
MATH 574, Practice Problems
Set Theory Problems
Prof. Joshua Cooper, Fall 2010

Determine which of the following statements are true and which are false, and prove your answer. (NB: The symbol ‘\’ has
the same meaning as ‘−’ in the context of set theory. Rosen uses the latter, but the former is actually more standard.)

1. If A ⊆ B and C ⊆ D, then A× C ⊆ B ×D.

2. There is a bijection between R and (0, 1).

3. If A ⊂ C and A ⊆ B ⊆ C, then either A ⊂ B or B ⊂ C.

4. For any three sets A, B, and C, (A ∪B)× C = (A× C) ∪ (B × C).

5. For any three sets A, B, and C, (A⊕B) ∪ C = (A ∪ C)⊕ (B ∪ C).

6. Suppose f, g ∈ AA, and f ◦ g = g ◦ f . Then f ◦ g = idA.

7. If f is a one-to-one function from the set X to the set Y and A,B ⊆ X, then f(A⊕B) = f(A)⊕ f(B).

8. If there is a bijection from the set A to the set B and from the set C to the set D, then there is a bijection between
AC and BD.

9. For any two sets A and B, B \ (B \A) = A.

10. There exists a one-to-one function f : Z× Z→ Z.

11. For any four sets A, B, C, and D, A ∪B ∩ C ∪D = A ∩B ∪ C ∩D.

12. Let f ∈ AA. Define A0 = A, A1 = f(A), A2 = f(A1), . . ., An = f(An−1) for n ≥ 1. Let A∗ =
⋂∞

j=0Aj . Then
f(A∗) ⊆ A∗.



Set Theory Problems: Solutions

1. True. Suppose (a, c) ∈ A×C. Then a ∈ A and, since A ⊆ B, we have that a ∈ B. Similarly, c ∈ C and C ⊆ D implies
c ∈ D. Therefore, a ∈ B and c ∈ D, so (a, c) ∈ B ×D. We may conclude that A× C ⊆ B ×D. �

2. True. There are many such bijections; the following is just one example. Define the function f : (0, 1) → R by
f(x) = tan(π(x− 1/2)). �

3. True. Suppose not. Then A ⊂ C, but A 6⊂ B and B 6⊂ C. Then it must be that A = B and B = C, so A = C,
contradicting the fact that A is a proper subset of C. �

4. True. Suppose (x, y) ∈ (A∪B)×C. Then x ∈ A∪B, so x ∈ A or x ∈ B. WLOG, we may assume x ∈ A. Then, since
y ∈ C, (x, y) ∈ (A×C), so (x, y) ∈ (A×C)∪ (B×C). We may conclude that (A∪B)×C ⊆ (A×C)∪ (B×C). In the
other direction: Suppose (x, y) ∈ (A×C)∪ (B×C). Then (x, y) ∈ A×C or (x, y) ∈ (B×C). WLOG, we may assume
(x, y) ∈ A×C. Then x ∈ A and y ∈ C. Since A ⊆ A∪B, we also have that x ∈ A∪B. Therefore, (x, y) ∈ (A∪B)×C,
and we may conclude that (A× C) ∪ (B × C) ⊆ (A ∪B)× C. Therefore, (A ∪B)× C = (A× C) ∪ (B × C). �

5. False. Let A = ∅, B = ∅, C = {∅}. Then (A ⊕ B) ∪ C = (∅ ⊕ ∅) ∪ {∅} = ∅ ⊕ {∅} = {∅}, but (A ∪ C) ⊕ (B ∪ C) =
(∅ ∪ {∅})⊕ (∅ ∪ {∅}) = {∅} ⊕ {∅} = ∅. �

6. False. Let A = R, f(x) = x2 and g(x) = x3. Then f ◦ g = (x2)3 = x6, and g ◦ f = (x3)2 = x6, but f ◦ g 6= idR.

7. True. Suppose that y ∈ f(A ⊕ B). Then there exists x ∈ A ⊕ B so that f(x) = y. Then x ∈ A \ B or x ∈ B \ A.
WLOG, we may assume x ∈ A \ B. Then x ∈ A, so f(x) ∈ f(A). Suppose f(x) ∈ f(B) as well, so that there exists
a z ∈ B with f(x) = f(z). Then, since f is one-to-one, it must be that z = x. But then x ∈ B, contradicting the
fact that x ∈ A \ B. Therefore, f(A ⊕ B) ⊆ f(A) ⊕ f(B). In the other direction: Suppose y ∈ f(A) ⊕ f(B). Then
y ∈ f(A) \ f(B) or y ∈ f(B) \ f(A). WLOG, we may assume the former. Then there is an x ∈ A so that f(x) = y.
Suppose x ∈ B as well. Then y = f(x) ∈ f(B), contradicting the fact that y ∈ f(A) \ f(B). Therefore, y ∈ A \B, and
we may conclude that f(A)⊕ f(B) ⊆ f(A⊕B). Since we have inclusion in both directions, f(A⊕B) = f(A)⊕ f(B).
�

8. True. Suppose f : A→ B and g : C → D are bijections; then g−1 exists. Then, for a function h ∈ AC , we may define
a function T : AC → BD by T (h) = f ◦ h ◦ g−1. That is, for d ∈ D, T (h)(d) = f(h(g−1(d))). Since g−1 : D → C, the
expression g−1(d) makes sense; because h : C → A and g−1(d) ∈ C, the expression h(g−1(d)) makes sense; and because
h(g−1(d)) ∈ A and f : A→ B, the expression f(h(g−1(d))) makes sense. It remains only to prove that R(h) = f ◦h◦g−1
is a bijection. To do so, we simply provide an inverse. Claim: R : h 7→ f−1 ◦ h ◦ g exists and is an inverse to T . To see
this, write

T ◦R(h) = f ◦ (f−1 ◦ h ◦ g) ◦ g−1

= (f ◦ f−1) ◦ h ◦ (g ◦ g−1)

= idB ◦ h ◦ idD

= h.

�

9. False. By way of counterexample, let B = {1, 2} and A = {2, 3}. Then B \ (B \A) = B \ {1} = {2} 6= A. �

10. True. We could simply note that both sets are countable, and therefore equinumerous, so there exists such an injection
(in fact, a bijection). However, it is more convincing to give an explicit example. Let f be defined as follows. When
applied to the pair (x, y) ∈ Z × Z, we first write each of |x| and |y| in base 8; call the resulting strings S and T .
Now, if x is negative, prepend the digit ’8’ to S to obtain a new string S′; do the same for y and T to obtain T ′.
Finally, concatenate S and T with a ’9’ between them, and interpret the result as an integer in base 10. (Example:
f(−10110, 5210) = 8145964, because 10110 = 1 · 6410 + 4 · 810 + 5 · 110 = 1458 and 5210 = 6 · 810 + 4 · 110 = 648.) It is
easy to see that this function is one-to-one. Indeed, if f(x, y) = z, then z contains exactly one digit ’9’ when written
in base 10; splitting the base 10 representation of z into the part to the left of the ’9’ and the part to the right of the
’9’ yields two nonnegative integers x′ and y′; if x′ begins with an ’8’ in base 10, then interpret the rest of it in base 8
and take its negative to obtain x; similarly, one may obtain y′.

Here is another example of an injection f : Z×Z→ Z. This one is actually a bijection! First of all, define g : Z→ Z+ by
g(x) = 2x if x > 0 and g(x) = −2x+ 1 if x ≤ 0. It is easy to check that this is a bijection. Defining g in this way lets us
switch the problem to finding a bijection between Z+×Z+ and Z+. We do so by defining the “walk the antidiagonals”
function described in class (and the text) – although it is modified slightly here so as always to go left-to-right instead
of back-and-forth. Let h(n,m) = (n2 + 2nm+m2 − n− 3m+ 2)/2. (It’s not hard to obtain this formula, although it
does take some thinking.) Then we can define f(x, y) = g−1(h(g(x), g(y))). �



11. False. To obtain a counterexample, let A = {1}, B = ∅, C = {1, 2}, and D = ∅. Then A∪B∩C∪D = {1}∩{1, 2}∪∅ =
{1} ∪ ∅ = {1}, while A ∩B ∪ C ∩D = ∅ ∪ {1, 2} ∩ ∅ = {1, 2} ∩ ∅ = ∅. �

12. True. Suppose x ∈ A∗. Then x ∈ Aj for all j ∈ N, so f(x) ∈ Aj for each j ≥ 1. Since A1 = f(A) ⊆ A, we also have
f(x) ∈ A = A0. Therefore, f(x) ∈ Aj for all j ∈ N, so f(x) ∈ A∗. We may conclude that f(A∗) ⊆ A∗. �


