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Abstract

Let T be a tree on n vertices and let f : V → {1, 2, . . . , n} be a valuation on

V (T ). Then f is called a graceful labeling of T if |f(v) − f(u)| is unique for each

edge vu ∈ E(T ). We will establish the connection between gracefully labeled trees

and the Ringel-Kotzig Conjecture, as well as survey several classes of trees that have

been proven graceful as a result of efforts to show that all trees are graceful.
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Chapter 1

Introduction

The study of graph labelings has become a major subfield of graph theory. Very

often, the problems from this area draw attention due to their application to real

life situations or, in some cases, their history. Many of the most arduous problems

of graph theory are the easiest to state. The four-color theorem, for example, states

that a planar map can be colored using at most four colors in such a way that no

two bordering regions have the same color. This problem, originally hypothesized in

the early 1850’s, remained unsolved until the 1980’s, and its proof relies on the use of

computer software to check a large number of cases. Subsequent, more elegant proofs

have arisen, but the problem was unsolved for some one hundred eighty years.

Here, we investigate another somewhat longstanding problem in graph labelings.

The Graceful Tree Conjecture, which states that every tree graph on n vertices has

some vertex labeling using the numbers 1, 2, . . . , n such that the edge labeling obtained

from the vertex labeling by taking the absolute value of the difference of two adjacent

vertex labels assigns distinct edge labels. Alexander Rosa was the first to consider

such a labeling scheme as a method to prove the conjectures of Ringel and Kotzig

[15]. Ringel’s conjecture states that the complete graph K2m+1 can be decomposed

into 2m+1 subgraphs that are all isomorphic to a given tree on m edges. Kotzig later

conjectured that such a decomposition could be achieved cyclically. Rosa established

that these conjectures could be solved by showing that every tree can be labeled as

described above, which was ultimately termed graceful labeling.
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In this monograph, we begin by introducing the definitions needed to state the

various conjectures and establish the early results of Rosa that facilitated an accessi-

bility to this problem leading to the publication of hundreds of papers on the subject.

While our main interest lies in the exposition of graceful labelings, we will see that

Rosa defines four labeling in [15] that are intimately related to each other. At times

we will give some of the results related to the other labelings. Chapter 2 contains

Rosa’s equivalence to the Ringel-Kotzig conjecture as well as other results pertaining

to the labelings.

In Chapter 3, we first focus on graceful graphs in general and a problem posed by

Golomb that utilizes graceful labelings in its solution. We then restrict to trees and

present several of the results toward the verification of the graceful tree conjecture.

Most of the results pertaining to this problem have come in the form of establishing

the gracefulness of relatively small classes of trees. Our discussion is broken into two

parts. First, we consider several families of trees shown to be graceful by more or less

standard techniques such as counting arguments, exhaustive techniques, and label

searches. The second phase of the discussion investigates the constructive methods

developed to build larger and larger graceful trees. Throughout this chapter, we offer

several examples of the constructions as it is often easier to understand them when

they are presented visually.

Finally, we consider adjacency matrices and their properties with respect to grace-

fully labeled graphs. We establish several conditions that give us an easy way to check

the gracefulness of a labeling given the graph’s adjacency matrix. We also provide

alternative ways to construct classes of graceful graphs by creating matrices from the

adjacency matrices of smaller graphs that induce larger graceful graphs.

These conjectures, which were made in the mid 1960’s, remain open to this day.

Kotzig and Rosa have referred to the graceful tree conjecture as a “graphical disease”

due to the inability to establish results reaching further than showing small classes of

trees are graceful. In fact, Frank Harary was the first to label problems as diseases, and

2



one of his originally diagnosed diseases was the aforementioned four-color theorem [7].

Nevertheless, work continues on the conjecture, more or less in the same direction.

Our goal here is to give a brief overview of the problem, as well as a flavor for

the techniques developed over the previous 4 decades. For a more comprehensive

treatment on graceful labelings, the reader is encouraged to reference A Dynamic

Survey of Graph Labeling maintained by Joseph A. Gallian [5].
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Chapter 2

The Graph Labelings of Alexander Rosa

Here, we wish to survey the early types of graph labelings that were developed to

be used in investigating the Ringel-Kotzig Conjecture. We begin with a few central

definitions.

Definition 2.1. A graph G = (V,E) consists of a set V of vertices and a set E

of edges where each edge is of the form e = vi, vj for some vi, vj ∈ V , vi 6= vj. The

order of G is the number of vertices of G and is denoted by |G|. The size of G is the

number of edges of G and is denoted by ||G||.

In this thesis, a graph is a simple graph in that it has at most one edge between

any two vertices in V , and no edge has the same vertex as its endpoints. When more

than one graph is in question, we will sometimes denote the vertex and edge sets of

a graph G by V (G) = VG and E(G) = EG, respectively.

Definition 2.2. The degree of a vertex v in a graph G, denoted deg(v), is the

number of edges incident with v.

Definition 2.3. For a vertex v in a graph G, the neighborhood of v is the set

N(v) = {w ∈ V (G)|wv ∈ E(G)}.

Definition 2.4. A labeling (or vertex labeling) of a graph G, sometimes called a

valuation, is an injective map f : V → N that assigns to each vertex v ∈ V a unique

natural number.
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Definition 2.5. A graph G is said to be bipartite if V (G) can be partitioned into

classes X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq} such that the edge xixj /∈ E(G)

for any i, j and the edge yky` /∈ E(G) for any k, `.

Definition 2.6. A graph G on n vertices is called the complete graph on n vertices

if the edge vivj ∈ E(G) for all 1 ≤ i, j ≤ n, i 6= j. We denote the complete graph of

order n by Kn.

Definition 2.7. A graph G is said to be the complete bipartite graph Kp,q if

V (G) can be partitioned into classes X = {x1, x2, . . . , xp} and Y = {y1, y2, . . . , yq}

such that the edge xixj /∈ E(G) for any i, j, the edge ypyq /∈ E(G) for any p, q, and

x`ym ∈ E(G) for all 1 ≤ ` ≤ p and 1 ≤ m ≤ q.

Definition 2.8. A walk between two vertices x and y in a graph G is a sequence

of vertices w1w2 . . . wk, where x = w1, y = wk, and for each i ∈ {1, 2, . . . , k − 1} we

have wiwi+1 ∈ E(G). The length of a walk is defined to be k − 1.

Definition 2.9. A closed walk in a graph is a walk that begins and ends with

the same vertex.

Definition 2.10. A path between two vertices x and y in a graph G is a walk

between x and y such that no vertex is repeated in the walk.

Definition 2.11. For vertices x, y ∈ V (G), the distance, d(x, y) = d(y, x), is the

length of a shortest path between x and y.

Definition 2.12. The graph G is called connected if for any two vertices x and

y in G, there is a path between x and y.

Definition 2.13. A cycle in a graph G is a closed walk of the form w1w2 . . . wk,

where k ≥ 3, and if for some i 6= j we have wi = wj, then {i, j} = {1, 2}.

Definition 2.14. A graph G is called acyclic if it contains no cycles.
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Definition 2.15. A forest is an acyclic graph.

Definition 2.16. A tree is a connected acyclic graph.

Definition 2.17. A leaf of a tree T is a vertex v ∈ V (T ) such that deg(v) = 1.

Definition 2.18. The path graph on n vertices, Pn, is the graph whose edges

form a path of length n− 1.

Definition 2.19. A circuit in a graph G is a closed walk that traverses an edge

at most once.

Definition 2.20. A graph G is said to be Eulerian if there exists a circuit C ⊆ G

such that E(C) ≡ E(G).

We now state several theorems noting that the proofs can be found in any intro-

ductory graph theory text.

Theorem 2.21. A connected graph G is Eulerian if and only if the degree of each

vertex in G is even.

Theorem 2.22. For any tree T , there is a unique path between any two vertices

x and y in V (T ).

Theorem 2.23. Every tree is a bipartite graph.

Theorem 2.24. Every tree on n ≥ 2 vertices has at least two leaves.

Theorem 2.25. A tree with n vertices has n− 1 edges.

In 1966, Alexander Rosa published On Certain Valuations of the Vertices of a

Graph [15], which introduced several types of vertex labelings for simple graphs.

These constructions were the result of his work on a problem Ringel had presented

several years earlier in 1964, which was later strengthened by Kotzig. We now define

the labelings as introduced by Rosa.
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Let G = (V,E) be a graph with n vertices and m edges, and let f : V → N

be a labeling of the vertices of V . Let ai = f(vi), for 1 ≤ i ≤ n. Define VΦG
=

{a1, a2, . . . , an} to be the set of labels of the vertices of G given by f . For any edge

ek = vivj in E, let bk = |f(vi)−f(vj)| = |ai−aj|. We denote by EΦG
the set of values

bk of the edges of G induced by f .

Let f be a labeling of a graph G with m edges and consider the following condi-

tions:

(1) VΦG
⊂ {0, 1, 2, . . . ,m}

(2) VΦG
⊂ {0, 1, 2, . . . , 2m}

(3) EΦG
= {1, 2, . . . ,m}

(4) EΦG
= {x1, x2, . . . , xm} where xi = i or xi = 2m+ 1− i

(5) There exists x, with x ∈ {0, 1, 2, . . . ,m}, such that for any edge vivj of G,

either ai ≤ x and aj > x, or aj ≤ x and ai > x holds.

Then Rosa defines the following valuations:

• If f satisfies (1),(3), and (5), then f is called an α-valuation.

• If f satisfies (1) and (3), then f is called a β-valuation.

• If f satisfies (2) and (3), then f is called a σ-valuation.

• If f satisfies (2) and (4), then f is called a ρ-valuation.

From the definitions of these valuations, we see that there is a hierarchy structure

relating them. That is, an α-valuation is also a β, σ, and ρ-valuation. A β-valuation is

also a σ-valuation and a ρ-valuation. And finally, a σ-valuation is also a ρ-valuation.

Moreover, if there is an α-valuation of G, then G is a bipartite graph. While the

condition that G is bipartite is not sufficient for G to have an α-valuation, G being

complete bipartite is. For this reason, α-valuations are also referred to as bipartite

labelings.

Theorem 2.26. If a graph G has an α-valuation, then G is a bipartite graph.
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Proof. Let G have an α-valuation and partition VΦG
= {a0, a1, . . . , am} as fol-

lows. Define two sets by

A := {ai | ai > x}

B := {aj | aj ≤ x} .

Clearly, A ∩B = ∅. Also, for any edge e = a`am, the endvertices of e are in different

partitions. Thus G is a bipartite graph. �

Theorem 2.27. The graph Kp,q has an α-valuation.

Proof. [15] Let X and Y partition E and let V (X) = {x1, x2, . . . , xp} and

V (Y ) = {y1, y2, . . . , yq}. Then the valuation with f(xi) = i − 1 and f(yj) = jp is

an α-valuation. To see this, we note that Kp,q has m = pq edges. Without loss of

generality, we may assume that p ≤ q. Now, f maps V (Kp,q) into {0, 1, . . . , pq}, and

using x = p− 1 we have that for all edges xiyj, f(xi) ≤ x and f(yj) > x. Moreover,

|f(yj)− f(xi)| = f(yj)− f(xi) = jp− i+ 1. Since i ∈ {1, 2, . . . , p}, we have that for a

fixed j, {|f(yj)− f(xi)|
∣∣i ∈ {1, 2, . . . , p}} = {(j− 1)p+ 1, (j− 1)p+ 2, . . . , jp}, which

gives that Ef(G) = {1, 2, . . . , pq}. Thus f is an α-valuation. �

These valuations provided the tools Rosa used to attack the conjectures of Ringel

and Kotzig. These conjectures, along with the necessary definitions follow.

Definition 2.28. Let G = (V,E) be a graph. Then the graph H = (V ′, E ′) is a

subgraph of G if V ′ ⊆ V and E ′ ⊆ E.

Definition 2.29. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs. Then the

union G1 ∪G2 = (V1 ∪ V2, E1 ∪ E2).

Definition 2.30. Let G be a graph. Then a decomposition, D, of G is a collection

of subgraphs Hi ⊆ G, i = 1, 2, . . . , k, such that E(Hi) ∩ E(Hj) = ∅ for all 1 ≤ i <

j ≤ k and G = ∪k
i=1Hi.
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Definition 2.31. A turning of an edge e = vivj in Kn is an increase, by one,

of the indices of the vertices of e so that the edge e′ = vi+1vj+1 is obtained from e.

The indices are taken modulo n. A turning of a subraph H ⊆ G is the simultaneous

turning of all edges of H.

Definition 2.32. A decomposition, D, of Kn is called cyclic if for any graph

H ∈ D, the graph H ′, obtained by turning H is also in D. In this case, we write

G = 〈H〉 to denote that the decomposition is generated by H.

Conjecture 2.33 (Ringel, 1964). The complete graph K2m+1 can be decomposed

into 2m+ 1 subgraphs, each of which is isomorphic to a given tree with m edges.

Conjecture 2.34 (Kotzig, 1964). The complete graph K2m+1 can be cyclically

decomposed into trees isomorphic to a given tree with m edges.

Example 2.35. Let m = 2. Then Theorem 2.34 implies there is a cyclic decom-

position of K5 into trees isomorphic to the tree with 2 edges, the path P3. The cyclic

decomposition DK5 = 〈P3〉 is shown below with each step of the turning shown. This

is in fact a decomposition as shown in Figure 2.2 with each edge of K5 belonging to

exactly one copy of P3.

These conjectures remain open, though Rosa does confirm them for certain classes

of given graphs.

Definition 2.36. For a given fixed labeling V (G) = {v1, v2, . . . , vn}, the length

of an edge vivj in E(G) is a number dij = min{|i− j|, n− |i− j|}.

Theorem 2.37. A cyclic decomposition of K2m+1 into subgraphs isomorphic to a

given graph G with m edges exists if and only if there is a ρ-valuation of G.

Proof. We may fix any labeling {v0, v1, . . . , v2m} of K2m+1 since each pair of

vertices has an edge connecting them. From the definition of the length of an edge,

it follows that in K2m+1 there are only edges of length 1, 2, . . . ,m and for any fixed

9



Figure 2.1: Cyclic Decomposition of K5

Figure 2.2: Edges of K5

i ∈ {1, 2, . . . ,m} exactly 2m + 1 edges have length i. Moreover, those edges can be

obtained from each other by a sufficient number of turnings. Also, the turn of an

edge has the same length as the original edge.
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To prove the sufficiency condition, assume G has a ρ-valuation, and let ai be the

value of wi of G. We obtain an isomorphic copy G′ of G in K2m+1 such that the

vertex vai
of K2m+1 corresponds to the vertex xi of G. Then

dij =


bk if bk ≤ n

2n+ 1− bk if bk > n

where bk is the value of edge ek of G and dij is the length of ek in K2m+1. This implies

that the edges of G have mutually different lengths in K2m+1, which in turn implies

the existence of a cyclic decomposition of K2m+1 into subgraphs isomorphic to G, the

last obtained by consecutively turning the graph G 2m times in K2m+1.

Now, to prove the necessity, let a cyclic decomposition of K2m+1 into subgraphs

isomorphic to G be given. Take an arbitrary subgraph G?
∼= G of the 2m+1 subgraphs

of this decomposition. We will prove that the edges of G? have mutually different

lengths in K2m+1, and then the labels i of vi in G? will give the required ρ-valuation

of G. Suppose to the contrary that G? contains two edges of length i, 1 ≤ i ≤ n.

For example, consider vxvx+i and vyvy+i with x 6= y and assume y > x. By the

definition of a cyclic decomposition, this decomposition contains the graph G
(y−x)
?

obtained from G by turning it y − x times. But then this graph contains the edge

vyvy+i, which contradict the definition of a graph decomposition. Thus all edges of

G? have mutually different lengths in K2m+1 and G has a ρ-valuation. �

Theorem 2.38. If a graph G with m edges has an α-valuation, then there exists

a cyclic decomposition of K2km+1 into subgraphs isomorphic to G, where k is an

arbitrary natural number.

Proof. Let G be a graph with m edges, that is, ||G|| = m. Assume that G has

an α-valuation, and x is the number given in Condition (5) defining the α-valuation.

Without loss of generality V ⊆ {v0, v1, . . . , vm} such that the label of vi in the α-

valuation is i. Let E(G) = {e1, e2, . . . , em}, where bk = k. From the conditions for
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an α-valuation for each ` ∈ {1, 2, . . . ,m} we are given i`, j` such that e` = vi`vj`
and

i` ≤ x and j` > x.

Let A = {vq ∈ V (G)|q ≤ x} and B = V (G) − A. For p ∈ {1, 2, . . . , k} we

will define the graph Gp = (V p, Ep) as follows: V p = A ∪ {vj+m(p−1) : vj ∈ B}

and Ep = {ep = vi`vj`+m(p−1)| ` ∈ {1, 2, . . . ,m}}. Note that by definition, Gp is

isomorphic to G, moreover, G1 = G. Also, any edge in Gp has an endpoint in A, and

another endpoint in the set {v(p−1)m, v(p−1)m+1, . . . , vpm}, so the Gp are edge-disjoint.

Moreover, for the edge ep we have that

|j` +m(p− 1)− i`| = (j` − i` +m(p− 1)) = `+m(p− 1) (1)

Let G′ =
⋃k

p=1G
p. Since the Gp are edge disjoint, ||G′|| = k||G|| = km.

By our construction, V (G′) ⊆ {v0, . . . , vkm}. Define the valuation Φ : V (G′) →

{0, 1, . . . , km} by Φ(vq) = q. As for any edge of G′, there is a p ∈ {1, . . . , k} and

` ∈ {1, 2, . . . ,m} such that the edge is of the form vi` , v(p−1)m+j`
, where i` ≤ x and

(p− 1)m + j` ≥ j` > x. Also, by equation (1) we have that EΦ(G′) = {1, 2, . . . , km}.

Thus, φ is an α- (and thus also a ρ-)valuation of G′, which, by Theorem 2.37 means

that there is a cyclic decomposition of K2km+1 into subgraphs isomorphic to G′. But

G′ is an edge-disjoint union of k copies of G, so this decomposition gives a cyclic

decomposition of K2km+1 into subgraphs isomorphic to G. �

If it were shown that every tree has an α-valuation, then both Ringel and Kotzig’s

conjectures would be confirmed. It has been proven, however, that not every tree

has an α-valuation. Since then, attention has been turned to investigating which

graphs have β-valuation. If it could be shown that every tree has a β-valuation,

then Kotzig’s Conjecture would be proven. This implies every tree has a ρ-valuation,

which would in turn prove Ringel’s Conjecture. In 1972, Solomon Golomb published

an article containing his results on graph labelings [6]. Among some of the labelings he

investigates were β-valuations, which he termed graceful labelings. It is now standard

to use the terms graceful labeling and graceful graph when referring to a graph that
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admits a β-valuation. We follow suit and will use Golomb’s terminology from now

on. To repeat, therefore, the graceful labeling of a graph is defined as follows:

Definition 2.39. Let G be a graph on n vertices with m edges. G is said to

have a graceful labeling if there is a map f : V (G) → {0, 1, 2, . . . ,m} such that

|f(x) − f(y)| is unique for each edge xy ∈ E(G). We then necessarily have that

E(G) = {1, 2, . . . ,m}.

