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Abstract

Game-theoretic attribution techniques based on Shapley values are used extensively to in-
terpret black-box machine learning models, but their exact calculation is generally NP-hard,
requiring approximation methods for non-trivial models. As the computation of Shapley
values can be expressed as a summation over a set of permutations, a common approach
is to sample a subset of these permutations for approximation. Unfortunately, standard
Monte Carlo sampling methods can exhibit slow convergence, and more sophisticated quasi
Monte Carlo methods are not well defined on the space of permutations. To address this,
we investigate new approaches based on two classes of approximation methods and com-
pare them empirically. First, we demonstrate quadrature techniques in a RKHS containing
functions of permutations, using the Mallows kernel to obtain explicit convergence rates
of O(1/n), improving on O(1/

√
n) for plain Monte Carlo. The RKHS perspective also

leads to quasi Monte Carlo type error bounds, with a tractable discrepancy measure de-
fined on permutations. Second, we exploit connections between the hypersphere Sd−2 and
permutations to create practical algorithms for generating permutation samples with good
properties. Experiments show the above techniques provide significant improvements for
Shapley value estimates over existing methods, converging to a smaller RMSE in the same
number of model evaluations.

Keywords: Interpretability, Quasi Monte Carlo, Shapley values

1. Introduction

The seminal work of Shapley (1953) introduces an axiomatic attribution of collaborative
game outcomes among coalitions of participating players. Shapley values are popular in
machine learning (Cohen et al. (2007); Strumbelj and Kononenko (2010); Štrumbelj and
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Kononenko (2014); Lundberg and Lee (2017)) because the assignment of feature relevance
to model outputs is structured according to axioms consistent with human notions of attri-
bution. In the machine learning context, each feature is treated as a player participating in
the prediction provided by a machine learning model and the prediction is considered the
outcome of the game. Feature attributions via Shapley values provide valuable insight into
the output of complex models that are otherwise difficult to interpret.

Exact computation of Shapley values is known to be NP-hard in general (Deng and Pa-
padimitriou (1994)) and approximations based on sampling have been proposed by Mann
and Shapley (1960); Owen (1972); Castro et al. (2009); Maleki (2015); Castro et al. (2017).
In particular, a simple Monte Carlo estimate for the Shapley value is obtained by sampling
from a uniform distribution of permutations. An extensively developed Quasi Monte Carlo
theory for integration on the unit cube shows that careful selection of samples can improve
convergence significantly over random sampling, however, these results do not extend to the
space of permutations. Our goal is to better characterise ‘good’ sample sets for this unique
approximation problem, and to develop tractable methods of obtaining these samples, re-
ducing computation time for high-quality approximations of Shapley values. Crucially, we
observe that sample evaluations, in this context corresponding to evaluations of machine
learning models, dominate the execution time of approximations. Due to the high cost of
each sample evaluation, considerable computational effort can be justified in finding such
sample sets.

In Section 3, exploiting the direct connection between Shapley values and permuta-
tions, we define a reproducing kernel Hilbert space (RKHS) with several possible kernels
over permutations. Using these kernels, we apply kernel herding, and sequential Bayesian
quadrature algorithms to estimate Shapley values. In particular, we observe that kernel
herding, in conjunction with the universal Mallows kernel, leads to an explicit convergence
rate of O( 1

n) as compared to O( 1√
n

) for ordinary Monte Carlo. An outcome of our investi-

gation into kernels is a quasi Monte Carlo type error bound, with a tractable discrepancy
formula.

In Section 4, we describe another family of methods for efficiently sampling Shapley
values, utilising a convenient isomorphism between the symmetric group Sd and points on
the hypersphere Sd−2. These methods are motivated by the relative ease of selecting well-
spaced points on the sphere, as compared to the discrete space of permutations. We develop
two new sampling methods, termed orthogonal spherical codes and Sobol permutations, that
select high-quality samples by choosing points well-distributed on Sd−2.

Our empirical evaluation in Section 5 examines the performance of the above methods
compared to existing methods on a range of practical machine learning models, tracking
the reduction in root mean squared error against exactly calculated Shapley values. Ad-
ditionally, we evaluate explicit measures of discrepancy (in the quasi Monte Carlo sense)
for the sample sets generated by our algorithms. This evaluation of discrepancy for the
generated samples of permutations may be of broader interest, as quasi Monte Carlo error
bounds based on discrepancy apply to any statistics of functions of permutations and not
just Shapley values.
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2. Background and Related Work

We first introduce some common notation for permutations and provide the formal defi-
nition of Shapley values. Then, we briefly review the literature for existing techniques for
approximating Shapley values.

2.1 Notation

We refer to the symmetric group of permutations of d elements as Sd. We reserve the use
of n to refer to the number of samples. The permutation σ ∈ Sd assigns rank j to element
i by σ(i) = j. For example, given the permutation written in one-line notation:

σ =
(
1 4 2 3

)
and the list of items

(x1, x2, x3, x4)

the items are reordered such that xi occupies the σ(i) coordinate

(x1, x3, x4, x2)

and the inverse σ−1(j) = i is

σ−1 =
(
1 3 4 2

)
.

2.2 Shapley Values

Shapley values (Shapley (1953)) provide a mechanism to distribute the proceeds of a cooper-
ative game among the members of the winning coalition by measuring marginal contribution
to the final outcome. The Shapley value Shi for coalition member i is defined as

Shi(v) =
∑

S⊆N\{i}

|S|! (|N | − |S| − 1)!

|N |!
(v(S ∪ {i})− v(S)) (1)

where S is a partial coalition, N is the grand coalition (consisting of all members), and v is
the so-called “characteristic function” that is assumed to return the proceeds (i.e., value)
obtained by any coalition.

The Shapley value function may also be conveniently expressed in terms of permutations

Shi(v) =
1

|N |!
∑
σ∈Sd

[
v([σ]i−1 ∪ {i})− v([σ]i−1)

]
(2)

where [σ]i−1 represents the set of players ranked lower than i in the ordering σ. The Shapley
value is unique and has the following desirable properties:

1. Efficiency :
∑n

i=1 Shi(v) = v(N). The sum of Shapley values for each coalition member
is the value of the grand coalition N .

2. Symmetry : If, ∀S ⊆ N \{i, j}, v(S ∪{i}) = v(S ∪{j}), then Shi = Shj . If two players
have the same marginal effect on each coalition, their Shapley values are the same.
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3. Linearity : Shi(v + w) = Shi(v) + Shi(w). The Shapley values of sums of games are
the sum of the Shapley values of the respective games.

4. Dummy : If, ∀S ⊆ N \ {i}, v(S ∪ {i}) = v(S), then Shi = 0. The coalition member
whose marginal impact is always zero has a Shapley value of zero.

Evaluation of the Shapley value is known to be NP-hard in general (Deng and Papadim-
itriou (1994)) but may be approximated by sampling terms from the sum of either Equation
1 or Equation 2. This paper focuses on techniques for approximating Equation 2 via care-
fully chosen samples of permutations. We discuss characteristic functions v that arise in
the context of machine learning models, with the goal of attributing predictions to input
features.

Shapley values have been used as a feature attribution method for machine learning in
many prior works (Cohen et al. (2007); Strumbelj and Kononenko (2010); Štrumbelj and
Kononenko (2014); Lundberg and Lee (2017)). In the terminology of supervised learning,
we have some learned model f(x) = y that maps a vector of features x to a prediction
y. The value of the characteristic function is assumed to be given by y, and the grand
coalition is given by the full set of features. In a partial coalition, only some of the features
are considered “active” and their values made available to the model to obtain a prediction.
Applying the characteristic function for partial coalitions requires the definition of f(xS),
where the input features x are perturbed in some way according to the active subset S.
A taxonomy of possible approaches is given in Covert et al. (2020). In this paper, we
marginalise out features using the joint marginal distribution with some background data
set p(XS), which is the default behaviour of the SHAP python package of Lundberg and
Lee (2017).

