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Abstract

Consider the following problem: how many collinear triples of points must a
transversal of Zn×Zn have? This question is connected with venerable issues in
discrete geometry. We show that the answer, for n prime, is between (n− 1)/4
and (n − 1)/2, and consider an analogous question for collinear quadruples.
We conjecture that the upper bound is the truth and suggest several other
interesting problems in this area.

In [4], Erdős offered a construction concerning the “Heilbronn Problem”. What
is the smallest A so that, for any choice of n points in the unit square, some triangle
formed by three of the points has area at most A? His elegant construction of a
point-set with large minimum-area triangle (∼ n−2) is as follows: take the smallest
prime p ≥ n, and let the set of points be {p−1(x, x2 (mod p)) : x ∈ Zp}. (If necessary,
throw out a few points so that there are n left.) It is easy to see that this set has
no three collinear points, and therefore any three points form a nondegenerate lattice
triangle – which must have area at least p−2/2 � n−2.

Another area in which collinear triples of points on a lattice arise is in connection
with the so-called “no-three-in-line” problem, dating back at least to 1917 ([1]). Is it
possible to choose 2n points on the n-by-n grid so that no three are collinear? Clearly,
if this is the case, then 2n is best possible. Guy and Kelly ([2]) conjecture that, for
sufficiently large n, not only is it true that every set of 2n points has a collinear triple,
but that it is possible to avoid collinear triples in a set of size (α− ε)n and impossible
to avoid them in a set of size (α + ε)n, where α = (2π2/3)1/3 ≈ 1.874 and ε > 0.

In this note, we address the question of when it is possible to avoid collinear
triples modulo n, particularly in the case of transversals (i.e., graphs of permutations)
and when n is prime.
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1 Results

Suppose that S is a subset of Zn × Zn. We say that a set of points X ⊂ S is
“collinear” if there are parameters a, b, c ∈ Zn so that each (i, j) ∈ X lies on the line
{(x, y) ∈ Zn ×Zn : ax + by = c}. If n is prime, the “slope” of a such a line is defined
to be ab−1 if b 6= 0 and ∞ otherwise. Clearly, each pair of points is collinear, and we
say that that slope of a pair of points is the slope of the line containing them. (It is
easy to see that this is well-defined.)

If f : Zn → Zn is some function, then we say that the “graph” of f is the set
{(x, f(x)) : x ∈ Zn}. Often we will say that a set of points of a function are collinear,
where really we mean that a set of points of its graph are.

We are interested in the number of collinear triples in subsets S of Zn × Zn, and
conditions guaranteeing that there is at least one. Note that, if n is prime, then if
|S| = m, then (m− 1)(n− 1) + 1 ≤ n2. Indeed, fix some point s ∈ S; then each line
through s contains n−1 points of Zn×Zn, plus s itself. If we count each line passing
through s and some other t ∈ S, then the total number of points is (m−1)(n−1)+1,
since the lines are pairwise disjoint except for s. Therefore the inequality holds, and
moreover, m ≤ n + 2. If some point s = (s1, s2) has the property that (t, s2) 6∈ S for
any t 6= s1, then (m − 1)(n − 1) + n ≤ n2, and therefore m ≤ n + 1. Finally, if s
has the property that (t1, s2) 6∈ S and (s1, t2) 6∈ S for any t1, t2 6= s1, then this count
yields (m − 1)(n − 1) + n + (n − 1) ≤ n2, i.e., m ≤ n. Therefore, in general, (1) a
set with no collinear triples can have at most n + 2 points, (2) a set with no collinear
triples which has some column (or row) containing only one point can have at most
n + 1 points, and (3) a set with no collinear triples which has a point lying in an
otherwise empty column and row can have at most n points. It is interesting to ask,
then, how many collinear triples must a permutation of Zn have? Define Ψ(n) to be
the minimum number of collinear triples in any permutation of Zn.

1.1 Permutations

Theorem 1. Suppose σ is a permutation of Zn for n > 2 prime. Then σ contains at
least one collinear triple of points, i.e., Ψ(n) > 0.

Proof. Suppose not. Note that for every pair of points in the graph of σ, the slope
of that pair must be in 1, . . . , n− 1. Partition the

(
n
2

)
pairs into classes according to

their slopes. Since there are n − 1 classes, at least n/2 pairs lie in some class. Each
of these pairs lies on some line of the same slope, and no two of them lie on the same
line, since then we would a collinear triple. Therefore, we have at least n/2 lines,
each of which contains two points. However, n is odd, so there are in fact at least
(n + 1)/2 disjoint lines containing two points. This amounts to n + 1 points in total,
a contradiction.

By the argument above, it is clear that the
(

n
2

)
pairs lie in at most (n− 1)2/2 =(

n
2

)
− (n− 1)/2 lines. Therefore, a natural question is to ask, if K pairs are assigned

to L families, what is the minimum number of triples occurring entirely within some
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family? That is, suppose G is a graph with K edges, and E(G) is partitioned into L
“lines” E1, . . . , EL. What is the least possible value of

L∑
i=1

(
|
⋃
Ei|

3

)
,

over all G and partitions {Ei}? Call this quantity T (K, L). If some G and a partition
of its edges achieves this bound, then the edges which belong to a given line must
span the minimum number of vertices. That is, if |Ei| = mi, then∣∣∣⋃ Ei

∣∣∣ =

⌈
1 +

√
1 + 8mi

2

⌉
=def τ(mi),

because this is the smallest number k so that
(

k
2

)
≥ mi. Therefore, T (K, L) is the

least possible value of

Trip(m1, . . . ,mL) =def

L∑
i=1

(
τ(mi)

3

)
over all L-tuples m1, . . . ,mL of nonnegative integers whose sum is K.