Finally, we wish to note that shifting the vertex labels by a positive integer k does

not affect whether or not the labeling is graceful. That is, if a graph is gracefully

labeled using labels from {0, 1, . . . ,m}, we get the same edge labels if we add k to

each vertex label, with each still being distinct. In general, we will be using labels

from {0, 1, . . . ,m}. In other cases, we will specify when we are using labels from

{k, 1 + k, . . . ,m+ k} by saying that we will be labeling beginning with k.

We now turn to the advancements in labeling graphs gracefully.
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Chapter 3

Graceful Graphs

We now wish to restrict our discussion of graph labelings to one in particular —

graceful labelings. There have been many results in this direction. The majority of

the work done with this labeling applies to the class of trees, due obviously to its

connection with the decomposition theorems mentioned earlier. We will first look at

graceful graphs in general, then give results obtained for trees.

3.1. Graceful Graphs and a Classic Problem

Golomb [6] gives an application of a graph labeling, and gives a condition for the

labeling to be graceful. Suppose we are given solid bar of integer length `. We want

to carve n − 2 notches in it at integer distances from either end with the condition

that the distances between any two notches, as well as the distances from any notch

to either of the endpoints, are all distinct. This problem can be viewed as labeling

the vertices of the complete graph Kn with the elements of the set {0, 1, . . . , `} and

labeling each edge by taking the absolute value of the difference of its endvertices.

The problem is to find the smallest integer ` so that Kn can be labeled this way. In the

event that the vertices can be labeled using only numbers from N = {0, 1, 2, . . . ,
(

n
2

)
},

with each edge label being distinct, then each number from N \{0} is used once. But

this simply implies that for this n, Kn has a graceful labeling.

Example 3.1. Looking at the complete graphs on n vertices for n = 2, 3 and 4,

we have that the vertex labelings shown in Figure 3.1 are graceful.

It turns out that n = 4 is the largest n for which Kn can be labeled gracefully, as

proven by Golomb.
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Figure 3.1: Gracefully Labeled Kn for n = 2, 3, 4

Theorem 3.2. If n > 4, the complete graph Kn is not graceful.

Proof. [6] We begin by noting that for n > 4, m = |E(Kn)| =
(

n
2

)
≥ 10.

Suppose to the contrary that Kn is graceful. Then V = V (Kn) ⊆ {0, 1, 2, . . . ,m} and

the edges have distinct labels with E = E(Kn) = {1, 2, . . . ,m}.

For Kn to have an edge labeled m, we have that 0 and m must be vertices since

|m − 0| = m is an edge label. In order to have an edge labeled m − 1, either 1 or

m− 1 is also a vertex label. For any graceful graph G with m edges, the replacement

of every vertex label ai with m − ai does not change the edge labels. Thus we can

choose the vertex label 1 for Kn instead of m− 1 with no loss of generality.

Now, to get an edge labeled m − 2, we have to adjoin the vertex label m − 2.

This is because in order to get the edge label m− 2 from the difference of m− 1 and

1, we would have two edges labeled 1, one between vertices 0 and 1, and the other

between m− 1 and m. If a vertex labeled 2 is added to get an edge labeled m− 2 as

the difference of m and 2, again we get two edges labeled 1, one between vertices 0

and 1, and the other between vertices 1 and 2.

With vertices having labels 0, 1, m− 2, and m, we get edges labeled 1, 2, m− 3,

m−2, m−1, and m. In order to have an edge labeled m−4, we must use 4 as a vertex
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label. This is because if we use 2, then we get two edges labeled 2 as a difference of

2 and 0 and as a difference of m− 2 and m.

If n = 5, then we should be done (we do have precisely 5 vertex labels). However,

in this case m = 10, and we have that m− 6 = 4, so there actually is a pair of edges

that have the same induced label, as shown in Figure 3.2. Thus, for n = 5 there

is no good labeling. We need to only consider the case when n > 5. In this case

m > 10 and so 4 < m − 6 and there clearly is no repetition of edge labels at this

point; moreover, we still need more labels. With vertices having labels 0, 1, 4, m− 2,

1

10

2 3

4

9

8

4

6 7

10

0

4

8

1

Figure 3.2: K5 with Repeated Edge Labels

and m, we have edge labels 1, 2, 3, 4, m − 6, m − 4, m − 3, m − 2, m − 1, and m.

Note that for K4, m = 6.

There is no way to obtain an edge labeled m − 5 because all choices for ways to

get such an edge label contains at least one vertex label that can’t be used. Adding

a vertex labeled m − 5 gives a second edge labeled m − 6 = (m − 5) − 1. Adding

a vertex labeled m − 4 gives two edges labeled 4 = m − (m − 4). Adding a vertex
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labeled m − 1 gives duplicate edges labeled m − 2 = (m − 1) − 1. We cannot add a

vertex labeled 3 since we get two edges labeled 3− 1 = 2. Finally, our last choice is

adding a vertex labeled 5. This is not possible either since we get two edges labeled

5− 4 = 1. This is a contradiction to our assumption that Kn is graceful for all cases

when m− 5 > 4, which corresponds to n ≥ 5. �

Rosa also gives a necessary condition for a graph to be graceful.

Theorem 3.3. [15] If G is an Eulerian graph with m edges such that m ≡ 1 or

2 (mod 4), then G cannot be labeled gracefully.

Proof. Suppose to the contrary that G is graceful graph of size m ≡ 1 or

2 (mod 4) with an Eulerian circuit, and suppose G is graceful. Taking the sum

over all edge labels bi , we have

m∑
i=1

bi =
m∑

i=1

i =
(m+ 1)m

2
.

Now it is easy to see that if m ≡ 1 or 2 (mod 2), then

m∑
i=1

bi ≡ 1 (mod 2)

However, for an arbitrary closed path C = a1, a2, . . . , am, a1, the edge labels are given

by

|a1 − a2|, |a2 − a3|, . . . , |am − a1|,

and, as |y| ≡ y (mod 2), the sum of the edge labels, with the indicies taken modulo

m+ 1, is
m∑

i=1

|ai − ai+1| ≡
m∑

i=1

(ai − ai+1) ≡ 0 (mod 2).

Thus, we have reached a contradiction and the claim is proven. �
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3.2. The Graceful Tree Conjecture

The conjectures of Ringel and Kotzig have led to one of the most easily stated,

yet elusive conjectures in the realm of graph labelings.

Conjecture 3.4. All trees are graceful.

Many methods have been developed in hopes of resolving the nearly fifty year

old problem. Initially, Rosa established the gracefulness of several classes of trees in

[15]. Since then, other classes have been shown to admit graceful labelings. We will

investigate several of these classes, dividing the proof methods into constructive and

non-constructive classes.

3.2.1. Several Classes of Graceful Trees. Here we consider several classes of

graceful trees. Unless otherwise stated, the graceful labelings given in this section are

starting from 1 in keeping with the convention used by the majority of publications

on graceful trees. The first class considered, caterpillars, was shown to be graceful by

Rosa in [15].

Definition 3.5. A caterpillar is a tree such that either every vertex is a leaf, or

by removing all leaves, we obtain a path. We call such a path a central path of the

caterpillar.

Now, it follows that a caterpillar has at least 2 vertices, and if it has at least 3

vertices, then the central path exists and is unique. The next theorem establishes the

gracefulness of caterpillars.

Theorem 3.6. All caterpillars are graceful.

Proof. [16] Let T be a caterpillar with n vertices. If n ≤ 2, then T is a path of

length one and we are done. So assume n ≥ 3, and let P = v0v1 . . . vk be the path

obtained from T by deleting the leaves of T . Since n ≥ 3, P has at least one vertex.
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We now partition the vertex set of T as follows:

X = {x|x ∈ V (T ), d(v0, x) ≡ 0 (mod 2)}

Y = {y|y ∈ V (T ), d(v0, y) ≡ 1 (mod 2)} = V (T )−X.

We note that vi ∈ X if i is even and vi ∈ Y if i is odd. Label v0 with n. Label

the neighbors of v0 with 1, 2, 3, . . . where the neighbor getting the largest label is

v1. Assign labels n − 1, n − 2, n − 3, . . . to the neighbors of v1, other than v0, with

the largest label going to v2. Continue as follows. After v2i receives its label, assign

increasing integer labels to its neighbors other than v2i−1 starting with the smallest

unused label, assigning the largest label to v2i+1. Then, assign labels to the neighbors

of v2i+1, other than v2i, in decreasing order starting with the largest unused integer

smaller than n ending by labeling v2i+2.

The resulting labeling gives labels n, n− 1, . . . , n− |X|+ 1 to vertices in X while

vertices of Y are labeled 1, 2, . . . , |Y |. Moreover, since |X| + |Y | = n, the labels of

the vertices are all different.

Let `i be the label of the vertex vi. Clearly, `1 < `3 < . . . and `0 > `2 > . . ..

Now for an even i, if i /∈ {0, k}, the neighbors of vi have labels `i−1, `i−1 + 1, . . . , `i+1

and the induced edge labels are `i − `i+1, `i − `i+1 − 1, . . . , `i − `i−1. For an odd i,

if i 6= k, the neighbors of the vertex vi have labels `i−1, `i−1 + 1, . . . , `i+1, and the

induced edge labels are `i−1− `i, `i−1 + 1− `i, . . . , `i + 1− `i. The neighbors of v0 have

labels 1, 2 . . . , `1, the neighbors of vk have labels `k−1, `k−1 + 1, . . . , `k − 1 if k is even,

and `k + 1, `k + 2, . . . , `k+1 if k is odd. From all this it is easy to see that the n − 1

edge-labels are all different, the largest is n− 1 and the smallest is 1. Thus the given

labeling, as shown in Figure 3.3, is graceful. Note that the given labeling is also an

α-labeling, since conditions (1) and (3) are already checked, and condition (5) clearly

holds using x = |Y |. �
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Figure 3.3: Gracefully Labeling a Caterpillar

Originally, it was shown that caterpillars admit α-valuations, and thus are also

graceful [15]. Rosa demonstrated his method for labeling an arbitrary caterpillar

gracefully without proof in [15]. We note that the labeling he gives is the inverse

labeling of that from Theorem 3.6.

Definition 3.7. A star is any graph of the form K1,k. Thus a star must be a tree

on k + 1 vertices with at least k leaves.

So stars are trees with one vertex that is adjacent to any number of leaves. It

follows that paths and stars are simply caterpillars. That is, a path is a caterpillar

with exactly two leaves, while stars with at least two leaves are caterpillars whose

central paths have length 0.

Another early result of Golomb is that every tree on five vertices is graceful [6].

He proves this by simply exhibiting a graceful labeling for all trees on five vertices.

This also follows easily from the above theorems as the smallest tree on at least two

vertices that is not a caterpillar has 7 vertices, as seen in Figure 3.4.
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Figure 3.4: The Smallest Non-Caterpillar Tree

Definition 3.8. Let G be a graph. Then the diameter of G, denoted diam(G) is

the length of a longest path in G.

We now show that any tree T with 1 ≤ diam(T ) ≤ 3 is a caterpillar.

Theorem 3.9. Let T be a tree with diameter at least 1 and at most 3. Then T is

a caterpillar.

Proof. Assume that the diameter of the tree T is i, where i ∈ {1, 2, 3}.

If i = 1, then clearly T = K2, and we are done.

If i = 2, then let P = v0v1v2 be a longest path in T . Clearly v0 and v2 must be

leaves, otherwise P could be extended. Thus, if T has any other vertex y, then there

must be a path between y and v1 that does not go through v0 or v2. We can extend

this path by adding v0 to its end. Since 2 is the length of the longest path, this means

that y must be attached to v1 by an edge. Thus T is a star, and we are done.

Finally, if i = 3, let P = v0v1v2v3 be a longest path in T . Clearly v0 and v3 must

be leaves, otherwise P could be extended. If T has any other vertex y, then there

must be a path from y to a vertex of P that does not contain any other vertex of P .

This means we must have a path from y to v1 or v2. Assume the path is to v1 (the
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other case can be handled similarly). If the path from y to v1 is not a single edge,

then we obtain a new path that is of length at least 4 by appending v2 and v3. Thus,

any vertex y of T not on P is attached by a single edge to either v1 or v2. Therefore,

T is a caterpillar. �

Huang, Kotzig, and Rosa [9] believed that showing all trees of diameter four were

graceful would be a major achievement in getting closer to proving the graceful tree

conjecture.

Let T (4) be the set of all trees of diameter 4. Let T (0, 4) be the singleton set

containing the path of length four. Now let T (1, 4) be the set of caterpillars of

diameter 4 excluding P5, and let T (2, 4) be the set of remaining trees of diameter

4. Then T (4) = T (0, 4) ∪ T (1, 4) ∪ T (2, 4), and these sets partition T (4). The

notation for these sets comes from T (i, n) containing the trees where there is a fixed

longest path of length n and a vertex x whose distance to the path is i, and all other

vertices have distance at most i from the path. Also, T (i, n) is non-empty provided

i ≤ bn
2
c, and these sets partition T (n), the set of trees on n vertices. Clearly any tree

from T (0, 4)∪ T (1, 4) is graceful. Showing the set T (2, 4) is graceful is slightly more

challenging. Huang et al. prove the following:

Theorem 3.10. If T ∈ T (2, 4), then T does not have an α-labeling.

The authors then proceed to show a special subclass of T (2, 4) is graceful. Shi-Lin

Zhao shows that the trees of T (2, 4) are graceful in [17].

Theorem 3.11. All trees of diameter 4 are graceful.

Zhao notes that although he was able to confirm that all trees of diameter four

are graceful, the result does not impact the general graceful tree conjecture as greatly

as hypothesized by Huang, Kotzig, and Rosa.

In 2001, the team of Hrnc̆iar and Haviar established that trees of diameter 5 are

graceful in [8].
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Theorem 3.12. All trees of diameter 5 are graceful.

Definition 3.13. LetG1 = (V1, E1) andG2 = (V2, E2) be graphs with no common

vertices, and let u ∈ V1 and v ∈ V2. By identifying the vertex u with the vertex v we

mean the procedure that results in the graph G = (V,E), where V = (V1 ∪ V2)−{v}

and

E = E1 ∪
(
E2 \ {vx|vx ∈ E2}

)
∪ {ux|vx ∈ E2}

We will also call this the uv join of G1 and G2 and denote it by G1
u ⊕G2

v.

Now, if G1 and G2 are trees, then clearly their uv-join is also a tree.

Definition 3.14. Let Gi = (Vi, Ei) be vertex-disjoint graphs with vi ∈ Vi. By

identifying the vertices v1, v2, . . . , vk we mean the result of the following recursive

procedure: For each j ∈ {2, 3, . . . , k} we define

G1
v1
⊕G2

v2
⊕ . . .⊕Gj

vj
=
(
G1

v1
⊕G2

v2
⊕ . . .⊕Gj−1

vj−1

)
v1

⊕Gj
vj

Definition 3.15. A spider is a tree consisting of m paths Px1 , Px2 , . . . , Pxm where

the vertices v1, v2, . . . , vm, with each vi a leaf of Pxi
, are identified.

Huang et al. prove several results on spiders [9]. Recall that an α-valuation is

called a bipartite labeling.

Lemma 3.16. Let f1 be a bipartite labeling with labels starting at 0 of a tree S

with f1(u) = 0 for some u ∈ V (S). Let f2 be a graceful labeling (bipartite labeling,

resp.) with labels starting at 0 of a tree T with f2(v) = 0 for some v ∈ V (T ). Then

there is a graceful labeling (bipartite labeling, resp.) of Su ⊕ Tv.
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Here we only sketch the proof. Define the labeling g of Su ⊕ Tv by

g(z) =



f ′1(z) if z ∈ V (T1) \ {u}, and f ′1(z) ≤ x

f ′1(z) +m if z ∈ V (T1) \ {u}, and f ′1(z) > x

f2(z) + x if z ∈ V (T2) \ {v}

x if z = u

where x is the value from condition (5) pertaining to a bipartite labeling, mi = ||Ti||,

and the valuation f ′1 is the inverse labeling of f1. That is, f ′1(z) = m1 − f1(z).

It is easy to see that an edge in T that has at least one endpoint on the vertices of T2

has the same value induced by g as the value induced by f2 on the corresponding edge

of T2. Thus, on these edges we have the induced edge-labels 1, 2, . . . ,m2. Therefore

we only need to show that the edge labels induced by g on the edges of T1 are m2 +

1, . . . ,m. That easily follows from the fact that f ′1 induces edge-labels {1, 2 . . . ,m1}

and all edges of T1 run between points z1z2 with f1(z1) ≤ x and f1(z2) > x.

We pause to note that it has been shown in [14] that for any path Pn and any

v ∈ V (Pn), there exists a graceful labeling f of Pn such that f(v) = 0. Also, there is

a bipartite labeling g of Pn such that g(v) = 0 for any v ∈ V (Pn) except when n = 5

and v is the middle vertex of P5.

Theorem 3.17. The spiders S(x1, x2, x3) with three legs are graceful.

Proof. This proof follows directly from the previous comment on labeling paths

and from Lemma 3.16. Identify a leaf from the path Px1 with a leaf of Px2 . The

resulting tree, T , is itself a path. Choose a graceful labeling of T such that the

identified vertex has label 0. Then, choose a bipartite labeling of Px3 such that one of

its leaves has label 0. Finally, joining T and Px3 and relabeling according to Lemma

3.16 results in the tree S(x1, x2, x3), which is labeled gracefully. �
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It follows that every spider with three legs, except for S(2, 2, 2) has a bipartite

labeling. S(2, 2, 2) does not since there is no bipartite labeling of P5 with the central

vertex having label 0.

Theorem 3.18. The spiders S(x1, x2, x3, x4) with 4 legs are graceful.

Proof. [9] If at least one of x1, x2, x3, x4 is not 2, then without loss of generality

x1 + x2 6= 4. Let u be the central vertex of the spider S(x1, x2) = Px1+x2 and v be

the central vertex of the spider S(x3, x4) = Px3+x4 . We know that there is a bipartite

labeling of S(x1, x2) that labels u with 0 and a graceful labeling of S(x3, x4) that

labels v with 0. The result follows from Theorem 3.16. The only other possibility is

that x1 = x2 = x3 = x4 = 2. A graceful labeling of S(2, 2, 2, 2) is shown in Figure 3.5.

0

2 4 6 8

7 5 3 1

Figure 3.5: A Graceful Labeling of S(2, 2, 2, 2).

�

We will revisit spiders in Chapter 4 and show other subclasses that are graceful.

In 1998, Aldred and McKay published a paper outlining a computer based al-

gorithm they developed for testing trees for gracefulness [1]. Their result extended

Rosa’s result from [15] that all trees on at most 16 vertices are graceful.

Theorem 3.19. All trees on at most 27 vertices are graceful.
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We now present the algorithm noting that they used two different search methods

in proving Theorem 3.19. For a tree T and an arbitrary labeling L of the vertices,

let z(T, L) denote the number of distinct edge labels induced by L. The goal of the

algorithm is to find a labeling L such that z(T, L) = |V (T )| − 1 as this would imply

the edge labels are distinct. For vertices v, w ∈ V (T ), define Sw(L; v, w) to be the

labeling achieved by swapping the labels on v and w given by L. Their first method,

whch relies on the parameter M , follows:

(1) Start with any arbitrary vertex labeling of T with labels {0, 1, . . . , n− 1}.

(2) If z(T, L) = n− 1, stop.

(3) For each pair of vertices {v, w}, replace L by L′ = Sw(L; v, w) if z(T, L′) >

z(T, L).