2.3 Monte Carlo

An obvious Shapley value approximation is the simple Monte Carlo estimator,

S̄hi(v) =
1

n

∑
σ∈Π

[
v([σ]i−1 ∪ {i})− v([σ]i−1)

]
, (3)

for a uniform sample of permutations Π ⊂ Sd of size n. Monte Carlo techniques were used
to solve electoral college voting games in Mann and Shapley (1960), and a more general
analysis is given in Castro et al. (2009). Equation 3 is an unbiased estimator that converges
asymptotically to the Shapley value at a rate of O(1/

√
n) according to the Central Limit

Theorem.

From a practical implementation perspective, note that a single sample of permutations
Π can be used to evaluate Shi for all features i. For each permutation σ ∈ Π of length
d, first evaluate the empty set v({}), then walk through the permutation, incrementing i
and evaluating v([σ]i), yielding d+ 1 function evaluations for σ that are used to construct
marginal contributions for each feature. v([σ]i−1) is not evaluated, but reused from the
previous function evaluation, providing a factor of two improvement over the naive approach.
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2.4 Antithetic Sampling

Antithetic sampling is a variance reduction technique for Monte Carlo integration where
samples are taken as correlated pairs instead of standard i.i.d. samples. The antithetic
Monte Carlo estimate (see Rubinstein and Kroese (2016)) is

µ̂anti =
1

n

n/2∑
i=1

f(Xi) + f(Yi)

with variance given by

Var(µ̂anti) =
σ

n
(1 + Corr(f(X), f(Y )), (4)

such that if f(X) and f(Y ) are negatively correlated, the variance is reduced. A common
choice for sampling on the unit cube is X ∼ U(0, 1)d with Yi = 1−Xi. Antithetic sampling
for functions of permutations is discussed in Lomeli et al. (2019), with a simple strategy
being to take permutations and their reverse. We implement this sampling strategy in our
experiments with antithetic sampling.

2.5 Multilinear Extension

Another Shapley values approximation is the multilinear extension of Owen (1972). The sum
over feature subsets from (1) can be represented equivalently as an integral by introducing
a random variable for feature subsets. The Shapley value is calculated as

Shi(v) =

∫ 1

0
ei(q)dq (5)

where
ei(q) = E[v(Ei ∪ i)− v(Ei)]

and Ei is a random subset of features, excluding i, where each feature has probability q
of being selected. ei(q) is estimated with samples. In our experiments, we implement a
version of the multilinear extension algorithm using the trapezoid rule to sample q at fixed
intervals. A form of this algorithm incorporating antithetic sampling is also presented in
Okhrati and Lipani (2020), by rewriting Equation 5 as

Shi(v) =

∫ 1
2

0
ei(q) + ei(1− q)dq

where the sample set Ei is used to estimate ei(q) and the ‘inverse set’, {N \{Ei, i}}, is used
to estimate ei(1 − q). In Section 5, we include experiments for the multilinear extension
method, both with and without antithetic sampling.

2.6 Stratified Sampling

Another common variance reduction technique is stratified sampling, where the domain of
interest is divided into mutually exclusive subregions, an estimate is obtained for each subre-
gion independently, and the estimates are combined to obtain the final estimate. For integral

5



Rory Mitchell, Joshua Cooper, Geoffrey Holmes and Eibe Frank

µ =
∫
D f(x)p(x)dx in domain D, separable into J non-overlapping regions D1,D2, · · · ,DJ

where wj = P (X ∈ Dj) and pj(x) = w−1
j p(x)1x∈Dj , the basic stratified sampling estimator

is

µ̂strat =

J∑
j=1

wj
nj

nj∑
i=1

f(Xij),

where Xij ∼ pj for i = 1, · · · , nj and j = 1, · · · , J (see Owen (2003)). The stratum size nj
can be chosen according to the Neyman allocation if estimates of the variance in each region
are known. The stratified sampling method was first applied to Shapley value estimation by
Maleki (2015), then improved by Castro et al. (2017). We implement the version in Castro
et al. (2017), where strata D`i are considered for all i = 1, · · · , d and ` = 1, · · · , d, where D`i
is the subset of marginal contributions with feature i at position `.

This concludes discussion of existing works; the next sections introduce the primary
contributions of this paper.

3. Kernel Methods

A majority of Monte Carlo integration works deal with continuous functions on Rd where
the distribution of samples is well defined. In the space of permutations, distances between
samples are implicitly defined, so we impose a similarity metric samples via a kernel and
select samples with good distributions relative to these kernels.

Given a positive definite kernel K : X × X → R over some input space X , there is an
embedding φ : X → F of elements of X into a Hilbert space F , where the kernel computes
an inner product K(x, y) = 〈φ(x), φ(y)〉F given x, y ∈ X . Hilbert spaces associated with a
kernel are known as reproducing kernel Hilbert spaces (RKHS). Kernels are used extensively
in machine learning for learning relations between arbitrary structured data. In this paper,
we use kernels over permutations to develop a notion of the quality of finite point sets for
the Shapley value estimation problem, and for the optimisation of such point sets. For this
task, we investigate three established kernels over permutations: the Kendall, Mallows, and
Spearman kernels.

The Kendall and Mallows kernels are defined in Jiao and Vert (2015). Given two per-
mutations σ and σ′ of the same length, both kernels are based on the number of concordant
and discordant pairs between the permutations:

ncon(σ, σ′) =
∑
i<j

[1σ(i)<σ(j)1σ′(i)<σ′(j) + 1σ(i)>σ(j)1σ′(i)>σ′(j)]

ndis(σ, σ
′) =

∑
i<j

[1σ(i)<σ(j)1σ′(i)>σ′(j) + 1σ(i)>σ(j)1σ′(i)<σ′(j)]

Assuming the length of the permutation is d, the Kendall kernel, corresponding to the
well-known Kendall tau correlation coefficient (Kendall (1938)), is

Kτ (σ, σ′) =
ncon(σ, σ′)− ndis(σ, σ

′)(
d
2

) .

The Mallows kernel, for λ ≥ 0, is defined as

Kλ
M (σ, σ′) = e−λndis(σ,σ

′)/(d2).
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Here, the Mallows kernel differs slightly from that of Jiao and Vert (2015). We normalise
the ndis(σ,σ′) term relative to d, allowing a consistent selection of the λ parameter across
permutations of different length.

While the straightforward implementation of Kendall and Mallows kernels is of order
O(d2), a O(d log d) variant based on merge-sort is given by Knight (1966).

Note that Kτ can also be expressed in terms of a feature map of
(
d
2

)
elements,

Φτ (σ) =

 1√(
d
2

)(1σ(i)>σ(j) − 1σ(i)<σ(j))


1≤i<j≤d

so that
Kτ (σ, σ′) = Φ(σ)TΦ(σ′).

The Mallows kernel corresponds to a more complicated feature map, although still finite
dimensional, given in Mania et al. (2018).

We also define a third kernel based on Spearman’s ρ. The (unnormalised) Spearman
rank distance

dρ(σ, σ
′) =

d∑
i=1

(σ(i)− σ′(i))2 = ||σ − σ′||22

is a semimetric of negative type (Diaconis (1988)), therefore we can exploit the relationship
between semimetrics of negative type and kernels from Sejdinovic et al. (2013) to obtain a
valid kernel. Writing the product

∑d
i=0 σ(i)σ(i)′ using vector notation as σTσ′, we have

d(σ, σ′) = K(σ, σ) +K(σ′, σ′)− 2K(σ, σ′)

dρ(σ, σ
′) = σTσ + σ′Tσ′ − 2σTσ′

=⇒ Kρ(σ, σ
′) = σTσ′

and the kernel’s feature map is trivially

Φρ(σ) = σ.

