A left action of G on F is faithful if for

any gi,92 € G, g1 # ga, then g1 -y # g2 - y, for some y € F.
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2R
N

1

O«

FiGUuRrE 11. Local Trivialization 7 Over U .

DEFINITION. Let E be a smooth manifold, called the total space; let B be a
smooth manifold, called the base space; let @ : E — B be a smooth map; let F
be a smooth manifold, called the standard fiber; let G be a Lie group, called the
structure group; assume that G x F' — F defines a smooth left action of G on F’; let
{7, : Ui x F — 77 Y(U;) }iez be a family of local trivializations satisfy 7 (7;(b,y)) =
b,Vi € Z,b € U;, where {U,},c7 is an open covering of B; (E,B,m, F,G,{7}ic1)
determines a fiber bundle with standard fiber F' and structure group G if there is a

family {g;; : UiNU; — G}; ez of smooth maps such that Vb € U;NU;,Vy € F), (r7to

116



UJ'XCk
UZ‘XCk

Tj

e C)
/\/
(v ()i (2))
(vl w3() N\ A
/\/1 (7(0),|y:(0))
1O 7/_“\

1 i
FiGure 12. Two Overlapping trivializations and Parallel translation

7;)(b,y) = (b,0i;(b) - y). {7i}iez is said to be a atlas of smooth local trivializations
with the smooth cocycle {gi;} i jyerz (see figure 12). Suppose {7;}icz and {7;};cs are
atlases of local trivializations with G-valued cocycles, then we say {7;}icz < {7i}jer
iff {7;}iez U {7;}jes has a G-valued cocycle. < is an equivalence relation on the set
of atlases of local trivializations of fiber bundles with structure group G. We say
(E,B,m, F,G,{7;}iez) and (E, B,w, F,G,{7;}jes) determine the same fiber bundle

with standard fiber F' and structure group G iff {7}z g {7j}jeq-
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In particular, if ' = C* and G = U(k) := {U € CP*|UTU = [} and Gx F — F s
the usual left action of {4(k) on C* (matrix-vector multiplication), then a fiber bundle
(E, B,7,C* {U(k), {7 }iczr) with standard fiber C* and structure group U (k) is called

a Hermitian vector bundle.

In the case of a Hermitian vector bundle, the local trivialization 7; determines
a field of “orthonormal” bases of the fibers in 7=}(U;) in that Vb € U;, 7~1(b) has
the basis {eq, -+ ,er} = {7:(b,&1), -+ ,7:(b, &)}, where {&;,--- , &} is the standard
basis of C*. 771(b) = E, is equipped with a unique C-vector space structure and a
unique inner product such that {ey, - -- , e} is an orthonormal basis. These structures

are independent of 7; such that b € U;.

Facrt. If g : (—e,1 +¢€) — U(k) is a smooth map with ¢(0) = I, then for all
to € [0,1], we have ¢'(to)g(to) ™' € TilU(k), where T;4U(k) is the tangent space of (k)
at I.

PROOF. Fix ty € [0,1]. We define a map F : C*** — C** : h— hg(ty)~!. Since
F is C-linear, DF(g(to)) : Ty(u)CF** — TiC*™* . (g(to), h) +— (I,hg(te)™"). Let F, :
U(k) — U(k) be the restriction of F' to U(k), then DF,(g(to)) : Ty (k) — TrlU(k) is
a restriction of DF(g(to)). Since (g(to), 9'(t0)) € Tyuo)U(k), we get DEF,(g(to))(g(to),
g'(to)) = (I, ¢'(to)g(to) ") € Trtl(k). U

Remark: Formally T,4(k) consists of pairs (g, k), but we often informally write
h € T, (k).

DEFINITION. A Lie algebrais a vector space V' equipped with a bilinear Lie bracket

[,] : V x V — V which satisfies VA, B,C € V,

(1) antisymmetry: [A, B] = —[B, A].
(2) Jacobi identity: [A, [B,C]] + [B,[C, A]] + [C,[4, B]] = 0.
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FacT. u(k) = Tih(k) = {A € CFH*|AT = —A} is a vector subspace of CF**
which is also closed under the commutator: [A, B = AB — BA € u(k),VA, B € u(k).

So u(k) is a Lie algebra.

FACT. If w: (—e,1+¢) — u(k) is a smooth map and g : (6,1 + €) — CF** is the
solution of the ODE initial value problem: ¢'(t) = w(t)g(t),t € (—¢,1+¢€),9(0) = 1,
then g(to) € U(k), Yty € [0, 1].

PRrOOF. £[g(t)Tg(t)] = ¢'(t)Tg(t) + g(t)'g'(t) = [w(t)g(®)]'g(t) + g(t)'w(t)g(t) =
g w®)T 4+ w(t)]g(t) = 0. Since g(0)Tg(0) = I we have g(tg)Tg(ty) = I,Vty € [0,1].
ie. g(tg) € U(k), Vit € [0,1]. O

DEFINITION. If U is an open subset of R", TU = U x R" is its tangent space,
W is a R-vector space, then a W-valued 1-form is a smooth map, w : TU — W s.t.

Vb e U, T, U — W : (b,v) — w(b,v) is R-linear.

In the following we will introduce the concepts of parallel translation and connec-
tion in the context of Hermitian vector bundles instead of general fiber bundles. The
reason is that we will focus on the two systems: the Hs system and the surface in R3,
in both of which cases Hermitian vector bundles are to be defined. These concepts

for the fiber bundle can be developed in a similar way.

DEFINITION. Let 7; : U; x C¥ — 771(U;) be a local trivialization of the Hermitian
vector bundle (E, B, w, C* {(k), {7i}sez) where U; C B is open. Using coordinate
charts on B we will assume U; is open in R". Let w; : TU; — u(k) be a u(k)-valued
I-form. Let v : (—¢,1 +€) — U; be a smooth path and let g; : (—¢,1 4+ €) — U(k)
solve the ODE initial value problem g.(t) = —w;(v(t),~'(t))gi(t),9:(0) = I. Then the
parallel translation map over v for the local trivialization 7; is an isometric C-linear
map b -7 ({7(0)}) — 7 ({3(1)}) such that 15 (r(4(0),4)) = 7:(v(1). (1) - )
for all y € C*.
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yi(t) = gi(t)y: (0)
(7(0),:(0)) " (y(1),u:(?t))

Y;(0) = g5i(7(0))yi(0) y; (t) = 95i(v(1))wi (t)

v (t) = g5 (t)y;(0)

(v(0),y;00)) e (v(®),y(1)
FiGUuRE 13. Parallel translation in two local trivializations

The parallel translation map above is defined on a curve that is entirely in the
open set of a local trivialization. Now we want to extend the definition of the parallel
translation map over an arbitrary smooth curve, which is independent of the covering
of the curve.

First, we must show that hgi) = h(f ) for a curve v lying entirely in the open set
U; N U; of two local trivializations 7; and 7;. Thus we can write h, = h(f ) whenever

range(y) € U;.

FAcT. Suppose i,j € Z,i # j; and U; NU; # 0. Then the connection 1-forms
w; and w; determine the same parallel translation map over each smooth path v :
(—e,1+¢€) — U;NUj if and only if w; and w; satisfy the “transformation rule” i.e.

for all (z,v) € T(U; N U;),

wj(w,v) = —Dgji(x)(v)g;i(x) ™" + gji(w)wi(w, v)gsi(x) "

PROOF. (=) Let (z,v) € T(U;NU;) and v : (—e€,14+¢€) — T'(U;NU;) be a smooth
curve such that (v(0),7/(0)) = (z,v). Suppose the local connection 1-forms w; and w;
determine the same parallel translation map over . Then the two ways from y;(0)
to y;(t) pictured in figure 13 give the same y;(t).

Way L2 y;(t) = g;i(v(1))3i(t), where y;(t) = gi(t) - 4:(0). = y;(t) = g5 (7(£))g:(t) -
4i(0), where g;(t) solves g;(t) = —w;(7(t),7'(£))gi(t), 9:(0) = I.

Way 2: y;(t) = g;(t) - y;(0), where g; solves gj(t) = —w;(v(t),7'(£))g;(#), g;(0)
=1, y;(0) = g;i(7(0))3:(0). = y;(t) = g;(£)g;:(7(0))y:(0).
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Since g;i(v())gi(t) - y:(0) = g;(¢)g;:(7(0))y:(0) holds for all y;(0) € C*, and that
the left action of (k) on C* is faithful, we have g;;(7(t))g:(t) = g;(t)g;:(v(0)) =

g; () g5 (v(t))gi(t) = g;i(7(0)). Differentiating both sides with respect to ¢, we have:

0= 2 04(2(0)) = ls(1) g5 ())ai(0)]

= —g;(0) (g5 (0)g; (8)Mgsi((£)ga(t)

d

+g;(t)7" [agji(v(t))]gi(t) + 95 (1) g5 (v(1))gi(t)

= g;(t) " wi (7(1), 7 (1)) g5 (v(1)) gi(t)

+ gj(t)l{%gﬁ(v(t)) — ;i (Y(O)wi(y(£), 7' (1) }9:(t)

= g;(t)"H{w; (v(1), 7 (1) g;s (v (1)) + %gﬂ(’y(t)) — 95 (Y(®))wi (v (1), 7' (£)) }i ().

Therefore w;(7(t),7'(t))g5:(7(t)) + §9;(7(t)) = ga(v(#) Jwi(v(2), /(1)) = 0.

In particular, if ¢ = 0, we have
w;(7(0),7(0)) = =545 (V) i=09;:(7(0) 7" + g5 (7(0))wi(7(0), 7' (0)) ;i (v(0)) .

(<) Suppose that the local connection 1-forms {w; };cz, satisty the transformation
rule. Since the derivation of the above proof is invertible, it is clear that inverse claim
holds. 0J

Second, we claim that the parallel translation map h, satisfies a subdivision
property. To see, assume that v([0,1]) C Ui,v1 = Yot 72 = Vlito,1), Where £y
is arbitrary in (0,1). Assume that the g;(ty) corresponding to h., solves gi(t) =
—wi(y(t), 7Y ()1 (t),t € [0,t0]; g1(0) = I; and the go(1) corresponding to h., solves
gh(t) = —w;i(v(t),7'(t))92(), t € [to,1]; g2(to) = I. Let h, = h,, o h,,, then the corre-

g1(¢) if t € [0, to];

sponding ¢(t) = , 1t solves ¢'(t) = —w;(y(t),~/(t))g(t),t €
92(t)g1(to)  if ¢ € [to, 1]

[0,1];9(0) = 1I. O
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Yo ="75071073

4 =607

F1GURE 14. Parallel translation independent of local trivialization in-
dex 1.

Here we showed that the parallel translation map h, is independent of the bi-
subdivision of the path +. The claim also holds for any finite subdivision of the path
~ by applying the proven result recursively finitely many times.

For the third step, consider an arbitrary path v : [0,1] — B. Consider two
coverings {U;}i2, and {V;}}_, of v, corresponding to two families of trivializations
{7}z, and {7]}}_, respectively taken from the same atlas. Assume that 0 = ¢y <

- < ¢y = 1and v|[eii1,6] CU;; 0 =dy < -+ < dp, =1 and y([d;-1,d;]) C Vj.
Assume that the local connection 1-forms {w; };er satisfy the transformation law. For
any i = 1,--- ,m, define h, to be the parallel translation map over ~; := Y[ei-1, ¢l
Define b, := h,, oh,  o---o0hy. Also define hl := hyyoh,y o---o0hy, where
hyy is the parallel translation map over 7} := Y|[d;-1,d;] (see figure 14).

We claim that h = h. To see, let {ex}j_y = {ci}i2o U {d;}7—y, and assume that
0=¢e < - <e =1,1ie {e}_, is a finer subdivision of v than {¢;}7, and

{dj}?zo. By the subdivision property each h., is a composition of h,,,k € I; and

o
{1,---,p} = UL, ;NI = 0if i # j. Therefore b, = h,, o--- o h,,. Similarly,
hl = h,, o---oh,, sohl =h.

Here we show how to calculate h, : 77 1({7(0)}) — 7 *({~(1)}) along ~. For
0 =1ty <t < -+ <ty =1, suppose 7|[ti—1,t;] € U; of local trivialization ;,
i =1,--- k. We denote h,[11(7(0),y)] = 7(v(1),hy1x - y),Vy € F, where h, 1y

is computed as follows: along v([t;—1,t:]) C Ui, ¢i(t) solves the ODE initial value
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problem ¢i(t) = —w;((t),7'(t))g:(t),t € [ti—1,t:]; gi(ti=1) = I. Then
hok = gulti) - - (932 (7(t2)) g2 (t2)][g21 (v(t1)) 91 (t1)]-

In particular, if the curve is a smooth loop, v(0) = (1), we denote h., 1 := g11(7(0))h+ 1%

corresponding to the parallel translation map h. in the trivialization 7.

DEFINITION. A connection is defined in the Hermitian vector bundle
(E, B,7,C* {U(k), {7 }icz) by a family {(U;, 7;,w;)} where {U,};cz is an open covering
of B, {r; : Uy x C* — 77 Y(U;)}iez is a family of local trivializations with a smooth
u(k)-valued cocycle {gi;}jez2, and {w; : TU; — u(k)}ier is a family of smooth

u(k)-valued 1-forms, satisfying the transformation laws.

DEFINITION. Let B be the base space, E/ the total space and 7 : £ — B is the
bundle map. A (global) section is a smooth map ¥ : B — E s.t. Vb € B,9(b) €
7 ({b}). A local section is a smooth map ¢ : U — E s.t. Vb € U,¥(b) € n=1({b}),

where U C B is open.