(4) If (3) finishes with L unchanged, replace L by Sw(L; v, w), where the vertices

{v, w} are chosen at random from the set of all {v, w} such that

(a) {v, w} has not been chosen during the most recent M times this step

has been executed.

(b) Sw(L; v, w) is maximal subject to (a).

(5) Repeat from step (2).

The authors note that this method sometimes gets stuck, but the problem is

resolved by restarting the algorithm using a different arbitrary initial labeling. The

parameter M prevents the algorithm from repeatedly cycling through a small number

of labelings. They add that M = 10 is usually suitable for smaller trees, but a useful

value for M increases as the size of the tree does. Their second method was an

exhaustive search over a restricted class of labelings. This second method was used

when the first search method did not succeed fast enough. They note that a graceful

labeling for a tree was typically used in determining the initial labeling for a larger

tree, and that the first method usually terminated quickly with a graceful labeling.

Their second method was invoked when this was not the case. Aldred and McKay also
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illustrate the volume of their computations by informing us that there are 279,793,450

trees of order 26 and 751,065,460 trees of order 27.

3.2.2. Constructive Methods. Constructive methods for finding families of

graceful trees often originate with the goal of extending a known graceful tree or

collection of trees to a larger tree with a graceful labeling. In 1976, Cahit [3] posed

the question “Are all complete binary trees graceful?” This helped spark an interest

in graceful labelings and led to early research in constructive methods for finding

graceful trees. This section contains several constructions, each of which uses vertex

labelings starting with label 1.

Definition 3.20. An n-ary tree is a rooted tree in which the root has degree 0

or degree n, and every other non-leaf vertex has degree n+ 1.

Definition 3.21. The complete n-ary tree is an n-ary tree in which every root-

leaf path has length k. Denote by T (n, k) the complete n-ary tree with root-leaf path

length k.

It was Koh, Rogers, and Tan [11] who were able to verify an even stronger state-

ment. Let T be a graceful tree on n vertices where the vertex v has label n. Let

T p =

p·⋃
i=1

Ti

for any p ∈ N and where each Ti is an isomorphic copy of T . That is, T p is the

disjoint union of p copies of T . Now, adjoin a new vertex v? to T p and the edge

{vi, v
?} for all 1 ≤ i ≤ p, where vi is the isomorphic image of v in Ti. Let T p

v be the

graph constructed in this way. The claim, then, is that T p
v is graceful.

Theorem 3.22. Let T be a gracefully labeled tree with n vertices, and let v ∈ V

be the vertex with label n. Then for any p ≥ 1, the graph T p
v is graceful and v? has

the label np+ 1.
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Proof. [11] For each vertex w in T , let d(w) (called the level of w) be the length

of the shortest path joining v and w in T . Given any integer p ≥ 1, we define a

valuation f ? from the vertex set of T p
v onto the set {1, 2, . . . , np+ 1} in terms of the

valuation f and by the notion d(w) as follows:

(1) f ?(v?) = pn+ 1

(2) for each w in Ti
∼= T , i = 1, 2, . . . , p,

f ?(w) =


i · n+ 1− f(w) if d(w) is even in T

(p+ 1− i)n+ 1− f(w) if d(w) is odd in T

Note that f ?(vi) = (i− 1)n+ 1 for each i = 1, 2, . . . , p, and f ?(v?) = pn+ 1 > f ?(w)

for each w in T p
v − {v?}.

To show that f ? is a valuation, it suffices to show that f ? is one-to-one. Thus, let

u and w be two distinct vertices in ·∪Ti, i = 1, 2, . . . , p, and suppose to the contrary

that f ?(u) = f ?(w).

Case 1. Both u and w are in Ti for some i = 1, 2, . . . , p.

Clearly, u 6= w in T . Since f(u) 6= f(w), u and w can neither both lie on an

even level nor both on an odd level in T . Thus, by symmetry, we may suppose that

d(u) is even and d(w) is odd in T . By the definition of f ?, we get i · n + 1− f(u) =

(p + 1− i)n + 1− f(w), which implies n|p + 1− 2i| = |f(w)− f(u)| < n and forces

that p+ 1− 2i = 0. But then it follows that f(u) = f(w), which is not possible.

Case 2. u is in Ti and w is in Tj where i, j = 1, 2, . . . , p, and i 6= j.

Assume that d(u) is odd and d(w) is even in T . From the fact that f ?(u) = f ?(w),

it follows that (p+1−i)n+1−f(u) = jn+1−f(w). Thus we have n|j−(p+1−i)| =

|f(w) − f(u)| < n which implies that j − (p + 1 − i) = 0 and hence f(u) = f(w), a

contradiction.
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Suppose either d(u) and d(w) are odd or d(u) and d(w) are even (say the latter).

Then i ·n+ 1− f(u) = jn+ 1− f(w), that is, n|j− 1| = |f(w)− f(u)|n, which again

implies that j = i, a contradiction.

Hence f ? is one-to-one and therefore is a valuation from the vertex set of T p
v onto

the set {1, 2, . . . , pn+ 1}

To prove that f ? is a graceful valuation on T p
v , it remains to be shown that the

edge labels of T p
v induced by f ? are distinct. For each edge uw in T , let uiwi be the

corresponding copy of uw in Ti, and let f ?(uiwi) be the label induced by f ? on the

edge uiwi.

Now, since an edge in T must run between different a vertex of even and a vertex

of odd level, we may assume without loss of generality that u is at even level and w

is at odd level. Thus, we must have that

f ∗(uiwi) = |in+ 1− f(u)− (p+ 1− i)n− 1 + f(w)| = |(2i− p− 1)n+ f(w)− f(u)|.

This implies that

{f ∗(uiwi), f
∗(up+1−iwp+1−i} = {|2i− p− 1|n+ f(uw), |2i− p− 1|n− f(u,w)}

For each integer i ∈ {1, 2 . . . , bp/2c} let

Si = {f ∗(uiwi), f
∗(up+1−iwp+1−i)|uw ∈ E(T )}

= {(p+ 1− 2i)n+ f(uw), (p+ 1− 2i)n− f(u,w)|uv ∈ E(T )}.

Clearly, unless p is odd and i = p+1
2

, all integers in Si are pairwise distinct, and for

each x in Si, either (p− 2i)n < x < (p+ 1− 2i)n or (p+ 1− 2i)n < x < (p+ 2− 2i)n.

As T is graceful, the 2(n− 1) edges in Ti∪Tp+1−i are therefore assigned the following
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2(n− 2) distinct integers:

(p− 2i)n+ 1,

(p− 2i)n+ 2,

...

(p− 2i)n+ (n− 1) and

(p+ 1− 2i)n+ 1,

...

(p+ 1− 2i)n+ (n− 1)

If p is odd and i = p+1
2

, then i = p+ 1− i, thus, by definition, S(p+1)/2 becomes

S(p+1)/2 = {f ∗(u(p+1)/2w(p+1)/2)|uw ∈ E(T )}

= {f(uw)|uw ∈ E(T )}

Note that if p is even, then the p isomorphic copies T1, . . . , Tp are grouped into p/2

pairs {T1, Tp}, {T2, Tp−1}, . . . , {Tp/2, Tp/2+1}. If p is odd, let

S(p+1)/2 = {f ?(u(p+1)/2w(p+1)/2)|uw is an edge in T}

By the definition of f ?, f ?(u(p+1)/2w(p+1)/2) = f(uw). Since f ?(v?v1) = p, . . . , f ?(v?vi) =

(p + 1 − i)n, . . . , f ?(v?vp) = n, it follows that each integer x = 1, 2, . . . , pn has been

assigned to an edge in T p
v . Thus the proof is complete. �

The preceding proof allows us to take p copies of a graceful tree and identify the

largest labeled vertex in each copy with a leaf of the star K1,p. It follows immedi-

ately that every complete binary tree is graceful. Furthermore, all complete n-ary

trees are also graceful since they can be constructed inductively with the base case

corresponding to the star K1,n−1 on n vertices with central vertex labeled n and each

step of the induction producing a graceful tree using the labeling defined in Theorem

3.22.
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Example 3.23. Here we would like to illustrate how Theorem 3.22 can be used

to build a larger graceful tree T 3
v from a smaller graceful tree T . Let T be the tree in

Figure 3.6, where the vertex labels are given by the valuation f and f(v) = 6.

5

1

2

3

4

6

Figure 3.6: Graceful Tree T

Then, using the labeling provided in Theorem 3.22, we have that for each vertex

w ∈ T1, the corresponding labeling in ·∪Ti, for i = 1, 2, 3, is given by

f ?(w) =


7− f(w) if d(w) is odd

19− f(w) if d(w) is even.

Similarly, for vertices w ∈ T2 and T3, we assign new labels using the rules

f ?(w) =


13− f(w) if d(w) is odd

13− f(w) if d(w) is even

and

f ?(w) =


19− f(w) if d(w) is odd

7− f(w) if d(w) is even,
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respectively. Finally, adjoining the new vertex v? and adding an edge between v? and

each vertex of T1, T2, and T3 corresponding to v ∈ T , we obtain the gracefully labeled

tree shown in Figure 3.7.

113

19

7

12

8

11

10

9

186

16 2

3 17

414

155

Figure 3.7: The Graceful Tree T 3
v

Koh, Rogers, and Tan extended the result of Theorem 3.22 a few years later in

[12], giving a more general result. Let T be a graceful tree with valuation f such that

for the vertex w ∈ v(T ), f(w) = n. Also, let T1, T2, . . . , Tp be p isomorphic copies of

T and let wi be the isomorphic image of w in each Ti. We define (T p
w)? to be the tree

obtained by identifying the vertices w1, w2, . . . , wp. Koh, et. al. show the following.