Before introducing sampling algorithms, we derive an additional property for the above
kernels: analytic formulas for the expected value evaluated at some fixed point σ and
values drawn from a given probability distribution σ′ ∼ p. The distribution of interest for
approximating (2) is the uniform distribution U . The expected value is straightforward to
obtain for the Spearman and Kendall kernel:

∀σ ∈ Π, Eσ′∼U [Kρ(σ, σ
′)] =

d(d+ 1)2

4

∀σ ∈ Π, Eσ′∼U [Kτ (σ, σ′)] = 0

The Mallows kernel is more difficult. Let X be a random variable representing the number
of inversions over all permutations of length d. Its distribution is studied in Muir (1898),
with probability generating function given as

φd(x) =
d∏
j=1

1− xj

j(1− x)
.
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There is no convenient form in terms of standard functions for its associated density func-
tion. From the probability generating function of X, we obtain the moment generating
function:

Md(t) = φd(e
t)

=
d∏
j=1

1− etj

j(1− et)

= E[etX ]

The quantity ndis(I, σ), where I is the identity permutation, returns exactly the number of
inversions in σ. Therefore, we have

Md(−λ/
(
d
2

)
) = E[e−λX/(

d
2)]

= Eσ′∼U [KM (I, σ′)].

The quantity ndis is right-invariant in the sense that ndis(σ, σ
′) = ndis(τσ, τσ

′) for τ ∈ Sd

(Diaconis (1988)), so

∀τ ∈ Sd, Eσ′∼U [KM (I, σ′)] = Eσ′∼U [KM (τI, τσ′)]

= Eσ′∼U [KM (τI, σ′)]

∀σ ∈ Sd, Eσ′∼U [KM (I, σ′)] = Eσ′∼U [KM (σ, σ′)]

=
d∏
j=1

1− e−λj/(
d
2)

j(1− e−λ/(
d
2))
,

We now describe two greedy algorithms for generating point sets improving on simple
Monte Carlo—kernel herding and sequential Bayesian quadrature.

3.1 Kernel Herding

A greedy process called “kernel herding” for selecting (unweighted) quadrature samples in
a reproducing kernel Hilbert space is proposed in Chen et al. (2010). The sample n+ 1 in
kernel herding is given by

xn+1 = arg max
x

[
Ex′∼p[K(x, x′)]− 1

n+ 1

n∑
i=1

K(x, xi)
]

(6)

which can be interpreted as a greedy optimisation process selecting points for maximum
separation, while also converging on the expected distribution p. In the case of Shapley
value estimation, the samples are permutations σ ∈ Sd and p is a uniform distribution with
p(σ) = 1

σ! ,∀σ ∈ Sd.
Kernel herding has time complexity O(n2) for n samples, assuming the argmax can

be computed in O(1) time and Ex′∼p[K(x, x′)] is available. We have analytic formulas for
Ex′∼p[K(x, x′)] from the previous section for the Spearman, Kendall, and Mallows kernels,
and they give constant values depending only on the size of the permutation d. We compute
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an approximation to the argmax in constant time by taking a fixed number of random
samples at each iteration and retaining the one yielding the maximum.

If certain conditions are met, kernel herding converges at the rate O( 1
n), an improvement

over O( 1√
n

) for standard Monte Carlo sampling. According to Chen et al. (2010), this

improved convergence rate is achieved if the RKHS is universal, and mild assumptions are
satisfied by the argmax (it need not be exact). Of the Spearman, Kendall and Mallows
kernels, only the Mallows kernel has the universal property (Mania et al. (2018)).

Next, we describe a more sophisticated kernel-based algorithm generating weighted sam-
ples.

3.2 Sequential Bayesian Quadrature

Bayesian Quadrature (O’Hagan (1991); Rasmussen and Ghahramani (2003)) (BQ) formu-
lates the integration problem,

Zf,p =

∫
f(x)p(x)dx

as a Bayesian inference problem. Standard BQ imposes a Gaussian process prior on f with
zero mean and kernel function K. A posterior distribution is inferred over f conditioned
on a set of points (x0, x1, · · · , xn). This implies a distribution on Zf,p with expected value

EGP [Z] = zTK−1f(X)

where f(X) is the vector of function evaluations at points (x0, x1, · · · , xn), K−1 is the inverse
of the kernel covariance matrix, and zi = Ex′∼p[K(xi, x

′)]. Effectively, for an arbitrary set
of points, Bayesian quadrature solves the linear system Kw = z to obtain a reweighting of
the sample evaluations, yielding the estimate

Z ' wT f(X).

An advantage of the Bayesian approach is that uncertainty is propagated through to
the final estimate. Its variance is given by

V[Zf,p|f(X)] = Ex,x′∼p[K(x, x′)]− zTK−1z. (7)

This variance estimate is used in Huszár and Duvenaud (2012) to develop sequential
Bayesian quadrature (SBQ), a greedy algorithm selecting samples to minimise Equation 7.
This procedure, summarised in Algorithm 1, is shown by Huszár and Duvenaud (2012) to
be related to optimally weighted kernel herding.

SBQ has time complexity O(n3) for n samples if the argmin takes constant time, and
an O(n2) Cholesky update algorithm is used to form K−1, adding one sample at a time.
In general, exact minimisation of Equation 7 is not tractable, so as with kernel herding, we
approximate the argmin by drawing a fixed number of random samples and choosing the
one yielding the minimum variance.

3.3 Error Analysis in RKHS

Canonical error analysis of quasi Monte-Carlo quadrature is performed using the Koksma-
Hlawka inequality (Hlawka (1961); Niederreiter (1992)), decomposing error into a product
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Algorithm 1: Sequential Bayesian Quadrature

Input: n, kernel K, sampling distribution p, integrand f
1 X0 ← RandomSample(p)
2 K−1 = I // Inverse of covariance matrix

3 z0 ← Ex′∼p[K(X0, x
′)]

4 for i← 2 to n do
5 Xi ← arg min

x
Ex,x′∼p[K(x, x′)]− zTK−1z

6 y ← ~0
7 for j ← 1 to i do
8 yj = K(Xi, Xj)

9 K−1 ← CholeskyUpdate(K−1, y)
10 zi ← Ex′∼p[K(Xi, x

′)]

11 w = zTK−1

12 return wT f(X)

of function variation and discrepancy of the sample set. We derive a version of this in-
equality for Shapley value approximation in terms of reproducing kernel Hilbert spaces.
Our derivation mostly follows Hickernell (2000), with modification of standard integrals
to weighted sums of functions on Sd, allowing us to calculate discrepancies for point sets
generated by kernel herding and SBQ with permutation kernels. The analysis is performed
for the Mallows kernel, which is known to be a universal kernel (Mania et al. (2018)).

Given a symmetric, positive definite kernel K, we have a unique RKHS F with inner
product 〈·, ·〉K and norm || · ||K , where the kernel reproduces functions f ∈ F by

f(σ) = 〈f,K(·, σ)〉K .

Define error functional

Err(f,Π, w) =
1

d!