Here we want to show how to take the covariant derivative of a section 1 in a given
direction. We use the connection to parallel translate 1 (y(t)) from 7! (y(t)) back to
71(7(0)) as follows (see figure 15): for |t| < €, y(t) € U, w(y(t)) = m(v(t), vi(t)) €
T ({2(0)}), where yi(t) = mor  (U(3(2)) € C.

The covariant derivative of ¢ in the direction (v(0),~'(0)) is defined as

. [ parallel translation of ¥ (v(¢)) back to 7~ (7(0))] — ¥(~(0))
V0)0p¥ = lim "

7i(7(0), gi(t)"'9i(t)) — 7:(~(0), 5:(0))

= lim

t—0 t
iy, (), 20 =00
1 (10 SO0 =0

= (2000 o) o))
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P.T. back to 7~ 1(v(0))

>§ A :
$y(0))
»(Us)
//\

FIGURE 15. Use Connection to Parallel Translate (y(f)) from
7! (y(t)) back to 77(+(0))

Because g;(t)™!' can be solved from g}(t) = —w;(v(t),7'(t))gi(t), g:(0) = I, where

w; is known, we have

(1) = 1) le) + i) Sl
= g0 S (Dl i (0) + (0) 1)

= i) (0.7 D) + (0]

d

& (00 ) o = (1(0). 7 (O))0) + &

i(0) =
(Blco
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= Vo) = Ti (7(0),%(7(0), 7'(0))w:(0) + [%yz-(t)]\t:o> :

The transformation law of connection 1-forms implies this formula gives a result

independent of the local trivialization.

FACT.

s ON L (B)lco -+ e(3(0),7/(0))34(0)]

t

- %yj(t)‘t:[) + w;(7(0),7'(0))y;(0).

PRrROOF. It is known that :

y;(t) = g5:(v())wi(t),

w;(7(0),7'(0)) = g;s(7(0))wi(+(0),7'(0))g;s(7(0)) " — [%gji(v(t))]It:ogji(v(o))_l

Plug them into the right hand side of the identity to be proven, we have

R.H.S. I%[gﬁ(v(t))yi(t)ﬂt:o + {95 (7(0))wi(v(0), 7/ (0))g;(+(0)) ™!
1 g O e0420)}5(0)
:%[gji(V(t))] [1=0yi(0) + gji(’}/(()))%[gi('y(t))”to
d

+956(7(0))wi (7(0),7(0)):(0) — —

d

=95 (Y(OD 7 9 (Y (E)]le=0 + wi(7(0),7'(0))i (0)]

=L.HS O

[9;:(7())]li=04: (0)

6.2. HERMITIAN VECTOR BUNDLES AND CONNECTIONS ON A GRAPH

IN R?

Let’s look at the concepts introduced above in the case of a surface in R3.
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v

u

F1GURE 16. Fiber Bundles and Connections in the Case of a Surface in R?

6.2.1. Three Trivializations and the corresponding Cocycles.
f(;;’v)) e R?|(u, v)" € R},
Let B = TB = UpepTiB = Uer{(b, (§§>)|U3 = vifu(u,v) + vafy(u,v),v1,v2 €
R where b = ( (Ev)>}, the tangent space of B. Let 7 : E — B : (( v ) , (%)) —

f f(uvv) v3
(f(;zfv)). Let F = R2, G = GL(2,R?), and the left action G x F — F of G on

EXAMPLE. Let B be the graph of f(u,v), ie. B = {(

F is matrix-vector multiplication. We define global trivialization 7y : B x R? —
1 0
7Y B) = E as 1o(b, () = (b, (f (%@) + vy <f (iv))), then we can define the

cocycle goo(b) = Iaxo for all b € B.
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ExAMPLE. We use the same F, B, 7, F' as the ones in the previous example. Let
G = O(2,R), the 2 x 2 orthogonal matrices. Let U; = Uy = B. By orthonormal-
izing the basis of the previous example in two ways, we can define two other global

trivializations 7; : U; x R?> = E =TB,i = 1,2 as follows:

)@= (ko) e (D) + e ()

[SES

?’H—AO

) + 12 <1?ff3 ))
VA+ A+ rr+mN\ )

!
U1 )_
! =
Vg

(i) N = (( 42 ) J#ff? (

Here we compute the cocycle goi(b), which is defined by (75! o 71)(b, (

(b, gor () <Zi>) ie.

v _ U—i 5 Ué 7f“f;
ma(7a (b, (v;)>> i (f0> BN e D ( s )

v Uy fufo Ul(1+f2)
— 71)( _ 2 X, + 2 u x
VIHRZ Ja+ma+ e+t Ja+r Ao+t
! V) fufo vy (1 + f2)

)X +

:Qﬁ+ﬁ_¢u+mu+ﬁ+ﬁ) ¢u+mu+ﬁ+ﬁf”

= 11Xy + V9X,
= 7T2(7'0(b7 (ﬁé)))
= mo(mo(b, g (8) (1))

Xu:<]g1l> andxv:<

) . Then

:h»—lo

o o fufs
VI VO+ )0+ 2+ f2)
vy(1+ f2)

VA A+ 2+ 73
(zé) :901(5) <Zi)

U1

Vo =
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1 —fufv
Vi+i2 A Qa2 +12)

= 0 V1+52 (vé >

 1+F2+ 52
1 —fufv
V1412 0+ 20+ 2+12)

= go1(b) = . o

1+f2+/2
0 V1453
Similarly we can compute the cocycle gg2(b) = VI

1 —fufv
V1412 A 04120412452

We Compute gi12 from doi1, 9o2-

J12 (b) = 910(b)902(b)

= go1(b) "' goa(b)

—fulfv -1 1+f3

1
Vitiz a2+ O Tomasnim
J— v u v
= , N —fufy

1
SRVASELN. +
V142452 V12 ki a+s2+62)
futo VIHE+E

Varatid) A ardhassd)

\/ 1+£2+53 — fufv

Va2 A atrhatsd)

A simple check shows that gi2(b) € O(2). So {71, 72} determine a fiber bundle with
structure group O(2). Also {79} “rP {71, 72}, so the two examples describe the same

vector bundle.

6.2.2. Covariant derivative of a vector field. Let B be the graph of f(u,v),
ie. B= {(f(iv)) € R3|(u, v)" € R?}. Let E = TB = Upe Ty B = Upe s { (b, () v =
V1 fu(u, v) + v fy(u,v),v1,v9 € R where b = <f(§’v))}, the tangent space of B. Then
a vector field over an open set U C B is a local section ¢ : U — T'B where ¢(b) € T, B
for all b € U.

DEFINITION. Let v be a differentiable vector field in an open set U C B. Let
y € T,B,b € U. Consider a parametrized curve 7 : (—e¢,e) — U, with v(0) = b and
7' (0) =y, and let ¥ (y(t)),t € (—e€,€), be the restriction of the vector field ¥ to the
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curve 7. The vector obtained by the orthogonal projection of (di/dt)(0) onto the
plane T, B is called the covariant derivative at b of the vector field ¢ in the direction

y. This covariant derivative is denoted by (Vyt))(b).