Theorem 3.24. Let T be a tree on n vertices with graceful valuation f . Let

w be a vertex in T with f(w) = n, and let N(w) be the neighborhood of w. If

{f(v) − 1|v ∈ N(w)} ⊆ {0} ∪ {n − f(v)|v ∈ N(w)}, then there is a valuation f ? on

(T p
w)? so that (T p

w)? is graceful.
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We omit the proof but note that it is similar to the proof of Theorem 3.22, and

note that the valuation f ? of (T p
w)? given in the proof is as follows:

(1) f ?(w) = p(n− 1) + 1 and

(2) for every v ∈ Ti \ {w}, with i = 1, 2, . . . , p

f ?(v) =


(i− 1)(n− 1) + f(v) if d(w, v) is odd,

(p− i)(n− 1) + f(v) if d(w, v) is even.

Also appearing in [12] is a method for taking two arbitrary gracefully labeled trees

and combining them to obtain a larger graceful tree. Let T and S be graceful trees

under the valuations f1 and f2, respectively. Let V (T ) = {w1, w2, . . . , wm} and let v

be an arbitrary fixed vertex of S. Adjoin, to each wi, a copy Si of S by identifying

the isomorphic image of v in each Si, and wi. The tree obtained is denoted T∆S.

The m copies of S are pairwise disjoint and clearly, no new edges are added by this

operation.

Theorem 3.25. Let T and S be two graceful trees under the valuations f1 and f2,

respectively, and let |T | = m and |S| = n. Then there is a valuation f on T∆S such

that T∆S is graceful.

Proof. [12] Define a mapping f : T∆S → {1, 2, . . . ,mn} as follows:

We will denote the copy of a vertex z ∈ V (S) in the copy Si by zi. For each z in

V (S) and i ∈ {1, 2, . . . ,m}, we define

f(zi) =


(f1(wi)− 1)n+ f2(z) if d(v, z) is even,

(m− f1(wi))n+ f2(z) if d(v, z) is odd.

Since 1 ≤ f1(wi) ≤ m and 1 ≤ f2(z) ≤ n, it follows from the above definition that

f(zi) ∈ {1, 2, . . . ,mn}. We now show that f is one-to-one. Let ui ∈ Si and zj ∈ Sj
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with ui 6= zj and f(zj) = f(ui). If d(v, u) is even and d(v, z) is odd, then

(
f1(wi)− 1

)
n+ f2(u) =

(
m− f1(wj)

)
n+ f2(z),

which gives that

n− 1 ≥ |f2(u)− f2(z)| = n|[m+ 1− (f1(wi) + f2(wj))]| ≥ 0.

Thus f2(u) = f2(z), which is a contradiction. If both d(v, u) and d(v, z) are either

even or odd, we again reach a contradiction by applying a similar argument, showing

that f is one-to-one. Thus f is a valuation.

We now show that the edge labels of T∆S are distinct. First, note that f(wiwj) =

nf1(wiwj) if wiwj is an edge in T . Indeed,

f(wiwj) = |f(wi)− f(wj)|

= |(f1(wi)− 1)n+ f2(v)− (f1(wj)− 1)n− f2(v)|

= n|f1(wi)− f1(wj)|

= nf1(wiwj).

Now consider an edge in T∆S other than the ones of the form wiwj. This edge then

must be an edge of Si for some i, i.e. it is of the form uizi for some uz ∈ E(S).

Assume without loss of generality that d(v, u) is even and d(v, z) is odd. Observe

that

f(uizi) = |(f1(wi)− 1)n+ f2(u)− (m− f1(wi))n− f2(z)|

= |(2f1(wi)−m− 1)n+ (f2(u)− f2(z))|,

which clearly is not a multiple of n. Thus it suffices to show that f(uizi) 6= f(u′jz
′
j)

for any pair of distinct edges uv and u′jz
′
j in T∆S where uz, u′z′ ∈ E(S), and i, j ∈

{1, 2, . . . ,m}. To this end, assume also without loss of generality that u′z′ is an edge
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of S and say d(u′, v) is even and d(z′, v) is odd. Then we have

f(u′jz
′
j) = |(2f1(wj)−m− 1)n+ (f2(u)− f2(z))|.

Assume f(uizi) = f(u′jz
′
i), and for simplicity, let a = (2f1(wi)−m− 1)n, b = f2(u)−

f2(z), c = (2f1(wj)−m−1)n, and d = f2(u′)−f2(z′). We want to show that the edges

uizi and u′jz
′
j must be the same. Note that from the definition, |b| = f2(uz) ≤ n− 1

and |d| ≤ f2(u′z′) ≤ n − 1. We may also assume without loss of generality that

a+ b ≥ c+ d. We have the following cases:

Case 1. a+ b ≥ 0 and c+ d ≥ 0.

In this case we have a+ b = c+ d. Thus, a− c = d− b. In other words,

(2n)|f1(wi)− f1(wj)| = |d− b| ≤ 2(n− 1)

which forces that f1(wi) = f1(wj). That is, i = j. From i = j and d = b we get

f2(uz) = f2(u′z′), which means that u = u′ and z = z′. Thus u′jz
′
j = uizi, and the

two edges were not different to begin with.

Case 2. a + b ≥ 0, c + d ≥ 0. If this is the case we have that a + b = −c− d, which

means that if c ≥ 0 then

(2f1(wi)−m− 1)n+ b = (m+ 1− 2f1(wj))n− d

otherwise

(2f1(wi)−m− 1)n+ b = (2f1(wj)−m− 1))n− d.

Both of these lead to the conclusion that 2n divides b+d. But, since |b+d| ≤ |b|+|d| ≤

2(n − 1), this is only possible if b = −d, from which we get that f2(u) − f2(z) =

f2(z′) − f2(u′). But this means that the uv and u′v′ edges are the same in S, but

u = z′ and z = u′. This contradicts the assumption that d(u, v) is even but d(z′, v) is

odd. Thus, this case can not occur and the proof is complete. �
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This ∆-construction essentially uses one graceful tree, say T , as a type of support,

and adjoins to each vertex in T a copy of another graceful tree S by identifying each

vertex of T with an arbitrary, but fixed vertex in each copy of S.

Example 3.26. We now illustrate how the ∆-construction works. Let T and S

be the gracefully labeled trees shown in Figure 3.8 with |T | = 7 and |S| = 4. Then

1

2 3

4

1 7 4 5

2 3 6

Figure 3.8: Graceful Trees S and T .

the construction will produce a new tree T∆S of order 28 where each vertex of T is

identified with the vertex v?, in this example the vertex labeled 1, of a different copy

of S. Using the mapping

f(v) =


(f1(wi)− 1)n+ f2(v) if d(v?, v) is even,

(m− f1(wi))n+ f2(v) if d(v?, v) is odd

for each v in Si, with i = 1, 2, . . . , 7, we get the new graceful tree shown in

Figure 3.9.

In 1998, Burzio and Ferrarese introduced the generalized ∆-construction, [2]. This

generalization uses the fact that if wiwj is an edge in T , then under f , as given in
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Figure 3.9: T∆S Labeled Gracefully.

Theorem 3.25, the edge label is f(wiwj) = nf1(wiwj). Denote by zi the vertex of Si

corresponding to the vertex z in S. If wiwj is an edge in T , then |f(zi) − f(zj)| =

f(wiwj) for each z ∈ V (S). This gives that we can replace the wiwj edge by an

edge zizj for any z ∈ V (S). This gives much more freedom in constructing new

graceful trees. It should be noted that with the ∆-construction, we can construct up

to n graceful trees of order mn, where |T | = m and |S| = n. Using the generalized

∆-construction with the same trees and assuming m 6= 1, a possible nm−1 different

graceful trees of order mn can be constructed, [2].

Burzio and Ferrarese [2] also introduced a method for constructing trees of order

p, where p is a prime, based on the generalized ∆-construction defined in [2]. Using

the same notation as above, let v? be an arbitrary, fixed vertex of S and let w be

the vertex of T such that f1(w) = m. Now consider T − {w}, the graph obtained

by removing w from T and all edges in T incident with w. The removal of this

vertex leaves a forest. Let ←−v (resp. −→v ) be the vertex of S with f2(←−v ) = 1 (resp.

f2(−→v ) = n). Note that ←−v −→v is an edge of S since S is graceful under f2 and this is

the only way to get an edge of weight n− 1. Thus d(v?,←−v ) and d(v?,−→v ) do not have
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the same parity. Define a new valuation f̃ = f2 if d(v?,←−v ) is even and f̃ = n+ 1− f2

if d(v?,←−v ) is odd. Construct a new graph G = (T − {w})∆S, which has (m − 1)n

vertices and will generally be a proper forest. We define the valuation f on G as

follows:

f(vi) =


(f1(w)− 1)n+ f̃(v) if d(v?, v) is even,

(m− 1− f1(wi))n+ f̃(v) if d(v?, v) is odd.

for each vertex v ∈ V (Si), i = 1, 2, . . . ,m− 1.

The values for each edge vv′ of G, given by |f(v) − f(v′)|, are distinct. Since

f1(w) = n, it follows that the edge label values not appearing are the multiples npk,

where each pk is the weight of the edge wwk, the edge incident with w in T . To

recover the missing values, add to G a new vertex u and for each k such that wwk is

an edge in T , add the edges u←−v (k) to G if f̃ = f2 (resp. u−→v if f̃ = f ′2) where ←−v (k)

(resp. −→v (k)) is the corresponding vertex of←−v (resp. −→v ) in Sk. We denote this graph

by T∆+S.

Theorem 3.27. The mapping f+ : T∆+S → {1, 2, . . . , (m− 1)n+ 1} defined by

f+(v) = f(v) for each v ∈ V (G)

f+(u) = (m− 1)n+ 1

is a graceful valuation on T∆+S.