∑
σ∈Sd

f(σ)−
∑
τ∈Π

wτf(τ),

where Π is a sample set of permutations and wτ is the associated weight of sample τ . Because
the Mallows kernel is a universal kernel, the Shapley value component functions f(σ) belong
to F . Given that Err(f,Π, w) is a continuous linear functional on F and assuming that
it is bounded, by the Riesz Representation Theorem, there is a function ξ ∈ F that is its
representer: Err(f,Π, w) = 〈ξ, f〉K . Using the Cauchy-Schwarz inequality, the quadrature
error is bounded by

|Err(f,Π, w)| = |〈ξ, f〉K | ≤ ||ξ||K ||f ||K = D(Π, w)V (f)

where D(Π, w) = ||ξ||K is the discrepancy of point set Π with weights w and V (f) = ||f ||K
is the function variation. The quantity D(Π, w) has an explicit formula. As the function ξ
is reproduced by the kernel, we have:

ξ(σ′) = 〈ξ,K(·, σ′)〉K = Err(K(·, σ′),Π, w)

=
1

d!

∑
σ∈Sd

K(σ, σ′)−
∑
τ∈Π

wτK(τ, σ′).

10



Sampling Permutations for Shapley Value Estimation

Then the discrepancy can be obtained, using the fact that Err(f,Π, w) = 〈ξ, f〉K , by

D(Π, w) = ||ξ||k =
√
〈ξ, ξ〉K =

√
Err(ξ,Π, w)

=

 1

d!

∑
σ∈Sd

ξ(σ)−
∑
τ∈Π

wτξ(τ)

 1
2

=

(
1

d!

∑
σ∈Sd

 1

d!

∑
σ′∈Sd

K(σ, σ′)−
∑
τ∈Π

wτK(τ, σ)


−
∑
τ∈Π

wτ

 1

d!

∑
σ∈Sd

K(σ, τ)−
∑
τ ′∈Π

wτ ′K(τ, τ ′)

) 1
2

=

(
1

(d!)2

∑
σ,σ′∈Sd

K(σ, σ′)− 2

d!

∑
σ∈Sd

∑
τ∈Π

wτK(τ, σ) +
∑
τ,τ ′∈Π

wτwτ ′K(τ, τ ′)

) 1
2

=

(
Eσ,σ′∼U [K(σ, σ′)]− 2

∑
τ∈Π

wτEσ∼U [K(τ, σ)] +
∑
τ,τ ′∈Π

wτwτ ′K(τ, τ ′)

) 1
2

(8)

It can be seen that kernel herding (Equation 6) greedily minimises D(Π, w)2 with con-
stant weights 1

n , by examining the reduction in D(Π, 1
n)2 by addition of sample π to Π. The

kernel herding algorithm for sample σn+1 ∈ Π is

σn+1 = arg max
σ

[
Eσ′∼U [K(σ, σ′)]− 1

n+ 1

n∑
i=1

K(σ, σi)

]

Note that, since K(·, ·) is right-invariant, the quantity Eσ′∼U [K(σ, σ′)] does not depend on
σ, so the arg max above is simply minimizing

∑n
i=1K(σ, σi). On the other hand, denoting

the identity permutation by I,

D(Π, 1
n)2 −D(Π ∪ {π}, 1

n+1)2 = 2
∑

τ∈Π∪{π}

1

n+ 1
Eσ∼U [K(τ, σ)]− 2

∑
τ∈Π

1

n
Eσ∼U [K(τ, σ)]

+
∑
τ,τ ′∈Π

1

n2
K(τ, τ ′)−

∑
τ,τ ′∈Π∪{π}

1

(n+ 1)2
K(τ, τ ′)

= 2
n+ 1

n+ 1
Eσ∼U [K(I, σ)]− 2

n

n
Eσ∼U [K(I, σ)]

+
∑
τ,τ ′∈Π

2n+ 1

n2(n+ 1)2
K(τ, τ ′)− 2

∑
τ∈Π

1

(n+ 1)2
K(τ, π)

=
K(I, I)

(n+ 1)2
+
∑
τ,τ ′∈Π

2n+ 1

n2(n+ 1)2
K(τ, τ ′)

− 2

(n+ 1)2

∑
τ∈Π

K(τ, π)

11
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where both equalities use right-invariance. Note that the first two summands in the last
expression are constants (i.e., do not depend on the choice of π), so maximizing this quantity
is the same as minimizing

∑
τ∈ΠK(τ, π), i.e., the same as the kernel herding optimization

subproblem.

Furthermore, we can show Bayesian quadrature minimises squared discrepancy via op-
timisation of weights. Writing zi = Eσ′∼p[K(σi, σ

′)] and switching to vector notation we
have

D(Π, w)2 = c− 2wT z + wTKw,

where the first term is a constant not depending on w. Taking the gradient with respect to
w, setting it to 0, and solving for w, we obtain:

∇D(Π, w)2 = −2z + 2wTK = 0

w∗ = zTK−1, (9)

where (9) is exactly line 11 of Algorithm 1.

We use the discrepancy measure in (8) for numerical experiments in Section 5.2 to
determine the quality of a set of sampled permutations in a way that is independent of the
integrand f .

4. Sampling Permutations on Sd−1

Kernel herding and sequential Bayesian quadrature directly reduce the discrepancy of
the sampled permutations via greedy optimisation procedures. We now describe two ap-
proaches to sampling permutations of length d based on a relaxation to the Euclidean sphere
Sd−2 =

{
x ∈ Rd−1 : ‖x‖ = 1

}
, where the problem of selecting well distributed samples is

simplified. We describe a simple procedure for mapping points on the surface of this hyper-
sphere to the nearest permutation, where the candidate nearest neighbours form the vertices
of a Cayley graph inscribing the sphere. This representation provides a natural connection
between distance metrics over permutations, such as Kendall’s tau and Spearman’s rho,
and Euclidean space. We show that samples taken uniformly on the sphere result in a uni-
form distribution over permutations, and evaluate two unbiased sampling algorithms. Our
approach here is closely related to Plis et al. (2010), where an angular view of permutations
is used to solve inference problems.

4.1 Spheres, Permutahedrons, and the Cayley Graph

Consider the projection of permutations σ ∈ Sd as points in Rd, where the i-th coordinate is
given by σ−1(i). These points form the vertices of a polytope known as the permutohedron
(Guilbaud and Rosenstiehl (1963)). The permutohedron is a d − 1 dimensional object
embedded in d dimensional space, lying on the hyperplane given by

d∑
i=1

σ−1(i) =
d(d+ 1)

2
,

12
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Figure 1: Cayley Graph of d = 3 Figure 2: Cayley Graph of d = 4

with normal vector

~n =


1√
d

1√
d
...
1√
d

 , (10)

and inscribing the hypersphere Sd−2 lying on the hyperplane, defined by

d∑
i=1

σ−1(i)2 =
d(d+ 1)(2d+ 1)

6
.

Inverting the permutations at the vertices of the permutohedron gives a Cayley graph
of the symmetric group with adjacent transpositions as the generating set. Figure 1 shows
the Cayley graph for S3, whose vertices form a hexagon inscribing a circle on a hyperplane,
and Figure 2 shows the Cayley graph of S4 projected into 3 dimensions (its vertices lie
on a hyperplane in four dimensions). Each vertex σ−1 in the Cayley graph has d − 1
neighbours, where each neighbour differs by exactly one adjacent transposition (one bubble-
sort operation). Critically for our application, this graph has an interpretation in terms of
distance metrics on permutations. The Kendall-tau distance is the graph distance in the 1-
skeleton of this polytope, and Spearman distance is the squared Euclidean distance between
two vertices (Thompson (1993)). Additionally, the antipode of a permutation is its reverse
permutation. With this intuition, we use the hypersphere as a continuous relaxation of the
space of permutations, where selecting samples far apart on the hypersphere corresponds
to sampling permutations far apart in the distance metrics of interest.

We now describe a process for sampling from the set of permutations inscribing Sd−2.
First, shift and scale the permutohedron to lie around the origin with radius r = 1. The
transformation on vertex σ−1 is given by

σ̂−1 =
σ−1 − µ
||σ−1||

, (11)

where µ = (d+1
2 , d+1

2 , · · · ) is the mean vector of all permutations.

13
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Now select some vector x of dimension d− 1, say, uniformly at random from the surface
of Sd−2. Project x onto the hyperplane in Rd using the following matrix d− 1× d matrix:

U =


1 −1 0 . . . 0
1 1 −2 . . . 0

...
. . .

1 1 1 . . . −(d− 1)


It is easily verifiable that this basis of row vectors is orthogonal to hyperplane normal ~n.
Normalising the row vectors of U gives a transformation matrix Û used to project vector x
to the hyperplane by

x̃ = ÛTx,

so that

x̃T~n = 0.

Given x̃, find the closest permutation σ̂−1 by maximising the inner product

ŷ = arg max
σ̂−1

x̃T σ̂−1. (12)

This maximisation is simplified by noting that σ̂−1 is always a reordering of the same con-
stants (σ̂−1 is a scaled and shifted permutation). The inner product is therefore maximised
by matching the largest element in σ̂−1 against the largest element in x̃, then proceeding to
the second-largest, and so on. Thus the argmax is performed by finding the permutation
corresponding to the order type of x̃, which is order-isomorphic to the coordinates of x̃.
The output ŷ is a vertex on a scaled permutohedron - to get the corresponding point on the
Cayley graph, undo the scale/shift of Eq. 11 to get a true permutation, then invert that
permutation:

y = inverse(ŷ||σ−1||+ µ). (13)

In fact, both Eq. 12 and 13 can be simplified via a routine argsort, defined by

argsort(a) = b

such that

ab0 ≤ ab1 ≤ · · · ≤ abn .

In other words, b contains the indices of the elements of a in sorted position.

Algorithm 2 describes the end-to-end process of sampling. We use the algorithm of
Knuth (1997) for generating points uniformly at random on Sd−2: sample from d− 1 inde-
pendent Gaussian random variables and normalise the resulting vector to have unit length.
We now make the claim that Algorithm 2 is unbiased.

Theorem 1 Algorithm 2 generates permutations uniformly at random, i.e., Pr(σ) = 1
d! ,∀σ ∈

Sd, from a uniform random sample on Sd−2.

14
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Algorithm 2: Sample permutation from Sd−2

Output: σ, a permutation of length d
1 x← N(0, 1) // x is a vector of d− 1 i.i.d. normal samples

2 x← x
||x|| // x lies uniformly on Sd−2

3 x̃ = ÛTx
4 σ ← argsort(x̃) // σ is a uniform random permutation

Proof The point x ∈ Sd−2 from Algorithm 2, Line 2, has multivariate normal distribution
with mean 0 and covariance Σ = aI for some scalar a and I as the identity matrix. x̃ = ÛTx
is an affine transformation of a multivariate normal and so has covariance

Cov(x̃) = ÛTΣÛ

= aÛT IÛ

= aÛT Û

The d× d matrix ÛT Û has the form

ÛT Û =


d−1
d

−1
d . . . −1

d
−1
d

d−1
d . . . −1

d
...

. . .
−1
d

−1
d . . . d−1

d


with all diagonal elements d−1

d and off diagonal elements −1
d , and so x̃ is equicorrelated. Due

to equicorrelation, x̃ has order type such that ∀x̃i, x̃j ∈ x, i 6= j : Pr(x̃i < x̃j) = 1
2 . In other

words, all orderings of x̃ are equally likely. The function argsort implies an order-isomorphic
bijection, that is, argsort returns a unique permutation for every unique ordering over its
input. As every ordering of x̃ is equally likely, Algorithm 2 outputs permutations σ ∈ Sd

with p(σ) = 1
d! ,∀σ ∈ Sd.

Furthermore, Equation 12 associates a point on the surface of Sd−2 to the nearest per-
mutation. This implies that there is a Voronoi cell on the same surface associated with
each permutation σi, and a sample x̃ is associated with σi if it lands in its cell. Figure 3
shows the Voronoi cells on the hypersphere surface for d = 4, where the green points are
equidistant from nearby permutations. A corollary of Theorem 1 is that these Voronoi cells
must have equal measure, which is easily verified for d = 4.

4.2 Orthogonal Spherical Codes

Having established an order isomorphism Sd−2 → Sd, we consider selecting well-distributed
points on Sd−2. Our first approach, described in Algorithm 3, is to select 2(d−1) correlated
samples on Sd−2 from a basis of orthogonal vectors. Algorithm 3 uses the Gram-Schmidt
process to incrementally generate a random basis, then converts each component and its re-
verse into permutations by the same mechanism as Algorithm 2. The cost of each additional
sample is proportional to O(d2). This sampling method is related to orthogonal Monte Carlo
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Algorithm 3: Sample k = 2(d− 1) permutations from d− 2

1 X ∼ N(0, 1)k/2,d // iid. normal random Matrix

2 Y ← 0k,d // Matrix storing output permutations

3 for i← 1 to k/2 do
4 for j ← 1 to i do
5 Xi ← Xi −XjX

T
i ·Xj // Gram-Schmidt process

6 Xi ← Xi

||Xi||

7 Y2i ← argsort(ÛTXi)

8 Y2i+1 ← argsort(ÛT (−Xi))

9 return Y

techniques discussed in Choromanski et al. (2019). Writing v([σ]i−1∪{i})−v([σ]i−1) = gi(σ),
the Shapley value estimate for samples given by Algorithm 3 is

S̄h
orth
i (v) =

1

n

n/k∑
`=1

k∑
j=1

gi(σ`j), (14)

where (σ`1, σ`2, · · · , σ`k) are a set of correlated samples and n is a multiple of k.

Proposition 1 S̄h
orth
i (v) is an unbiased estimator of Shi(v).

Proof The Shapley value Shi(v) is equivalently expressed as an expectation over uniformly
distributed permutations:

Shi(v) =
1

|N |!
∑
σ∈Sd

[
v([σ]i−1 ∪ {i})− v([σ]i−1)

]
Shi(v) = Eσ∼U [gi(σ)]

The distribution of permutations drawn as orthogonal samples is clearly symmetric, so
p(σ`,j) = p(σ`,m) for any two indices j,m in a set of k samples, and E[gi(σ`,j)] = E[gi(σ`,m))] =
E[gi(σ

ortho)]. As the estimator (14) is a sum, by the linearity of expectation

E[S̄h
orth
i (v)] =

1

n

n/k∑
`=1

k∑
j=1

E[gi(σ`j)] = E[gi(σ
ortho)].

By Theorem 1, the random variable σortho has a uniform distribution if its associated sample
x ∈ Sd−2 is drawn with uniform distribution. Let x be a component of a random orthogonal
basis. If the random basis is drawn with equal probability from the set of orthogonal
matrices of order d − 1 (i.e. with Haar distribution for the orthogonal group), then it
follows that E[gi(σ

ortho)] = Eσ∼U [gi(σ)]. The Gram-Schmidt process applied to a square
matrix with elements as i.i.d. standard normal random variables yields a random orthogonal
matrix with Haar distribution (Mezzadri (2006)). Therefore

Shi(v) = Eσ∼U [gi(σ)] = Eσ∼U [gi(σ)]

= E[S̄h
orth
i (v)]
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The variance of the estimator (14) can be analysed similarly to the antithetic sampling
of Section 2.4 to k correlated random variables. By extension of the antithetic variance in
Equation 4, we have

Var(S̄h
orth
i (v)) =

1

n

n/k∑
`=1

k∑
j,m=1

Cov(g(σ`j), g(σ`m)).

