
COMPUTATIONAL RESULTS FOR SPECTRA OF

HYPERGRAPHS

Aaron Dutle
Department of Mathematics
University of South Carolina

Abstract. We present a description of the algorithm used to compute
the hypergraph spectra referred to in [2], and present tables of the char-
acteristic polynomials computed, as well as timing data.

1. Introduction

Computing the multi-set spectrum of a k-uniform hypergraph (as defined
in [2]) is a non-trivial task. Due to the characteristic polynomial’s definition
as the resultant of a system of n polynomials of degree (k − 1), the task is
to compute the resultant. There are several very different algorithms known
for doing such a computation, we refer the readers to [5, 1, 3] for three such
algorithms. In our computations, we followed the algorithm in [3], adapted
to our specific case of hypergraph spectra. We include a short description
for completeness.

For i ∈ [n], let Fi =
∑

e∈H(i) x
e (following the notation in [2]). Each Fi

is a degree (k − 1) homogeneous polynomial. Compute the characteristic
polynomial as follows.

Let d = n(k − 2) + 1, and let S be the set of all monomials of degree d
in the variables x1, . . . xn. (We denote such a monomial xα, where x stands
for a variable vector, and α stands for an exponent vector.) Let

S1 = {xα ∈ S |xk−11 divides xα}

S2 = {xα ∈ S \ S1 |xk−12 divides xα}
...

Sn = {xα ∈ S \
n−1⋃
i=1

Si |xk−1n divides xα}

This collection forms a partition of S (by an easy pigeon-hole principle
argument). Fix an ordering on S, and make the |S| × |S| matrix M as
follows. The (α, β) entry of M is the coefficient of xβ in the polynomial
Fi(x) xα

xk−1
i

, where i is the unique index such that xα ∈ Si. In particular, any

non-zero (α, β) entry is one of the coefficients of Fi, where i has xα ∈ Si.
1



2 COMPUTATIONAL RESULTS FOR SPECTRA OF HYPERGRAPHS

Call a monomial xα ∈ S reduced if there is exactly one i so that xk−1i
divides xα. Form the matrix M ′ be deleting the rows and columns of M
that correspond to reduced monomials.

Then the characteristic polynomial of H is
det(λ−M)

det(λ−M ′)
.

2. Implementation

Our programs were written for the free and open-source SAGE math-
ematics program. Programs were written to convert between polynomi-
als and hypermatrices, to create the polynomials that correspond to com-
plete and complete tripartite hypergraphs, and several iterations and varia-
tions to compute the characteristic polynomial. All are available in the file
TensorCharpolyPackage.sage which can be found at
www.math.sc.edu/~cooper/Resultant.

The first working version of the program (called tensor_charpoly_old

in the package) follows the algorithm in the introduction almost verbatim.
The other variations incorporate a few time or space saving techniques.
Some versions add features, such as allowing entries from any ring, or slight
parallelization. Other versions are specialized in some way, one only allows
3-uniform hypergraphs, another only computes the characteristic polynomial
for complete hypergraphs. It should be noted that the programs are writ-
ten specifically for computing with hypergraphs, and although it will take
any hypermatrix as an input, the output will only be valid for (weighted)
adjacency hypermatrices.

We mention one particular technique (from [4]) we used to reduce time
and space requirements because it is not well-known, and gave us significant
gains. Given an n×n matrix A, one creates a digraph on [n], with a directed
edge (i, j) whenever the ai,j is nonzero. The characteristic polynomial of A
can be computed as follows. For each strongly connected component C of the
digraph, find characteristic polynomial of the A restricted to the rows and
columns corresponding to vertices of C. The product of these polynomials
is the characteristic polynomial of A. (Essentially, the strongly connected
components give a good way to permute the rows and columns to obtain a
block matrix.)

Computing the strongly connected components of a graph can be done in
time O(n2), while most algorithms computing the characteristic polynomial
run in time O(n3). Hence for large n, computing the strongly connected
components adds little overhead, and if the strongly connected components
are small, the savings in time and space to be had by computing the smaller
characteristic polynomials can be great.

3. Computational Results

We performed computations on a desktop computer named “kiwi,” with
8 cores (2× quad-core AMD at ? Ghz), and 8 giabytes of RAM. Timing



COMPUTATIONAL RESULTS FOR SPECTRA OF HYPERGRAPHS 3

statistics are computed using the function cputime in SAGE. For calcula-
tions that took less than 1 hour, the listed computation time is the best of
4 trials. Calculaions taking more than 1 hour were run only once. These
calculations have their times marked with an asterisk. Horizontal breaks in
a table indicate a change in the number of vertices.