Using what we already know about the relation between the connection 1-form
and the covariant derivative we now seek an expression for the connection 1-form
associated to this sense of covariant derivative. To simplify the notation, we denote
e;(b) as e; and &;(b) as €;. Consider a general trivialization 7: U x R* — F = TB as
7(b, (%)) = (b,e1u + eqv) , where E, = span{e;,es}. Let ¢ : B — E be an arbitrary
vector field satisfying ¢(b) € Ey, Vb € B and ¢(b) = eja; + ezay. A parametrized
curved at b is v : (—¢,€) — B such that b = ~(0) = ( 2583 )

f((0),0(0))

We consider the orthonormal basis {€,€,} spanning F, generated by the Gram-

Schmidt process starting from {e;, es}:

- €1
€ = >

- €y — él[élTe2]
€y = ~ =T .
led] les — & [ef eo|

Then the orthogonal projection operator from R? into Ej, is

~ ~T | ~ =T
Pb = €e1€e] + (SHISHY

eiel  {ey— ele1 Te,} {ey — ele1 Tey}

efe; [ex—&éfex| [e;—&&es|

ejel {e2 — 5 el o€} {e— eiel e}’

efe {e; — elel eg}T {es — el eg}

_ el e T o Tel e
eel {e 15T, }{ex —e el

erer  {ef — el %2} {er — er i}

T T..\2
T Teles Tejes T (e7 e2)
elelT €2€; — €€ T— — €1€; eiT ) + eje; o lT B
N ele, + T _ AT elTez _ ol ele + (el 92)2
(eTe _ (elTe2)2> e T( T ) — T( T ) — T( T )+ ( T )(6192)
. ejer e e
- T a,)2 T T T
efe (ele, — C1220) (e2ed)(efer) — (ef e2)?
2%2 e{el
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= {elelT(ezTe2) + e2ezT(e1Tel) - e2e1T(e1Te2) elezT(el ey)}/det(h)

_ 1 (61 62> elesel —eTezel
det(h) —efexef —efeie;

1 A _ T T
_ €5 e ej ez e
= (e17 62) det(h) ( 79?92 e{el > (eg )

= (el) eQ)hil <z£> )

where h = <eTe1 €1 e2) det(h) = det (el o e§e2> = (ele;)(eley) — (eTey)?, and

egel egeg

h 1 1 egeg 79{62
T det(h) \ —efes eTe; /-
On one hand, Py = eja; + esas = (eq, €2) (as

T T T T
-1(© _ 1 [ e;e2 —eje el
(e1, ez)h <e2T> ¥ = (e1, e2)gmm (—elTeQ oTer) ) <e2T> 1, so we have

() =0 (300) = o (i 00 (69)
az el det(h) —efes efe; ely |-

ele; e; e

Moreover

i@b(v(t)) -2 e1(y(2))ar(v(1)) + ex(v(t))az(7(1))]
d d

= Ze(1(0) @i (1(1) + Zea(1() - ax(1()

Fea((0) s (+(1)) + exr(1) Taa((1),

dt
where e (4(1) = O (4(1)) -u/(1) + 2 (5(1)) /(1)

Finally we are ready to calculate the covariant derivative:

ijtz/)( () = (e, e2)(h™Y) (i) %w(v(t»

Toku/(O)+el Sho'(t) ef T2/ (t)+el F2v '”) (@)}

1 e]
+ (h ) O O O O
of Zelu/(t)+e] SLu'(t) ef S2u/(t)+ef F2v' (1)

= (er, e){(&) + (o) (ef%‘? ) (5)
1, ©2 a/2 T deq eTOeQ az

€2 Du 2 du

s ); on the other hand Py =



2 du
1'\1 Fl _ dﬂ 8&
() =0 (42 12)
rt. ri ri. r
Wty ®) =) (P 1) v (3 13)

0
ExaMPLE. For the trivialization 7y, e; = < 0 > ,€y = (f (h v)). we calculate

wy as follows.
det(h) = (efer)(e;es) — (ef €2)”

=+ fHA+ -

=1+ fi+ 1
a1 ( el ,91%2) _ 1 ( 14+f2 ffufv>
= det(h> —eTe; efe - 1+ fg + fg —fufv 14+f2
ri. ri -1 efaiul e?aif
() =0 (8 12
= 41 < 1+f3 _fuf’v> (fouu fufuv)
1 + fl% —+ fg —fufv 1+f3 fofuu  fofuv
= ; (fufuu fufu’u)
1 + fu2 + fg fofuu  fofuv
(F%l F§2) _ (hil) el %1 T o2
I3, T3, eT %L o7 %2
— 1 < 1+f3 _fuf’v> (fufuv fufvv)
]_ + fq% + fg _fufv 1+f3 f’ufu’u fva'u

— 1 (fufuv fufvv)
1 + fg + fg fofuv  fofou
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’ ri i ’ ri. !
w :u t ( 11 12) +v t ( 21 22
o=u(t) () ey ) VO (1) 3]

_ (Y (fodo fubun) v'(t) (fodiw futo)
- 1 +f3 +f3 fofuu  fofuv 1 _'_fg +f3 fofuv  fofov

ExAMPLE. We are to calculate w; and ws which are corresponding to 71 and 7

respectively.

1 —fufov
In 7, e = L <0>,é = 1 1+f2 |. Because {e;, ey} are
DT e \n )T T iz ff {en, &)
orthonormal,

L ou L ow > Ju 2 ov’
Bl 1 efe; —efer) _ .
doth \~efe: el ) =1
aloer _ _ gT0& aloer _ _ &T0ey
moreover, €, 5+ = —€; 52, and €, G = —e] 2.

& % = &1+ 1272 b () + s ()]

m fgu
o ~Fufuu 0 !
- eg[(—fé)fuu) - ((Hf%)fuu)]W
o —fu fuu
()
_ fq}fuu
VI+ 24 21+ f2)
% _ ffufuv
00~ THFIH L+ f2)

Similarly &

Therefore

w1(7(0),7'(0))

O —fuufv 0 _fU.’Uf’U
— (12 (A +52+52)1/2 + A+ A+2+52)1/2
- fuufv fuva

0 0
(+£2)(1+f2+52)1/2 A+12) A+ f2+52)1/2
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N 0\ - I+f7 -
In 7, & = ——— ( 1 ) 8y = 1 (—fufv>. Because {&;,&,} are
fu

V1+£2 \ o VA2 (+F2+72)
orthonormal,
_ éTaél _ ~T0é1 _ éTaég _ éT8e2
L ou L ov 2 du 2 v’
Bl 1 efer —eler) _ .
det(h) \ —éi&2 && ’
moreover, &} 281 = —gl'%& and el %L — —gl'%e,

_roer -3/ 1 ! 0
ggg_gku+ﬁ>“ﬁh(})+yffﬁ(ﬁﬁ

<

of 0 0 1
= 62[ _fgfuv —+ < % >]—3
=[5 fuv (I4+£3) fuv /1 +f2

~ 0 uv
=& (f”) 1 +ffg)3/2
— fuf’u’l)
VI 2+ 20+ f2)
de, o Jufou
Qo THZE L2

Similarly &2
Therefore

w2(7(0),7'(0))

0 7f'“"”'f“‘ 0 *f’uvfu
— A+ A+ F2+1H1/2 + o A+ A+ F2+1H1/2
- fuvfu fvvfu

0 0
A+ A+2+52)1/2 (2 A+2+52)1/2

Remark: We find that w; and wy are antisymmetric while wy is not. w; and wy
are in the Lie algebra 0(2), because the corresponding trivializations 7, and 7 are
defined in such a way that they maintain the inner product from the standard fiber
R? to the total space Ej, = R? and that their structure group is the Lie group O(2, R).
While 79 does not have the properties that 7 and 75 have, and its structure group is

GL(2,R), and so wy has values in the Lie algebra gl(2).
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6.3. HERMITIAN VECTOR BUNDLES, CONNECTIONS IN THE CASE OF

H; SYSTEM

6.3.1. Hermitian Vector Bundles and Structure Group in the Case of
H; System. For the Hj system, and given a point b = (I3, %5, 1%;) inside the cone
C, defined at §5.2, let (R1(b), R2(b), R3(b)) be the standard configuration of the con-

formation b. We have the the electronic Hamiltonian for the Hj system

N h2
H(b) = — %(Al + Do + A3)
ii Ke?
2 2 e~ R0
3 3
Ke?
AP IP Y ey
j=1 k=j+1""J k

where R;(b) is the position vector of the ith nucleus in the standard configuration.

Define E (b) := mingep ypro w’(g%w, which is the electronic ground state energy

for the Hj3 system. We define

H:=H.NH.ANH,, where H, = Lz(R37 C)® C? is the Hilbert space of
a single electron;
By = (v € HIH b = B, S5t = o)
E, is a C-vector subspace of H and inherits the inner product of H;
(5'3 is the spin operator defined in §3.1.3.)
Cr :={b € C|dimE, = k}, which is the base space; (how choose k such that Cy, is
open in C is an unsolved issue)
C* is the standard fiber;

E ={(b,v) € Cx x H|¢p € E,}, which is the total space;
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7w FE — Cg: (b,9) — b, which is a smooth mapping;
U(k) == {A € C***ATA = I}, which is the structure group;
U x CF — W’I(Ui),i € 7, which is an atlas of local trivializations,
where Uj; is open in Ci. Also we want 7; to be smooth in the sense that VIZ € H,

the map U; x C¥ — C : (b, y) — (¥, 7:(b,y))x is smooth with respect to %,

4 d

d
75 79 @(see §5.2). The existence of of such {7;};cz, where

{Ui;}iez is an open covering of C; and for all b € C;, the mapping y — 7;(b,y) :

C* — E, is an inner product linear isomorphism, is an unsolved issue;

Therefore (E,Cy, m, Ck, 4U(k), {7i }sez) is a Hermitian vector bundle for the non-collinear

Hj system.

6.3.2. Representation of the Symmetry Group in the Fiber. If b is a
scalene triangle, an isosceles triangle or an equilateral triangle, then let G(b) = {A €
O(3)[{AR1(b), AR2(b), AR3(b)} = {Rq(b),Ra(b),R3(b)}} be the symmetry group
isomorphic to Cy, Cy, or Dsy, respectively. If A € G(b) and (ry, 1y, r3; S, S2, 83) —
Y (ry, T, T3; 81, 89, 83) is in By, where 11,19, 13 € R? are the electron position vectors
and s1, $9, s3 € {0, 1} are the spin variables, then A induces a mapping l4 : E, — Ej :

w = ((I’l,rg,rg; S1, S92, 83) s @Z)(ATI'l,ATI'Q,ATI'g; S1, 82,83)) ie.
(Lat)(r1, 12,135 51, 52, 53) = Y(ATr1, ATrg, ATry; 51,59, 53).

We need to show that if ¢ € E, then I4¢ € E, ie. ﬁ(b)lAw = E(b)lAw and
Sslath = Llaip.

(1) To show H (b)l4t) = E(b)l v, we apply L4 to the both sides of H (b)Y = E(b)y)
attaining [4H (b)) = I4E(b)Y. Because R.H.S= I4E(b)) = E(b)lat, we want to
prove that the L.H.S.=l,H b))y = H(b))l 0.
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(1.1) We need to prove that
[(ZA © A’i>w](r17 ro, I35 S1, S2, 83) = [(Al © lA)w](rh Is, Is; S1, S2, 53)7 1= 17 27 3.

By Taylor’s theorem, (149)(x+h) = (AT (x+h)) = (ATx+ ATh) = p(ATx) +
Vi(ATx) - (ATh) + o(|h]) = ¥ (ATx) + [A(VY)(ATx)] - h + o(|h]), so we have

V(L) (x) = A(VE)(ATX) = AL Vi) ().

We will use the Green’s identity: [, A(y)pdx + [, Vi - Vodx = [, gbg—ﬁ’ds,
where 1) and ¢ are two smooth functions over a compact region 2 C R? with smooth
boundary 0f2, and where g—:f is the directional derivative of ¢ along the outward
normal to the boundary of 9. In our case, we assume ¥ to be a smooth function
over R? instead of in Ej,, and we will come back to consider the case 1) € Ej, later.
We let ¢ be any smooth function on R? with compact support, then we can always
find a closed ball € centered at the origin enclosing the support of ¢ and such that
¢(x)|xeon = 0. Therefore [,, $32ds = 0 and hence [, A(Y)¢pdx = — [, Vi) - Vo dx.

By Green’s identity and Taylor’s theroem, [, A(lap)pdx = — [, V(I40)-Vdx =
— Jo AlA(VY) - Vo dx.

Moreover,
[ uisix= [ u)amx)om) dx
Q Q0
- [@u)otax)ax
( by changing variables x' = ATx,x = Ax/;
since |detA| = 1, d(Ax) = |detA| dx’ = dx'; AQ = Q)
_— /Q V- V(lyrd) dx’
__ / Vo - (ATLyr Vo) dx’
0
— /Q (AVY) - (Lyr V) dx’
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__ /Q (AVE)(X) - V(AX') dx’

— —/AZA(W)-wdx
Q

( by changing variables x’ = A7x, x = Ax;|detA”| = 1)

It follows [, A(la)pdx = [,(Ial)pdx for any ¢ € R with compact support
= Aols =140 /. Because A; acts on 1(ry,re,r3;S1,82,53) € Ep in a partial
derivative way (variables r;,j # ¢ and s1, 53, s3 are fixed as constants), the result we
derived above also holds for ¢ € E: [(—%(A1+A2+A3)OZA)¢](I“1, Iy, T3} S1,S2,S3) =

[(lao (—%(A1 + Do+ A3)))](ry, T2, T35 51, S2, 53).
(1.2) We need to prove that

2 3 K2 2 3 K2
ZAOZ Z —e:Z Z Ferk”C)lA.

j=1 k=j+1 ;= el j=1 k=j+1
To see
2 3
Ke?
ZA(Z Z Y)(r1,T2,T3; 51, 82, 53)
j=1 k=j+1 s — el
2 3
Ke?
- Z Z 77ZJ("4TI‘1 ATr2 ATrg'Sl S9 83)
J=1 k=j+1 [ATr; — ATry] 7 ’ Y
2 3
Ke?
- Z Z 7w(ATr1>ATI'2,AT1‘3; 51,52, 53)
j=1 k=j+1 ;= v
2 3
K 2
- Z Z 7€(ZA7/’)(1°171‘2,1"3; s1, S2, 83) as desired.
55 v

3 3 o2 3 3 o2
l o(— _— ) = (— - ol .
X Ry T TR Sy
To see

3 3 K€2
La(= Z > ”rj_—Rk”w)(rh I, T3; S1, 52, S3)
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3 3
Z Z m (ATI'h A'ry, ATrs; 51, 89, S3)

j=1 k=1
3 3 22

Alry, ATry, Alrs;
;; |ATr; —ATRk|| (AT, 2, 3} S1, S2, S3)

(because A" permutes (R;, Ry, R3))

’ Ke?
Z Z 147 (r1, To, T35 51, 5o, 53) as desired.
Irj — Rl

JZI k=1 -

In summary, we have {4 o H = H o4 and hence []:I(b)lA@ZJ](rl,rg,rg; 1, 82,83) =

E(b)lﬂﬂ(rl, Iy, T3; 51, 52, 53).
(2) To show Salatp = glAw, we apply [4 to the both sides of §3¢(r1, Iy, T3; S, So, S3)

= gw(rl,rQ, r3; S1, S2, S3). Because Sz acts only on the s, s9, s3 variables, we get

L.HS = [ZA(g3¢)](r1,r27T3; S1, 82, 83) = [gs(lA¢)](r1,r27T3; 81, S2, 53)
=§3¢<ATI‘1, ATI‘Q, ATTS; 51, 82, 53)
h h
R.H.S. = ZA§¢(I'17I‘2,I‘3; 51,52, 53) :§(ZA¢)(I'17F2,I'3; 51,52, 53)
:§¢(AT1“17ATT2,ATI'3; 51,82, 53)
N h
= S3¢(AT1'1, ATr27 ATI'?); S1, S2, 83) :§¢(ATr17 ATFQa ATr3; S1, 52, 83)
Finally, we have H(b)lat) = E(b)la) and Sslat) = 2144 and hence the following

statement holds: if ¢ € E}, then [0 € Ej. O

Moreover, we claim that [ is linear. To see, if 91,19 € Ej, a € C, then we have

[la(t1 + athe)](r1, Ta, T35 51, Sa, S3)
= (Y1 + 041/)2)(AT1"17 Alry, ATry; 81, 8, S3)
= ¢1(ATI‘1, ATI'27 ATI‘3; S1, S2, 83) + Oé%(ATl"l, ATI'27 ATT3; S1, S2, 33)

= (lah1)(r1, 12, 13; 51, 82, 53) + a(lato)(r1, T2, T35 81, 52, 83). [0
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If A,B € G(b), then l4p =14 0lp. So we get a group homomorphism [ : G(b) —
GL(E,). Moreover, by the theory developed at §6, we have | = [; @ --- @ [, where
ly,--- Iy are irreducible representations. If £ > 1, the decomposition might change
with the base point b. Since k is unknown to us, this decomposition remains an

unresolved issue.

6.3.3. A Natural Connection in Certain Hermitian Vector Bundles. Let
(E, B,7,C* 8U(k), {7 }icr) be a Hermitian vector bundle with standard fiber C* and
structure group (k). Under certain conditions, there is a natural connection on this
Hermitian vector bundle, as studied, e.g., by Bott and Chern[16].

Assume that base space B is an n-dimensional manifold. Assume that for all
b € B, E, = 7 '({b}) a subspace of V, where V is a fixed inner product space.
Suppose {&;,---, &} is the standard basis of C*. Assume that Vi € Z,Vb € U; the
trivialization 7; determines the basis {e;(b), - ,ex(b)} := {7 (b,é1), -+ ,7:(b, &)} of
E, = 7~ '({b}) which is orthonormal in the inner product of V. To simplify the
notation, here we denote 7;(b, €;) as egi)(b) or just e; if the base point b € U; and the
local trivialization is understood, for j =1,--- k.

Suppose 7 : U x C¥ — 771(U) is a smooth local trivialization of E such that
u1

: )) = (b,eru; +

Uk

{7 }iexr U {7} has a GL(k)—valued cocycle. We have that (b, <
-+ +egug), where e; = 7(b, €;). Let ¢ : B — E be an arbitrary vector field satisfying
®(b) € Ey, Vb € B and 9(b) = ejai(b) + - - - + exag(b). A smooth parametrized curve
at bis v : (—e€,€) — B such that b = 7(0).

LEMMA. The orthogonal projection operator from the ambient inner product
i
€1
space V into the k—dimensional subspace Ej is P, = (ey, -+ ,e,)h ™! .|, where

T

€k

(e1.e1) (e1.ex)
h:= ( o ) (See the definition of el at §3.4.)

(ere1) — (er.ex)
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PROOF. It is enough to show that P, is self adjoint and sz = B,. To see P, is self

adjoint:
e}
Plj:{(elv" 7e/€)h_1 }T
el
e}
= (elu 7ek>h71T
el
e}
= (ela 7ek>h‘_1
el
= B,
To see P, is a projection operator:
el el
Pb2: (elv"' 7ek‘)h_1 (817"' aek’)h_l
el el
e}
- (ela 7ek)h_1hh’_1
el
e}
= (e17 7ek)h71
el
= B,

O

We define the covariant derivative of ¢ in the direction +/(¢) as the orthogonal

projection of ¢/(t) € V into 7= *({~(#)}). Suppose xy,- - ,x, are local coordinate on
al

B near b € B, y(t) = (x1(t),-- ,x,(t)). On one hand, By = (e, -+ ,€x) ( : ); on
ag

ef a1 el
the other hand Py = (e, -+ ,e) - h™? . | ¥, so we have ( : ) =h! :