The variance is therefore minimised by selecting k negatively correlated samples. Our
experimental evaluation in Section 5 suggests that, for the domain of interest, orthogonal
samples on the sphere are indeed strongly negatively correlated, and the resulting estimators
are more accurate than standard Monte Carlo and antithetic sampling in all evaluations.

Samples from Algorithm 3 can also be considered as a type of spherical code. Spherical
codes describe configurations of points on the unit sphere maximising the angle between
any two points (see Conway et al. (1987)). A spherical code A(n, φ) gives the maximum
number of points in dimension n with minimum angle φ. The orthonormal basis and its
antipodes trivially yield the optimal code A(d− 1, π2 ) = 2(d− 1).

From their relative positions on the Cayley graph we obtain bounds on the Kendall
tau kernel Kτ (σ, σ′) from Section 3 for the samples of Algorithm 3. The angle between
vertices of the Cayley graph is related to Kτ (σ, σ′) in that the maximum kernel value of
1 occurs for two permutations at angle 0 and the minimum kernel value of -1 occurs for a
permutation and its reverse, separated by angle π. As the angle between two points (x, x′)
on Sd−2 increases from 0 to π, the kernel Kτ (σ, σ′) for the nearest permutations (σ, σ′)
increases monotonically and linearly with the angle, aside from quantisation error. If the
angle between two distinct points (x, x′) in our spherical codes is π

2 , we obtain via the map,
Sd−2 → Sd, the permutations (σ, σ′) such that

|Kτ (σ, σ′)| ≤ 1/2 + ε,

with some small constant quantisation error ε. Figure 4 shows k = 6 samples for the d = 4
case. This is made precise in the following result. Note that the statement and its proof are
in terms of σ and σ′ instead of their inverses (which label the vertices of the permutohedron
in our convention), for simplicity; without this change, the meaning is the same, since
ndis(σ, σ

′) = ndis(σ
−1, σ′−1) and A(σ)TA(σ′) = A(σ−1)TA(σ′−1) for any permutations σ,

σ′. First, let ρ =
√
d(d2 − 1)/12, so that the map A(y) = (y−µ)/ρ maps the permutohedron

to an isometric copy of Sd−2 centered at the origin in Rd, the intersection of the unit sphere
Sd−1 with the hyperplane orthogonal to ~n.

Theorem 2 Suppose σ, σ′ ∈ Sd. Then

−2+4

(
1−Kτ (σ, σ′)

2

)3/2

≤ A(σ)TA(σ′)−3Kτ (σ, σ′)+O(d−1) ≤ 2−4

(
1 +Kτ (σ, σ′)

2

)3/2

and, if A(σ)TA(σ′) = o(1), then

|Kτ (σ, σ′)| ≤ 1/2 + o(1).
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Figure 3: Voronoi cells on n-sphere Figure 4: Orthogonal spherical codes

The above result is a kind of converse to the so-called Rearrangement Inequality, which
states that the maximum dot product between a vector and a vector consisting of any
permutation of its coordinates is maximized when the permutation is the identity and
minimized when it is the reverse identity. Here, we show what happens in between: as one
varies from the identity to its reverse one adjacent transposition at a time, the dot product
smoothly transitions from maximal to minimal, with some variability across permutations
having the same number of inversions. Interestingly, we do not know if the above bound
is best possible. A quick calculation shows that, letting k ≈ d2−1/3 be an integer, the
permutation

π = (k, k − 1, . . . , 2, 1, k + 1, k + 2, . . . , d− 1, d)

has ν(π) = ITπ = d3(1/4 + o(1)), i.e, A(I)TA(π) ≈ 0. However, π admits d2(2−5/3 + o(1))
inversions, whence Kτ (I, π) ≈ 1− 2−2/3 ≈ 0.37 < 1/2.

Figure 5 shows the distribution of pairs of unique samples taken from random vectors,
versus unique samples from an orthogonal basis, at d = 10. Samples corresponding to
orthogonal vectors are tightly distributed around Kτ (σ, σ′) = 0, and pairs corresponding to
a vector and its antipodes are clustered at Kτ (σ, σ′) = −1. Figure 6 plots the bounds from
Theorem 2 relating the dot product of vectors on Sd−2 to the Kendall tau kernel at d = 15.

4.3 Sobol Sequences on the Sphere

We now describe another approach to sampling permutations via Sd−2, based on standard
quasi Monte Carlo techniques. Low discrepancy point sets on the unit cube Rd−2 may
be projected to Sd−2 via area preserving transformations. Such projections are discussed
in depth in Brauchart and Dick (2012); Hardin et al. (2016), where they are observed to
have good properties for numerical integration. Below we define transformations in terms
of the inverse cumulative distribution of the generalised polar coordinate system and use
transformed high-dimensional Sobol sequences to obtain well-distributed permutations.

In the generalised polar coordinate system of Blumenson (1960), a point on Sd−2 is
defined by radius r and d−2 angular coordinates (r, ϕ1, ϕ2, · · · , ϕd−2), where (ϕ1, · · · , ϕd−3)
range from [0, π] and ϕd−2 ranges from [0, 2π].
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Figure 5: Sampling random pairs Figure 6: Bounds on Kτ (I, σ)

The polar coordinates on the sphere are independent and have probability density func-
tions

f(ϕd−2) =
1

2π
,

and for 1 ≤ j < d− 2:

f(ϕj) =
1

B(d−j−1
2 , 1

2)
sin(d−j−2)(ϕj),

where B is the beta function. The above density function is obtained by normalising the
formula for the surface area element of a hypersphere to integrate to 1 (Blumenson (1960)).
The cumulative distribution function for the polar coordinates is then

Fj(ϕj) =

∫ ϕj

0
fj(u)du.

As per standard inverse transform sampling, we draw samples x ∈ [0, 1]d−2 uniformly from
the unit cube and project them to polar coordinates uniformly distributed on the sphere
as ϕj = F−1

j (xj). F−1
j can be obtained quickly via a root finding algorithm, such as the

bracketing method described in Press et al. (2007).

The points x ∈ [0, 1]d−2 are generated using the Sobol sequence (Sobol’ (1967)), also
referred to as (t, s)-sequences in base 2. Analogously to our discrepancy for functions of
permutations in Equation 8, derived with the Mallows kernel, Sobol points can be shown
to minimise a discrepancy for the kernel

K(x, x′) =
d∏
i=1

min(1− xj , 1− x′j)

with x, x′ ∈ [0, 1]d, where the discrepancy decreases at the rate O( (logn)d

n ) (see Dick and
Pillichshammer (2010)). Sobol points are relatively inexpensive to generate compared with
other algorithms discussed in this paper, although explicit convergence rates for discrepancy
on the cube do not translate to Sd−2 or Sd.
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Algorithm 4: Sobol Permutations

1 Function PolarToCartesian((r, ϕ1, ϕ2, · · · , ϕd−2)):
Output: ~x

2 for i← 1 to d− 1 do
3 xi ← r
4 for j ← 1 to i− 1 do
5 xi ← xi sinϕj

6 if i < d− 2 then
7 xi ← xi cosϕi

8 return x

9

10 Function SobolPermutations(n, d):
Output: Π

11 for i← 1 to n do
12 x← SobolPoint(i, n, d) // x has d− 2 elements

13 ϕ← ~0
14 for j ← 1 to d− 2 do
15 ϕj ← F−1j (xj) // Inverse CDF transformation

16 y ←PolarToCartesian(1, ϕ) // y has d− 1 elements

17 z ← ÛT y // z has d elements

18 Πi ← argsort(z)

19 return Π

20

Combining Sobol points with inverse transform sampling yields uniformly distributed
points on Sd−2. To map these points to permutations, we project from Rd−1 to the hyper-
plane in Rd containing the permutahedron (such that points are orthogonal to the normal
in Eq. 10) using the matrix Û , and apply argsort to obtain permutations.

Combining all of the above, Algorithm 4 describes the process of generating permutation
samples from a Sobol sequence. Figure 7 shows 200 Sobol points distributed on the surface
of the sphere. As our Sobol sequence and inverse CDF sampling generate points uniformly
distributed on the n-sphere, Theorem 1 applies, and Algorithm 4 samples permutations
from a uniform distribution in an unbiased way. Figure 8 shows the distribution of 1000
permutations sampled with d = 4, which is clearly uniform.

5. Evaluation

Sampling techniques are evaluated using two strategies: the root mean squared error
(RMSE) of Shapley value estimates as compared to exact Shapley values, and the dis-
crepancies of point sets with respect to the Mallows kernel. Machine learning models are
generated for the datasets listed in Table 1. The XGBoost algorithm by Chen and Guestrin
(2016) is used to generate gradient boosted decision tree models (GBDT). GBDT models
are used as they are nonlinear, yielding nontrivial Shapley values, but we also have access
to exact Shapley values for comparison. Exact values for GBDT models are computed via
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Figure 7: Sobol sphere Figure 8: Sobol permutations

Table 1: Datasets

name rows cols task ref

adult 48842 14 class Kohavi (1996)
breast cancer 699 30 class Mangasarian and Wolberg (1990)
cal housing 20640 8 regr Pace and Barry (1997)
make regression 1000 10 regr Pedregosa et al. (2011)

the domain-specific, polynomial-time, TreeShap algorithm of Lundberg et al. (2020), which
otherwise can be intractable to obtain. For each dataset/algorithm combination, models
are trained on the entire dataset, then Shapley values are evaluated for all features of 10
randomly chosen instances, using a background dataset of 100 instances to marginalise out
features. The root mean squared error is obtained by comparison to exact Shapley values.
This process is repeated 25 times to obtain error bars. In addition to the permutation-based
algorithms proposed in this paper, we evaluate and compare to algorithms sampling from
binary sets. For a fair comparison, all algorithms are evaluated according to number of
evaluations of v(S ∪ i) − v(S), written as ‘marginal evals’ on the x-axis of figures. If the
algorithm samples permutations, the number of marginal evaluations is proportional to nd,
where n is the number of permutations sampled.

5.1 Sampling Methods

Given three possible kernels for kernel herding, Bayesian quadrature, and sequential Bayesian
quadrature, as well as a free parameter for the (normalised) Mallows kernel, we first make
a comparison among kernels. Figure 9 shows the RMSE for Shapley value estimation using
various kernels with the kernel herding algorithm. The Mallows kernel with λ = 5 either
has the lowest error, or contains the lowest error inside its 95% confidence interval, on all 4
datasets. For this reason, as well as its superior theoretical properties (it is a universal ker-
nel), we use this configuration for subsequent experiments. Figure 10 shows the behaviour of
the Mallows kernel with different values for the λ parameter—it controls the rate of change
in the similarity measure as the number of discordant pairs between two permutations is
increased.
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(a) adult (b) breast cancer

(c) cal housing (d) make regression

Figure 9: Kernel herding with various kernels

22



Sampling Permutations for Shapley Value Estimation

Figure 10: Mallows kernel falloff Figure 11: Argmax trials

The kernel herding algorithm relies on an argmax procedure to select each new sam-
ple. Exact solutions are not easily available, so we rely on random sampling, where the
best sample of k trials is selected in each iteration. As the number of argmax samples
k is increased, the execution time increases linearly and the accuracy of the optimisation
procedure increases. Figure 11 shows the improvement in RMSE for kernel herding on the
cal housing dataset, with the Mallows kernel and λ = 5, by varying the number of argmax
trials from 5 to 50. We settle on 25 trials as a compromise between accuracy and runtime.

Due to the large number of algorithms under evaluation, we first compare the existing
algorithms from the literature, described in Section 2: plain Monte Carlo (MC), antithetic
sampling (MC-antithetic), multilinear extension (Owen), multilinear extension with anti-
thetic sampling (Owen-Halved), and stratified sampling (Stratified). Results are shown in
Figure 12.

As MC-antithetic has the lowest error in all cases, we compare it to the algorithms
introduced in this work: kernel herding (Herding), sequential Bayesian quadrature (SBQ),
orthogonal spherical codes (Orthogonal) and Sobol permutations (Sobol). As discussed
above, kernel methods use the Mallows kernel with λ = 5 and 25 argmax trials. Results
are shown in Figure 13. Sequential Bayesian quadrature is highly effective on the adult,
cal housing and make regression datasets, but it is also the most expensive method and
impractical to evaluate for n > 100. Herding is effective on the same datasets as SBQ, but
can take larger numbers of samples and so achieves the highest accuracies of any algorithm
for adult, cal housing and make regression. The breast cancer dataset exhibits different
properties, with Herding and SBQ both being outperformed by simple antithetic sampling.
Sampling with orthogonal spherical codes shows similar empirical performance to antithetic
sampling, but with better convergence on all datasets, and the lowest error of any algorithm
for breast cancer. The Sobol method is less effective for small numbers of samples, but
achieves better results than orthogonal sampling given sufficiently many samples, and is
cheaper to evaluate than herding or SBQ.
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(a) adult (b) breast cancer

(c) cal housing (d) make regression

Figure 12: Existing algorithms
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(a) adult (b) breast cancer

(c) cal housing (d) make regression

Figure 13: New algorithms
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Table 2: Discrepancy (lower is better)

Algorithm Herding MC-Anti Ortho SBQ Sobol
d n

10
10 0.259652 0.280529 0.262992 0.258927 0.274002
100 0.066303 0.090138 0.076668 0.064028 0.073511
1000 0.015502 0.028335 0.024012 - 0.01909

50
10 0.285612 0.289526 0.28641 0.285547 0.286821
100 0.08563 0.091634 0.07941 0.08531 0.084681
1000 0.024938 0.028939 0.025099 - 0.024717

200
10 0.29287 0.290015 0.289343 0.292625 0.288284
100 0.089084 0.091779 0.088869 0.089019 0.089375
1000 0.027349 0.029016 0.025562 - 0.025572

Table 3: Complexity in n

Algorithm Complexity

MC-Antithetic O(n)
Herding O(n2)
SBQ O(n3)
Orthogonal O(n)
Sobol O(n)

5.2 Discrepancy

Table 2 shows mean discrepancies over 25 trials for the various permutation sampling al-
gorithms, calculated as per Equation 8 using the Mallows kernel with λ = 5. We omit
results for SBQ at n = 1000 due to runtime. Computational complexity with respect to n
for each algorithm is listed in Table 3. At low dimension the methods directly optimising
discrepancy, herding and SBQ, achieve significantly lower discrepancies than other meth-
ods. For d = 10, n = 1000, herding achieves almost a twofold reduction in discrepancy over
antithetic sampling, directly corresponding to an almost twofold lower error bound under
the Koksma-Hlawka inequality. Antithetic sampling has a higher discrepancy than all other
methods here, except in one case, d = 200, n = 10, where it achieves lower discrepancy than
herding and SBQ. In general we see the orthogonal and Sobol methods are the most effec-
tive at higher dimenssions, collectively accounting for the lowest discrepancies at d = 200.
These results show that no single approach is best for all problems but all of the newly
introduced methods provide significant improvements over the status quo.