Proof. [2] If f̃ = f2, we need only show that |f+(u)− f+(←−v (k))| = npk. But

|f+(u)− f+(←−v (k))| = |(m− 1)n+ 1− [(f1(wk)− 1)n+ 1]|

= |(m− 1)n+ 1− [(m− pk − 1)n+ 1]|

= |pkn| = pkn

The proof for when f̃ = f ′2 is similar. �
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Using these results, Burzio and Ferrarese were able to show that subdivision

graphs are graceful.

Definition 3.28. Let G be a graph. The graph obtained by replacing each edge

uv of G by a new vertex w and the edges uw and vw is called the subdivision graph

of G, denoted S(G).

Theorem 3.29. The subdivision graph of a graceful tree is a graceful tree.

Proof. [2] Let T be a graceful tree under valuation f1 and a let |T | = m. Let

w ∈ V (T ) be the vertex such that f1(w) = m. Let S = P2, the path on two vertices,

be graceful under f2 with vertices ←−v ,−→v such that f2(←−v ) = 1 and f2(−→v ) = 2. Fix

v? = ←−v in S and obtain T∆+S with the ∆+-construction. Using the generalized

∆-construction, connect the copies Si and Sj in T −{w} by the edge ←−v (i)
←−v (j) (resp.

−→v (i)
−→v (j)) if d(wj, w) = d(wi, w) + 1 is odd (resp. even). Then S(T ) = T∆+S is the

subdivision graph of T and S(T ) is graceful by Theorem 3.27. �

Koh et al., in [10], summarize their previous results from [11] and [12] as well as

define and explore a class of trees they call interlaced trees. Here, they add conditions

to those for graceful labelings and give methods for generating larger interlaced trees.

Definition 3.30. Let T be a tree on n vertices. The vertex b ∈ V (T ) for which

f(b) = 1 under the valuation f is the base of the valuation f .

For any vertex v ∈ T , let E(v) be the set of all vertices u in T for which d(v, u) is

even. Note that v ∈ E(v), and d(v, v) = 0. Let s(v) = |E(v)|.

Definition 3.31. If T is graceful under f with base b, then the size, s, of T

under f is s = s(b).

Definition 3.32. Let T be a tree, and let b be the base of the valuation f of T .

Then f is a parity valuation if it induces, by restriction, a bijection between E(b) and

the set {1, 2, . . . , s}.
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Definition 3.33. An interlaced valuation f of T is a graceful valuation that is

also a parity valuation. Interlaced trees are trees admitting interlaced valuations.

In order to state and prove the following two results, let T1 and T2 be disjoint

trees on n1 and n2 vertices having graceful valuations f1 and f2 with bases b1 and

b2, respectively. Let s1 and s2 be the sizes of T1 and T2 when f1 or f2 is interlaced.

These constructions give a way to combine interlaced trees to obtain graceful trees

and give conditions for which the resulting tree is also interlaced.

Theorem 3.34. Let T1 be an interlaced tree under f1 and let x ∈ V (T1) be the

vertex for which f1(x) = s1. Let T be the tree obtained from T1 and T2 by identifying

x ∈ V (T1) with b2 ∈ V (T2). Then T is graceful. Furthermore, if f2 is also interlaced,

then T is an interlaced tree.

Proof. [10] We define the valuation f of T as follows:

f(v) =


f1(v) v ∈ ET1(b1)

f1(v) + n2 − 1 v /∈ ET1(b1) ∪ V (T2)

f2(v) + s1 − 1 v ∈ V (T2) \ {b2}

Now by definition, f(ET1) = f1(ET1) = {1, 2, . . . , s1}, f(V (T1) \ ET1) = {s1 + n2, s1 +

n2 + 1, . . . , n1 +n2− 1} and f(V (T2)−{b2}) = {s1 + 1, s1 + 2, . . . , s1 +n2− 1}. Thus,

f is a valuation assigning labels from {1, 2, . . . , n1 + n2 − 1}.

Since the edges of T1 are between vertices of ET1 and V (T1) \ ET1 , we get that

Ef(T1) = {n2, n2 + 1, . . . , n2 + n1 − 2}. On the other hand, Ef(T2) = {1, 2 . . . , n2 − 1}.

Thus, f is graceful. Also, when f2 is interlaced, f is an interlaced labeling of T with

base b1 and size s1 + s2− 1, since b1 and b2 = x are an even distance from each other.

Consequently, ET (b1) = ET1(b1)∪ET2(b2) and f(ET ) = {1, 2, . . . , s1, s1 + 1, . . . , s1 + s2−

1}. �
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The next theorem gives a method for taking the disjoint union of two interlaced

trees and adding an edge between a vertex from each to obtain a new graceful tree.

Conditions are also given for when the resulting tree is interlaced.

Theorem 3.35. Suppose f1 and f2 are interlaced labelings of T1 and T2, respec-

tively. Also, suppose there are vertices u1 ∈ V (T1) and u2 ∈ V (T2) such that either:

(1) f1(u1)− f2(u2) = s1 < f1(u1), or

(2) n2 + f1(u1)− f2(u2) = s1 ≥ f1(u1)

Let T be the tree obtained by joining u1 and u2 by a new edge. Then T is graceful.

Furthermore, if in the two cases above we also have

(1) f2(u2) ≤ s2, or

(2) f2(u2) > s2,

then T is also an interlaced tree.

Proof. [10] Define f on V (T ) as follows:

f(v) =


f1(v) v ∈ ET1(b1)

f1(v) + n2 v /∈ ET1(b1) ∪ V (T2)

f2(v) + s1 v ∈ V (T2).

Then, f(ET1(b)) = {1, 2 . . . , s1}, f(V (T1) \ ET1(b1)) = {s1 + n2 + 1, s1 + n2 +

2, . . . , n1 + n2} and f(V (T2)) = {s1 + 1, s1 + 2, . . . , s1 + n2}, so f is a valuation that

assigns labels in {1, 2, . . . , n1 + n2}.

Now since edges of T1 run between a vertex of ET1(b1) and a vertex of V (T )\ET1(b1),

Ef(T1) = {n2 + 1, n2 + 1, . . . , n2 + n1}, and Ef(T2) = {1, 2, . . . , n2 − 1}. Moreover, in

case (1), since we have u1 /∈ ET1(b1),

|f(u1)− f(u2)| = f(u1)− f(u2) = f1(u1) + n2 − (f2(u2) + s1) = n2,
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and in case (2), when u1 ∈ ET1 ,

|f(u1)− f(u2)| = f(u2)− f(u1) = (f2(u2) + s1)− f1(u1) = n2.

Thus, in either case we have that the new edge has weight n2. Hence the edges of T

carry all possible weights in {1, 2, . . . , n1 + n2 − 1} and f is a graceful labeling of T .

Additionally, if f2(u2) ≤ s2 when f1(u1) > s1 or f2(u2) > s2 when f1(u1) ≤ s1, then

it follows that the bases b1 and b2 are an even distance apart. So T is an interlaced

tree with size s = s1 + s2 and base b = b1. �
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Chapter 4

Adjacency Matrices of Graceful Graphs

Definition 4.1. Let G be a graph with V (G) = {v1, v2, . . . , vn}. Then the matrix

AG = [aij] defined by

aij =


1 if vivj ∈ E(G)

0 otherwise

is called the adjacency matrix of G.

Definition 4.2. Let G be a graph with m = ||G|| and a valuation f : V (G) →

{1, 2, . . . ,m+ 1}. Then the (m+ 1)× (m+ 1) matrix AG = [aij] defined by

aij =


1 if xy ∈ E(G) for f(x) = i and f(y) = j

0 otherwise.

is called the generalized adjacency matrix of G induced by the valuation f . For

simplicity, we will assume in this chapter that V (G) ⊆ {v1, v2, . . . , vm+1} and f is

given by f(vi) = i.

Note that when G is a tree then the concepts in Definitions 4.1 and 4.2 agree.

Also, the generalized adjacency matrix allows (all zero) rows/columns corresponding

to missing labels; while in the adjacency matrix such rows correspond to vertices of

degree 0. If two graphs have the same (or similar) adjacency matrix, then they are

isomorphic, but if two graphs have the same generalized adjacency matrix, they may

not be isomorphic. However, we get isomorphic graphs if we leave out the vertices of

degree 0 from both.
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Adjacency matrices are quite useful as they encode many of the corresponding

graphs’ characteristics. For example, vertex labeling, vertex adjacency, vertex degree,

and other graph features are quickly ascertained by looking at a graph’s adjacency

matrix. In fact, the field of spectral graph theory makes use of adjacency matrices

and their eigenvalues, eigenvectors, characteristic functions, etc., in investigating in-

variant graph properties. One particularly nice property of adjacency matrices is that

one can find the number of walks of varying lengths between vertices by looking at

multiplicative powers of the matrix. As stated earlier, we are only considering simple

undirected graphs. This means that the corresponding adjacency matrices will be

symmetric since there is no orientation on the edges and thus there is no distinction

drawn between edges vivj and vjvi. The property that all the graphs considered are

simple guarantees that the main diagonal entries of the adjacency matrices will be

zeros as a one on the main diagonal corresponds to a loop in the graph. Our interest

in adjacency matrices is motivated by their properties when the corresponding graph

is labeled gracefully.

Definition 4.3. Let A be an n × n matrix. Then the kth diagonal line of A is

the collection of entries Dk = {aij| j − i = k}, counting multiplicity.

So it is clear that 0 ≤ |k| ≤ n − 1. When A = AG is a (generalized) adjacency

matrix, A is symmetric and Dk = D−k. Thus we make the convention that the entry

1 corresponding to an edge between vertices vi and vj lies in the |j− i|th diagonal line

and the edge label for that edge is |j − i|, assuming f(vi) = i for each i = 1, 2, . . . , n

and f is a valuation on G. We now prove a theorem characterizing the adjacency

matrices of graceful graphs.