T eJILw

ak
3

Moreover

S06(0) = SleG)aG0) + -+ ey (1)a((0)
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dt dt
d d
+en(v(t) - an(v(t)) +ex(y(t)) an(v(2)),
d oe; oe;
h ) = =—2(v(t)) - 2 (¢ L(y(t)) - a(t), g =1
where —e;(7(t)) 9, (v(t)) - 21 (8) + 8%(7( ) - (t), j =1,
el
d AW
Po—0(y(t)) = (e, ,ex)(h) |« | 7-¢(v(1))
dt )t
k
4\ 9 )
_ (531 (31
= (e o .. ’e h 1 : _— / e /
( 1, k)( ) 3 {(0$1x1 + + axn'x'r)al +
€
(’9ek 8ek “
+ (a—xlxi +ot a—xnxﬁg)ak} + (e, -, ex) <a32>
ay
= (ela"' aek){ +(h_1)
a,
efg%z’l—&—m—&-efg%z; ef%$’1+-~~+e?g;}2$’n a1
: : : < : )}
efg%m’l—&-m—&-ef%zg ef%mﬁ+--~+e{%m; ak
a’l {g% eng% al
et e ) ()
a egg% egg% @k
91Tg:,11 engiﬁ ay
bt (0, )G
eT 221 eTéek ak
k Ozn k Ozn
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where we define the Christoffel symbols

5] o
1“211 rzlk (617%) (elzaix]:)
oo =

kT 2 )
If T ( ) (ek,aix]z)

mwmwm:m@<T; ?>+~+m@<?; ?)

Iy - Flfk ry ry

nl nk

A more readable formula for w is

T dey T deg

€17 et 7 1@
wiy@),Y®)=n"{ =

T dey T dey

e @ T Ckar

If 7 = 7; for some j € Z then h = I and the above formula for w = w; simplifies.

In that case it is clear that w;(y(t),7'(t)) € u(k).

6.3.4. Berry-Simon Connection in Hj. Like in the previous section, now
we define a natural connection on (E,Cy, T, C* 8U(k), {7 }icz), the Hermitian vector
bundle for the non-collinear Hj system. This connection is called the Berry-Simon
connection.

To see in more details, we have an ambient inner product space H = H, AH. A H,
such that Vb € U; we have E, = 7~ !({b}) C H. Suppose v : (—¢,€) — B is a smooth
curve such that v(0) = b € U;. ¢ : (—€,¢) — E a smooth vector field over 7 i.e.
t—Y(t) € By =7 ({7(t)}) is smooth. We define the covariant derivative of ¢ at
the direction +'(t) as the orthogonal projection of ¢'(t) € V into 71 ({(¢)}).

Suppose (&, - -, &) is the standard basis of C*. Then Vi € Z,Vb € U; the trivi-
alization 7; determines an orthonormal set in the inner product space H: {e;(b),- -,
ex(b)} == {m(x,8&1), -~ ,7i(x,€)}. Then {e1(7(t)),- - ,ex(y(t))} is an orthonormal
basis of 7 ({y(t)}).

The orthogonal projection operator from the ambient inner product space H into
i i

€1 €1
the k—dimensional subspace Ej is P, = (e1,--- ,ep)h ™" [ :+ | =(e1,--,ep) | : |,
el el
(e1,e1) - (e1,ex)
because h := : : : =1
(exe1) - (exex)
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Then the covariant derivative of 1 is

d FRVACICORIO) (2 (4(t) (1)
Py (v(t) = (er, - en){ : +wi(y(8),7' (1)) : 2
(ex(r(1) (1)) (ex(r(0) (1))

where we define

deq dey,

(Fh rgk) (01 520) - (er, 0ok
k.. Tk ? ) ?

I L8 (errgar) - (ek»aix]:)

ox;

INTIE Loy o Ty
wi(y(@®),y' () =2 |+ o | Fe a2
Flfl Flfk Fﬁl Fﬁk

Then the family {(U;, 7;, w;)} is the Berry-Simon connection defined on the Hermitian
vector bundle of the non-collinear Hs system. Generally we do not have an explicit
formula for the trivialization 7;, so we cannot give an explicit formula to calculate the

Berry-Simon connection.

6.3.5. Remark(I): potential energy surfaces of H; at the center of the
cone. The potential energy of the Hjz system is determined by the conformation,
so we can define the potential energy function over the cone C which represents all
the conformations of the system. Numerical evidence [41][2][15][45] shows that the
potential energy function has a singularity at the central axis of the cone. Moreover,
the dimension of the fiber will jump when the conformation changes from the non-
equilateral to the equilateral. As a consequence, the Berry-Simon connection appears
to have a singularity at the central axis of the cone and its curvature would not
exist there. We will continue our discussion at §7.3 after we introduce the concept of

holonomy and Berry phase.
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CHAPTER 7

HorLoNoMY GROUPS AND BERRY PHASE

In this chapter holonomy groups and Berry phase are considered. Suppose a
quantum system undergoes an evolution so that after some time it comes back to its
original state. Such an evolution traces out a cycle in shape space. The result of the
evolution will be reflected in the phase of the wave function in the form of a geometric
phase factor, usually called Berry phase. This phase factor can be measured by
interfering the initial and the final states. Such geometric phase factors only depend
on the loop in the shape space; while they are independent of parameterization of the
path in the shape space, and therefore of the speed at which the system moves along
the cyclic path. We explain the Berry phase of the Hj system using the geometric

language i.e. in terms of holonomy in a Hermitian vector bundle.

7.1. HoLoNnoMY GROUPS

In this section we first define holonomy group at a global view point and then go to
a local one.

Let (E,B,m, F,G,{7;}icz) be a fiber bundle with standard fiber F' and structure
group G. {7;}icr is a atlas of smooth local trivializations with the smooth cocycle
{9ij}u ez, ie. {95 : UiNU; — G} jerz is a family of smooth maps such that
Vb e U;NU;,Vy € F, (1,7 o7;)(b,y) = (b, gi;(b) - y), where g - y is the left action of
geGony€eF. Letbe B, E, =n({b}). Let v : [c1,c2] — B be a smooth loop

such that y(¢;) = v(co) = b. Given z € Ey, for each i € T s.t. b € U;, thereisay; € F
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s.t. 7;(b,y;) = z. In the other words, for i,5 € Z,i # j, z = 7(b,y;) = 75(b,y;) &
(b, g;i(b) - y;) = (Tj_l o) (b,y;) = (b,y;) < y; = g;i(b) - y;. The parallel translate of y;
along v is h,;y; € F' (Refer to §6.1 for detailed definition).

So the parallel translation along v gives a well-defined mapping h, : B, — L :
z = 1;(b,y;) — 7;(b, h;y;) which is independent of i s.t. b € U;. So we can define the

global holonomy group as follows.

DEFINITION. The global holonomy group at b is
holonomy(b) I:{h,y : Eb — Eb’h,y(TZ(b, yz)) = Ti(b, h'y,iyi) for all Y; € F,
foralli € Z s.t. b e U;}

This set of mappings is a group under composition.

Now we consider the holonomy transformations from the local view point: Let
h.; be the parallel translation along the loop (), ¢ € [0, 1], where v(0) = (1) € U;
of local trivialization 7; ( see §6.1 for details definition). Here h,; is not necessary

independent of i.

DEFINITION. The local holonomy group at b is

holonomy (b, ¢) := {h,,|v is a smooth path in B from b to itself, b € U;}.

It is easy to see that holonomy(b,7) is a subgroup of G. Also holonomy(b, ) has

the property that for all ¢, 7 € I,
holonomy (b, j) = g;(b)'holonomy (b, )g;;(b)

To see, 7;(b, h;y;) is independent of i, where b € U;. Thus for i,j € Z,i # j,b €
U, N,

Ti(l% h’y,iyi) = Tj(ba h*y,jyj)
& (b, by jy;) = (75 0 7) (b, hyiyi) = (b, g5i(b)hyiyi)
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Ti (b7 )
B, F

Ti (b7 )
B, F

h’y = Ti(bv ) © (h’y,i') o Ti(b1 ')71

FiGURE 17. The relation between local holonomy and global holonomy.

Shy jy; = g5i(0) by iy
Shy;95i(0)yi = g5i(b)hey iy

Since this will be true for all y; and the action of G on F' is faithful, we see the above
is equivalent to A, ;g;;(b) = g;i(b)h; i.e. hy ;= gji(b)hyg;i(b)~ .

Moreover, the local holonomy is related to the global holonomy as follows. The
mapping J : holonomy(b,i) — holonomy(b) : h,; — h, defines a surjective group
homomorphism. If the structure group acts on the standard fiber faithfully, J defines
a group isomorphism. To see (refer to figure 18), assume that h,;, hs;; € G and
hy = hs, then for all y; € F, we have h.; - y; = hs; - y;. So hy; and hs;; induce the
same mapping on . For a faithful action G x F' — F', we conclude that h,; = hs;,
therefore holonomy(b,7) — holonomy(b) is one-to-one, and by the definition of the

holonomy(b), the mapping is always onto. In summary, J is an isomorphism.

7.2. INTRODUCTION TO BERRY’S PHASE

Under the same context as §6.3.3, except that we assume the standard fiber to be

one dimensional, the Berry-Simon connection 1-form is:

w3 (0),7 (1)) = e(r(1)1 e3(1) = (e(x(1), rex(1),
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where e(b) € E, and |e(b)| =1, i.e. {e(b)} is a normalized basis of Ej.

We claim that w is a purely imaginary number. To see,

Sle(i(O)Tel1(1) + e(r (1) Fe(r(6) =0
S5 elO)'e((1) = —e(r(0) e(r(1)

=w(y(t),7'(t)) = i(=iw(y(t),7(1))), where —iw(y(t),7'(t)) € R. O

With the above result, we are able to find a simple solution for the ODE initial value

problem ¢'(t) = —w(v(t),7'())g(t); 9(0) = 1.

=0'(t) = iw(y(t), 7' (1) = ie(y(1))'—e(y(1))

~0(t1) — O(to) = i / ey(t)! e (0,

to

(The following material is adapted from [4].) In 1984, M. V. Berry published his
very influential findings on the quantum phase factors arising in a cyclic adiabatic
quantum evolution [11]. Since then this phase got the names ‘geometric’, ‘topo-
logical’, ‘non-integrable’ and ‘Berry’s phase’. Berry investigated a quantum system
governed by the Hamiltonian which depends on time through the slowly varying pa-
rameters. Then according to the adiabatic theorem, the system evolves in one of its
instantaneous eigenstates as predicted by the Schrédinger equation. After an adia-
batic evolution ends and the system completes a closed path in the parameter space,

the instantaneous eigenstate acquires a phase factor, dependent only on the path
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traced out in the parametric space. This served as a reason to name the phase geo-
metric. The geometric phase, unlike the rest of the total phase, is independent of the
rate at which the system state moves along the cyclic path. The difference between
the total and geometric phases received the name of dynamical phase. It was Barry
Simon [37] who first recognized the geometrical meaning of Berry’s phase to be the
holonomy in a fiber bundle over the parameter space.

Soon after Berry’s discovery of the adiabatic phase, Y. Aharonov and J. Anandan
released geometric phase from the adiabatic constraint [3]. They defined geometric
phase for cyclic evolutions of the system state being an eigenstate of the time evolution
operator. This phase reduces to the Berry’s phase in the adiabatic limit. But contrary
to the Berry’s phase, the Aharonov-Anandan phase is defined in the projective Hilbert
space, not the parameter space. It generalizes the geometric concept of the geometric
phase.

Although there are no widely recognized practical applications of the geometric
phase, its experimental observations have been reported in many fields of science. The
largest group of experiments have been carried out on polarized light [12, 13, 18] and
polarized neutrons [7, 14, 22, 42, 43]. The geometric phase has also been observed
in magnetic resonance experiments [38], mesoscopic structures [24] and molecular
systems [27]. Analogues of GP — the Hannay angles have been shown to exist in
classical mechanical systems [21], the most famous example of which is the Foucault
pendulum. For a more complete account on the geometric phase manifestations the

reader is referred to the Resource Letter [5].

7.3. BERRY PHASE IN H3 SYSTEM

Define two local trivializations on the Hermitian vector bundle on the H3 system as
follows. 14 : Ugx C¥ — 77 1(Uy) and 7, : Uy x C¥ — 771(U}), where Uy and U, are open

in B =Cg. Let 7o : (—€,14+€) — U be a smooth path such that v,(0) = ¢q,v(1) = p;
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let 71 : (—€,1 +¢€) — Uy be a smooth path such that v,(0) = p,71(1) = ¢. ( See
figure 18.) Then 7 o7y ! : (Uy N UL) x CF — (Uy NUy) x CF = (b,y) — (b, gor(b)y),
where go1 : Uy N Uy — U(k) is a smooth cocycle. ¢(t) and g(¢) are the solutions
of the initial value problems: ¢'(t) = —wi(71(t),v1(t))g(t), g(0) = I; and §'(t) =
—wo(70(t),10(t)g(t), 9(0) = I respectively.

As shown in figure 18, v, followed by 7y gives a closed path called v at p € B.
The holonomy transformation in the trivialization 7 is given through the following

steps:

on the loop 7 in 77. Generally, it is not easy to know what the dimensionality k of the
standard fiber C* is, neither are the trivializations 7y nor 7, explicitly known. Thus
we do not have the explicit formula to calculate the Berry phase of the Hj3 system,
but what we do above explains the computational procedure once 79,71 and k are
known to us.

Remark(II): potential energy surfaces of H; at the center of the cone
We continue now our discussion from §6.3.5. Mead et.al’s paper [41] claims that the
curvature is zero almost everywhere on the cone except at some points where the
potential energy singularities exist. By the relation between curvature, connection
and holonomy in differential geometry [25], the holonomy and hence the Berry phase
is likely to be more complex if the H3 molecule travels around a loop enclosing the

central axis of the cone.
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o

FicUrE 18. Holonomy Transformation in Hj in trivialization 7.
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