Complete 3-cylinders
Computation performed on kiwi, using the function

Ord3_tensor_charpoly.

Part Sizes Characteristic Polynomial CPU Time (seconds)
1,1,1 (x− 1)3x3(x2 + x+ 1)3 0.030996
2,1,1 x23(x3 − 4)3 0.128981
3,1,1 (x− 1)9x44(x2 + x+ 1)9(x3 − 9)3 0.634904
2,2,1 x71(x3 − 16)3 0.628905
4,1,1 x147(x3 − 16)3(x3 − 4)12 3.217511
3,2,1 x156(x3 − 36)3(x3 − 4)9 3.408482
2,2,2 (x− 4)3x183(x2 + 4x+ 16)3 3.662443
5,1,1 (x− 1)30x304(x2 + x+ 1)30(x3 − 25)3(x3 − 9)15 17.69331
4,2,1 (x− 4)3x403(x2 + 4x+ 16)3(x3 − 16)12 20.204929
3,3,1 (x− 1)27x304(x2 + x+ 1)27(x3 − 81)3(x3 − 9)18 22.573569
3,2,2 x412(x3 − 144)3(x3 − 16)9 27.308848
6,1,1 x826(x3 − 36)3(x3 − 16)18(x3 − 4)45 111.613033
5,2,1 x880(x3 − 100)3(x3 − 36)15(x3 − 4)30 148.966353
4,3,1 x844(x3 − 144)3(x3 − 16)9(x3 − 36)12(x3 − 4)36 184.041021
4,2,2 (x− 4)12x979(x2 + 4x+ 16)12(x3 − 256)3 265.255675
3,3,2 x880(x3 − 324)3(x3 − 36)18(x3 − 4)27 341.33811
7,1,1 (x− 1)105x1728(x2 + x+ 1)105(x3 − 49)3(x3 − 25)21(x3 − 9)63 976.599535
6,2,1 (x− 4)18x2106(x2 + 4x+ 16)18(x3 − 144)3(x3 − 16)45 1703.309058
5,3,1 (x− 1)90x1728(x2 + x+ 1)90(x3 − 225)3(x3 − 25)9(x3 − 81)15(x3 − 9)75 2259.604487
5,2,2 x2160(x3 − 400)3(x3 − 144)15(x3 − 16)30 3991.632179∗

4,4,1 (x− 4)24x2079(x2 + 4x+ 16)24(x3 − 256)3(x3 − 16)48 2785.064607
4,3,2 (x− 4)9x2124(x2 + 4x+ 16)9(x3 − 576)3(x3 − 144)12(x3 − 16)36 5808.092036∗

3,3,3 (x− 9)3(x− 1)81x1728(x2 + 9x+ 81)3(x2 + x+ 1)81(x3 − 81)27(x3 − 9)81 11248.935901∗

8,1,1 (x− 4)3x4283(x2 + 4x+ 16)3(x3 − 36)24(x3 − 16)84(x3 − 4)168 12539.625686∗

7,2,1 x4544(x3 − 196)3(x3 − 100)21(x3 − 36)63(x3 − 4)105 23935.876193∗

6,3,1 x4328(x3 − 324)3(x3 − 144)18(x3 − 36)54(x3 − 16)54(x3 − 4)135 37704.312073∗

6,2,2 (x− 4)45x4922(x2 + 4x+ 16)45(x3 − 576)3(x3 − 256)18 72972.738457∗

5,4,1 x4400(x3 − 400)3(x3 − 100)12(x3 − 144)15(x3 − 16)30(x3 − 36)60(x3 − 4)120 59926.384805∗



4 COMPUTATIONAL RESULTS FOR SPECTRA OF HYPERGRAPHS

Complete 4-cylinders
Computation performed on kiwi, using the function

tensor_charpoly.