The discrepancies computed above are applicable beyond the applications discussed in
this paper. Tables 2 and 3 provide a reference for how to select samples of permutations
at a given computational budget and dimension, not just for Shapley value estimation, but
for any bounded function f : Sd → R.
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6. Conclusion

We show new techniques for the approximation of Shapley values in machine learning ap-
plications based on careful selection of samples from the symmetric group Sd. One set
of techniques draws on theory of reproducing kernel Hilbert spaces and the optimisation
of discrepancies for functions of permutations, and another exploits connections between
permutations and the hypersphere Sd−2. We perform empirical analysis of approximation
error against exact Shapley values, and also calculate discrepancies for generated sets of
permutations. The introduced sampling methods show improved convergence over existing
state-of-the-art methods in almost all cases. Our results show that kernel-based methods
are more effective for lower dimensional problems, and methods sampling from Sd−2 are
more effective for higher dimensional problems.
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Appendix A. Proof of Theorem 2 (See page 17)

Theorem 2 Suppose σ, σ′ ∈ Sd. Then

−2+4

(
1−Kτ (σ, σ′)

2

)3/2

≤ A(σ)TA(σ′)−3Kτ (σ, σ′)+O(d−1) ≤ 2−4

(
1 +Kτ (σ, σ′)

2

)3/2

and, if A(σ)TA(σ′) = o(1), then

|Kτ (σ, σ′)| ≤ 1/2 + o(1).

Proof For 1 ≤ a ≤ d−1, write ta ∈ Sd for the adjacent transposition of a and a+1, i.e., the
permutation so that ta(j) = j for j 6= a, a+ 1, ta(a) = a+ 1 and ta(a+ 1) = a. We interpret
a product of permutations to be their composition as functions. For a permutation π ∈ Sd,
write ν(π) for the quantity

∑d
j=1 jπ(j), and note that ν(I) =

∑d
j=1 j

2 = d(d+1)(2d+1)/6.
It is well-known that the number of inversions ndis(I, π) = |{(i, j) : i < j and π(i) >

π(j)}| in a permutation π equals the least k so that there exist a1, . . . , ak with

π =
k∏
i=1

tai . (15)

This quantity k is known as the “length” of π and is exactly the distance in the 1-skeleton
of the permutohedron representation of Sd. Furthermore, the ai can be obtained via bubble
sort, i.e., the product (15) begins with

tπ(1)−1tπ(1)−2 · · · t1

and proceeds recursively on π|{2,...,d}. Write πj for the product of the first j terms in (15)

for 1 ≤ j ≤ k, i.e., πj =
∏j
i=1 tai , with π0 = I. Then the pairs ej = {πj(aj), πj(aj + 1)}

are all distinct, because entries of π in one-line notation switch places at most once when
applying the adjacent transpositions, i.e., a larger value a, once it switches places with a
smaller value b immediately to its left, never switches place with b again. Furthermore, note
that

ν(πj+1)− ν(πj) = (jπj+1(aj) + (j + 1)πj+1(aj + 1))− (jπj(aj) + (j + 1)πj(aj + 1))

= (jπj(aj + 1) + (j + 1)πj(aj))− (jπj(aj) + (j + 1)πj(aj + 1))

= πj(aj + 1)− πj(aj),

a quantity which is always negative because the sequence of transpositions obtained above
only ever increases the number of inversions. Therefore, the collection {ej}kj=1 consists of k
distinct edges of a complete graph on {1, . . . , d} and

ν(π) = ν(πk) = ν(πk)− ν(I) +
d(d+ 1)(2d+ 1)

6

=
d(d+ 1)(2d+ 1)

6
+

k∑
j=1

πj(aj + 1)− πj(aj)

=
d(d+ 1)(2d+ 1)

6
−

k∑
j=1

wt(ej)
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where wt({a, b}) = |b− a|. By greedily selecting the highest-weight or lowest-weight edges
of the complete graph Kd weighted by wt(·), the quantity

∑k
j=1 wt(ej) is always at least

1 · (d− 1) + 2 · (d− 2) + · · ·+ (d−m) ·m =
(d+ 2m− 1)(d−m+ 1)(d−m)

6

where m is the smallest integer so that
∑d−m

j=1 (d− j) = (d+m− 1)(d−m)/2 ≤ k, because
the summands correspond to d− 1 edges of weight 1, d− 2 edges of weight 2, and so on up
to m edges of weight d−m. Similarly,

∑k
j=1 wt(ej) is at most

(d− 1) · 1 + (d− 2) · 2 + · · ·+M · (d−M) =
(d+ 2M − 1)(d−M + 1)(d−M)

6

where M is the largest integer so that
∑d−M

j=1 j = (d−M)(d−M + 1)/2 ≥ k, since in this
case we bound the total edge weight via 1 edge of weight d− 1, 2 edges of weight d− 2, and
so on up to d−M edges of weight M . Then, letting α = k/

(
d
2

)
(so that α ∈ [0, 1]),

m =

⌊√
4d2 − 4d− 8k + 1 + 1

2

⌋
= d
√

1− α± 1

M =

⌈
2d−

√
8k + 1 + 1

2

⌉
= d(1−

√
α)± 1

It is straightforward to verify that, if f(s) = (d+ 2s− 1)(d− s+ 1)(d− s)/6, then s = O(d)
implies f(s± 1) = f(s) +O(d2). So, letting α = k/

(
d
2

)
(so that α ∈ [0, 1])

ν(π) ≤ d(d+ 1)(2d+ 1)

6
− f(M)

=
d(d+ 1)(2d+ 1)

6
− f(d

√
1− α) +O(d2)

=
d3

3
− d3(1 + 2

√
1− α)(1−

√
1− α)2

6
+O(d2)

= d3

(
2

3
− α

2
− (1− α)3/2

3

)
+O(d2)

and

ν(π) ≥ d(d+ 1)(2d+ 1)

6
− f(m)

=
d3

3
− f(d(1−

√
α)) +O(d2)

=
d3

3
− d3(1 + 2(1−

√
α))(1− (1−

√
α))2

6
+O(d2)

= d3

(
1

3
− α

2
+
α3/2

3

)
+O(d2).
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(Note that the functions in parentheses meet for α = 0, 1.) Thus, applying the fact that
ν(σ′ ◦ σ−1) = IT (σ′ ◦ σ−1) = σTσ′, where we regard permutations both as functions π of
{1, . . . , d} and as vectors (π(1), . . . , π(d)),

2 + 2α3/2 ≤ 6σTσ′

d3
+O(d−1) + 3α ≤ 4− 2(1− α)3/2

Then, since

Kτ (σ, σ′) = 1− 2ndis(I, σ
′σ−1)(

d
2

) = 1− 2α

we have

1

4
+

(
1−Kτ (σ, σ′)

2

)3/2

≤ 3σTσ′

d3
+O(d−1)− 3Kτ (σ, σ′)

4
≤ 5

4
−
(

1 +Kτ (σ, σ′)

2

)3/2

.

Writing σ = ρx+ µ and σ′ = ρx′ + µ yields the first claim of the result, since then

σTσ′ =
d(d2 − 1)

12
A(σ)TA(σ′) +

d(d+ 1)2

4
.

For the second claim, note that, if σTσ′ = d3(1/4 + o(1)) (the expected value for random
permutations, corresponding to A(σ)TA(σ′) ≈ 0),

−2 + 4

(
1−Kτ (σ, σ′)

2

)3/2

≤ −3Kτ (σ, σ′) +O(d−1) ≤ 2− 4

(
1 +Kτ (σ, σ′)

2

)3/2

,

i.e.,
|Kτ (σ, σ′)| ≤ 1/2 + o(1).
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