Theorem 4.4. Let G be a labeled graph and let AG be the generalized adjacency

matrix for G. Then AG has exactly one entry 1 in each diagonal line, except the main

diagonal of zeros, if and only if the valuation f on G that induces AG is graceful.
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Proof. We begin by noting that we need only consider the upper triangular part

of AG since it is symmetric. That is, for edges vivj, we may assume j > i.

Suppose AG has exactly one entry of 1 in each diagonal line, other than the main

diagonal of zeros. Suppose to the contrary that the labeling of G that induces AG is

not a graceful labeling. Then there are distinct edges vgvh and vqv` with edge labels

h− g = `− q = k > 0. This implies

∑
i,j:j−i=k

j>i

aij ≥ 2

contradicting the assumption that AG has exactly one entry in each diagonal (not

including main diagonal).

Now suppose G is gracefully labeled by f and consider AG. Then for all k =

1, 2, . . . , |E(G)|, there is exactly one non-zero entry aij = 1, such that j > i and

j − i = k, contributing to |Dk| since each edge has a unique label. That is, AG has

exactly one entry of 1 in each non-main diagonal. �

Example 4.5. We now consider the caterpillar shown in Figure 4.1 below. This
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Figure 4.1: A Graceful Caterpillar

tree is gracefully labeled and has adjacency matrix
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

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0


which satisfies Theorem 4.4. In fact, it is easy to see that the labeling described in

Theorem 4.4 will always give a “staircase shaped” matrix.

The condition from Theorem 4.4 allows us to look at an adjacency matrix and

immediately determine if the graph is labeled gracefully. We now consider several

families of trees that can be shown to be graceful by building the adjacency matrix

to be graceful.

Theorem 4.6. Let T be a graceful bipartite graph on n vertices with generalized

adjacency matrix AT . Then the matrix

A =


O · · · O AT

... AT O

O . . . ...
...

AT O · · · O


pn×pn

with p submatrices AT and where O is the n× n zero matrix is an adjacency matrix

for

G =

p·⋃
i=1

Ti,
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the disjoint union of p copies of T .

Here we pause to note that all trees are bipartite. Thus this theorem holds for

graceful trees.

Proof. We begin by noting that A is a (0,1)-matrix, and since AT is symmetric,

so is A. Also, the main diagonal of A has all zero entries. This can be seen by the

fact that the main diagonal does not contain entries from any submatrix AT when

p is even, and goes through exactly the main diagonal of one of the AT when p is

odd. So A is a generalized adjacency matrix. We now want to show that it is the

generalized adjacency matrix for G = ·∪Ti, i = 1, 2, . . . , p.

Consider V (T ). Note that if AT is graceful, then there is an edge with induced

label m. Thus, there are adjacent vertices with labels 1 and m + 1. Let x ∈ V (T )

be the vertex such that f(x) = 1 where f is the graceful valuation of T . Since T is

bipartite, we can fix a bipartition V1, V2 of the vertices such that x ∈ V1. Moreover,

{v ∈ V (T )|d(x, v) is even } ⊆ V1 and {v ∈ V (T )|d(x, v)is odd } ⊆ V2, with equality

holding if T is connected. Also, in the generalized adjacency matrix AT of the graph

T , we have that aij = 1 implies that vi ∈ V1 and vj ∈ V2 or vice versa. We will denote

by C and D the set of labels on vertices of V1 and V2. That is,

C = {` : v` ∈ V1} and

D = {` : v` ∈ V2}

Now consider the p copies of AT in the generalized adjacency matrix A. We will call

a copy the j-th copy if it is the j-th counting from the bottom left corner of A.

For a set of integers S, let a+ S = {a+ s|s ∈ S} for any a ∈ Z. It is easy to see

that for j ∈ {1, 2 . . . , p} the j-th copy of AT in A defines edges between vertices with

labels (
(j − 1)n+ C

)
∪
(
(p− j)n+D

)
,
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and there is an edge v(j−1)n+iv(p−j)n+` for some i ∈ C and ` ∈ D precisely when

vi ∈ V1, v` ∈ V2 and vivj ∈ E(T ). Thus, the j-th copy of AT induces an isomorphic

copy Tj of T on the corresponding vertex set. It is easy to see that the Tj are vertex

disjoint. �

There are a few things we wish to note about the matrix constructed in Theorem

4.6. First off, since AT is the generalized adjacency matrix of a graceful graph, each

diagonal line of A has at most one 1. In fact, the only diagonal lines with all zero

entries are the diagonal lines Dk, with k = 0,±n,±2n, . . . ,±(p−2)n,±(p−1)n. This

means that the edge labels for the edges of G are distinct though not all labels from

{1, 2, . . . , pn− 1} are used.

Definition 4.7. Let G1 and G2 be two bipartite graphs with m = ||G1|| =

||G2||. Let f1 and f2 be labelings of G1 and G2 from the set {1, 2, . . . ,m + 1},

respectively. We call f1 and f2 compatible labelings, if there are disjoint sets C,D,

where C ∪ D = {1, 2 . . . ,m+ 1} and bipartitions (C1, D1) of G1, (C2, D2) of G2 such

that f1(C1), f2(C2) ⊆ C and f1(D2), f2(D2) ⊆ D. It follows that isomorphic graphs

are easily seen to be compatible.

Example 4.8. Let G1 and G2 be the labeled bipartite graphs in Figure 4.2.

1

2

4

5

6

7

8

1

3

4

5

6

7

8

Figure 4.2: Bipartite Graphs G1 and G2 with Compatible Labelings.
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Then clearly the labelings of G1 and G2 are compatible labelings. Note, however,

that these labelings are not graceful.

Theorem 4.9. Let T1, T2, . . . , Tp be graceful bipartite graphs such that Ti and

Tp+1−i have compatible graceful labelings, and denote the generalized adjacency ma-

trices of these compatible labelings by ATi
. Then the matrix

A =


O · · · O ATp

... ATp−1 O

O . . . ...
...

AT1 O · · · O


pn×pn

with p submatrices of the form ATi
and where O is the n×n zero matrix is a generalized

adjacency matrix for

G =

p·⋃
i=1

Ti,

the disjoint union of vertex-disjoint copies of T . Note that if T is a tree, then A is

the usual adjacency matrix of G.

The proof of this theorem is essentially the same as that of the previous theorem,

thus we omit it.

Let T be a graceful tree on n vertices with valuation f . We want to construct a

new tree by identifying a leaf of K1,p with the vertex x such that f(x) = 1 in each

of p copies of T . We denote this tree by T ◦ K1,p. It has been shown that the tree

constructed this way, previously called T p
v , is graceful in Theorem 3.22. The next

definition gives us a way to describe the graph resulting from matrix manipulations.

Definition 4.10. The matrix A is said to gracefully induce G if A is an adjacency

matrix for G, and A satisfies the conditions of Theorem 4.4.

Theorem 4.11. Let T be a graceful tree on n vertices. Then the graph T ◦K1,p

is graceful.
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Proof. We begin by constructing the matrix A from Theorem 4.6 for the given

T to get

A =


O · · · O AT

... AT O

O . . .
...

...

AT O · · · O


pn×pn

.

We now extend A to the new matrix

A =



O · · · O AT v

... AT O v

O . . .
...

...
...

AT O · · · O v

vt vt · · · vt 0


pn+1×pn+1

.

where

v =


1

0

...

0


n×1

and vt is the transpose of v. This new matrix induces a new graph that has an added

vertex labeled np+ 1 that is adjacent to the vertices labeled 1, n+ 1, 2n+ 1, . . . , (p−

1)n + 1 from the graph induced by A. These entries of 1 from the added vertex are

in the diagonals Dk with k = (pn+ 1)− (jn+ 1) = (p− j)n for j = 0, ..., p− 1. Thus

A is graceful since these are the exact diagonal lines, other than the main diagonal,

of A that had all zero entries, and A gracefully induces T ◦K1,p. �

Example 4.12. We now give an example of this construction. Let T be the

gracefully labeled tree shown in Figure 4.3.
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1

4

2

3

Figure 4.3: The Graceful Tree T = P4.

Then this labeling induces the adjacency matrix

AT =


0 0 1 1

0 0 1 0

1 1 0 0

1 0 0 0


.

Now, we construct the matrix A as in Theorem 4.11 to get



0 0 0 0 0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 1 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 1 0 0 0 0



This matrix, in turn, gracefully induces the graph T ◦K1,3 shown in Figure 4.4.

The gracefulness of several classes of trees follows directly from Theorem 4.11.
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Figure 4.4: The Induced Graph T ◦K1,3.

Theorem 4.13. The spider S(k, k, . . . , k) with p legs, each of which having length

k, is graceful.

Proof. Let AT be the adjacency matrix for T = Pk−1 where Pk−1 is gracefully

labeled and one of its leaves has label 1. Then the matrix A constructed as in

Theorem 4.11 with p copies of AT gacefully induces the spider S(k, k, . . . , k) with p

legs of length k. �

Definition 4.14. A banana tree is a collection of p stars, each of which having

one leaf connected to an added vertex.

Alternatively, we can think of a banana tree as a collection of p stars, each having

exactly one leaf identified with a unique leaf of a K1,p. Let B(x1, x2, . . . , xp) be the

banana tree with p stars, each having xi leaves.

Theorem 4.15. The banana tree B(k, k, . . . , k) with p stars, each having k leaves,

is graceful.
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Proof. Let AT be the adjacency matrix for T = K1,k where K1,k is gracefully

labeled and one of its leaves is labeled 1. Then the matrix A constructed as in

Theorem 4.11 with p copies of AT gracefully induces B(k, k, . . . , k). �

It is beyond the scope of this thesis to elaborate much more on graceful trees,

though certainly there is plenty more that can be said. Therefore, we end here and

refer the interested reader to Gallian’s A Dynamic Survey of Graph Labelings [5] for

a comprehensive treatment of the Graceful Tree Conjecture.
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