Part Sizes Characteristic Polynomial CPU Time (seconds)
1,1,1,1 x44(x4 − 1)16 0.29337
1,1,1,2 x213(x4 − 8)16(x4 + 1)32 4.93
1,1,1,3 x1010(x4 − 27)16(x8 + 27)48 156.77
1,1,2,2 x882(x4 − 1)64(x4 − 64)16(x4 + 8)64 155.90
1,1,1,4 x3375(x4 − 1)192(x4 + 8)96(x4 − 6416(x8 − 20x4 + 343)64 41,682.5∗

1,1,2,3 x3759(x4 − 216)16(x4 + 27)32(x8 + 1728)48(x8 + 27)96 43,230.1∗

1,2,2,2 x3401(x4 + 64)96(x4 − 512)16(x4 + 1)128(x4 − 8)192 31,253.14∗

Complete 3-uniform Hypergraphs
Computation performed on kiwi, using the function

charpoly_complete_hypergraph.

Vertices Characteristic Polynomial CPU Time (seconds)
3 (x− 1)3x3(x2 + x+ 1)3 0.016997
4 (x− 3)x4(x+ 1)9(x− 1)10(x2 + x+ 4)4 0.06699
5 (x− 6)x5(x− 1)34(x2 + 9)5(x3 + 4x2 + 7x+ 3)10 0.52692

6
(x− 10)x6(x+ 2)30(x− 1)98(x2 − 2x+ 16)6

(x3 + 4x2 + 13x+ 6)15
6.847959

7
(x− 15)x7(x− 1)258(x2 − 5x+ 25)7

(x3 + 3x2 + 21x+ 10)21(x3 + 7x2 + 19x+ 15)35
151.02404

8
(x− 21)x8(x+ 3)105(x− 1)642(x2 − 9x+ 36)8

(x3 + x2 + 31x+ 15)28(x3 + 7x2 + 28x+ 24)56
5536.073389∗



COMPUTATIONAL RESULTS FOR SPECTRA OF HYPERGRAPHS 5

Simplices (Complete k-uniform on k + 1 vertices)
Computation performed on kiwi, using the function

charpoly_complete_hypergraph.

Uniformity Characteristic Polynomial CPU Time (seconds)
3 (x− 3)x4(x+ 1)9(x− 1)10(x2 + x+ 4)4 0.066989

4
(x− 4)(x− 1)15(x+ 1)54x100

(x3 + x2 + 7x+ 27)5(x3 − x2 − 8)20

(x4 + 4x3 + 4x2 − 8x− 4)10(x4 − 2x3 + 4x2 − 2x+ 1)30
6.377031

5

(x− 5)(x+ 4)20(x+ 1)120(x− 1)366

x2118(x2 − 3x+ 1)90(x2 + x+ 1)270

(x4 + x3 + 11x2 + 51x+ 256)6

(x4 + x3 + x2 − 4x+ 16)120

(x5 + 5x4 + 25x3 + 35x2 + 95x+ 27)15

(x6 − x5 − 10x4 + 15x3 − 70x2 − 189x+ 729)30

(x6 + 2x5 + 3x4 + 8x3 + 3x2 + 2x+ 1)180

(x16 − 6x15 + 25x14 − 70x13 + 210x12 − 514x11 + 689x10

+230x9 − 290x8 − 2630x7 + 7741x6 + 234x5 + 2085x4

−4660x3 + 2000x2 − 576x+ 256)60

15000.894517∗

Miscellaneous Hypergraphs
Computation performed on kiwi, using the function

Ord3_tensor_charpoly.

Hypergraph Characteristic Polynomial CPU Time (seconds)
Q2

3 (x3 − 1)18(x3 − 8)27(x3 + 1)54x549(x3 − 2)486 4255.723333∗

K
(3)
4 − e x11(x3 − 12)(x6 − 2x3 + 5)3 0.131194

References

[1] A. Anokhina, A. Morozov and Sh. Shakirov, Resultant as Determinant of Koszul
Complex, arXiv:0812.5013v3 [math.PH] (2009).

[2] J. Cooper, A. Dutle, Spectra of Hypergraphs, Linear Algebra and its Applications, to
appear.

[3] D. Cox, J. Little, and D. OShea, Using Algebraic Geometry, Springer-Verlag, New
York, 1998.

[4] S.Lo, M. Monogan, and A. Wittkopf, Strongly Connected Graph Components and
Computing Characteristic Polynomials of Integer Matrices in Maple, not in print,
available at http://www.cecm.sfu.ca/CAG/papers/CharPoly.pdf, 2006.

[5] A. Morozov and Sh. Shakirov, Analogue of the Identity Log Det = Trace Log for
Resultants, arXiv:0804.4632v3 [math.PH] (2008).