Write ρ(t) for t− 2 bt/2c, i.e., the parity of t.

Proposition 2. For K ≤ 3L, T (K, L) = max{d(K − L)/2e , 0}.

Proof. If K ≤ L, it is clear that we may set mi = 1 for 1 ≤ i ≤ K and mi = 0
otherwise, so that T (K, L) = 0. Therefore, suppose L < K ≤ 3L. We make the fol-
lowing claim: there is some partition K = m1+· · ·+mL minimizing Trip(m1, . . . ,mL)
which has b(K − L)/2c indices i so that mi = 3, ρ(K − L) indices i so that mi = 2,
K − 3 b(K − L)/2c − 2ρ(K − L) indices i so that mi = 1, and the other mi = 0. We
prove the claim by induction on K. The base case K = L we dealt with above. If
K = L + 1 or K = L + 2 then we may set m1 = K −L + 1 and mi = 1 for 2 ≤ i ≤ L,
resulting in Trip(m1, . . . ,mL) = 3, which is clearly best possible. Suppose, then, that
K ≥ L + 3.

By the pigeonhole principle, we may assume that m1 > 1 without loss of gener-
ality. Furthermore, since τ(2) = τ(3) and increasing m1 can only decrease

Trip(m2, . . . ,mL) = Trip(m1, . . . ,mL)−
(

τ(m1)

3

)
,

we have that m1 ≥ 3 unless K ≤ 2, i.e., we are in the base case. If m1 = 3, then

Trip(m1, . . . ,mL) = 1 + Trip(m2, . . . ,mL) = 1 +

⌈
K − 3− (L− 1)

2

⌉
=

⌈
K − L

2

⌉
.

If, on the other hand, m1 > 3, then τ(m1) ≥ 4 and L ≥ 2. In that case,

Trip(m1, . . . ,mL) =

(
τ(m1)

3

)
+ Trip(m2, . . . ,mL)
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=

(
τ(m1)

3

)
+

⌈
K − L−m1 + 1

2

⌉
≥ K − L + 1

2
+

(
m1

3

)
− m1

2

>

⌈
K − L

2

⌉
,

where the second line follows from induction and the fourth from the fact that
(

τ(m1)
3

)
−

m1

2
> 0 for m1 > 3. Since this contradicts the minimality of the partition, we must

have m1 = 3. Furthermore, there are

1 +

⌊
K − L− 2

2

⌋
=

⌊
K − L

2

⌋
indices i with mi = 3, ρ(K − L− 2) = ρ(K − L) indices i with mi = 2,

K − 3− 3 b(K − L− 2)/2c − 2ρ(K − L− 2) = K − 3 b(K − L)/2c − 2ρ(K − L)

indices i with mi = 1 and the rest zeroes.

We may apply this immediately to the original question by setting K =
(

n
2

)
and

L = (n− 1)2/2.

Corollary 3. For n > 2 prime, Ψ(n) ≥ d(n− 1)/4e.

On the other hand, we have the following.

Proposition 4. For n > 2 prime, Ψ(n) ≤ (n− 1)/2.

Proof. Define the function f : Zn → Zn by f(x) = x−1 if x 6= 0 and f(0) = 0. This
is clearly a permutation, and we show that its graph has exactly (n− 1)/2 collinear
triples. First, suppose that 1 ≤ x < y < z ≤ n−1. It is easy to see that the condition
that (x, f(x)), (y, f(y)), and (z, f(z)) are collinear is equivalent to the statement that

(f(z)− f(x))(y − x)− (f(y)− f(x))(z − x) =

(z−1 − x−1)(y − x)− (y−1 − x−1)(z − x) = 0 (mod n).

Multiplying by xyz yields

y(x− z)(y − x)− z(x− y)(z − x) = (y − z)(x− z)(y − x) = 0,

which is impossible because x, y, and z are distinct. Therefore, if f exhibits a collinear
triple, it must have some point with abscissa 0. Without loss of generality, we may
assume that x = 0. Therefore, if 0 = x < y < z ≤ n− 1,

z−1y − y−1z = 0,

so that y2 = z2, i.e., y = ±z. Since y 6= z, y = −z, and there are (p− 1)/2 unordered
triples of the type {0, y,−y}.
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x Ψ(x) x Ψ(x) x Ψ(x)

1 0 7 3 13 6
2 0 8 0 14 9
3 1 9 5 15 6
4 0 10 2 16 4
5 2 11 5 17 8
6 0 12 0 18 ≤ 16

Table 1: The first 18 values of Ψ(x).

In fact, we believe the following to be true.

Conjecture 1. Ψ(n) = (n− 1)/2 for n > 2 prime.

We have included computational data supporting this conjecture in Table 1.

Problem 2. What about n composite?

About this question, unfortunately, we can say nothing.

Note that, by the proof of Proposition 4, any fractional linear transformation of
the form (ax+b)/(cx+d) with c 6= 0 (along with −dc−1 7→ ac−1) gives rise to (n−1)/2
collinear triples for n > 2 prime.

Conjecture 3. The function

g(x) =

{
x/(x− 1) if x 6= 1
1 if x = 1

is the lexicographic-least permutation with (n−1)/2 collinear triples for n > 2 prime.

1.2 Quadruples

The permutation from Proposition 4 has the property that, if we remove the point
(0, 0), the resulting graph is a collinear triple-free set of n−1 points with no two on a
single row or column – showing that Theorem 1 is tight. A moment’s reflection also
reveals that it has no collinear 4-tuple.

There are permutations with many collinear triples which have no collinear 4-
tuples, however. Consider h(x) = x3, a function on Zn, where n > 2 is prime and
congruent to 2 mod 3. Then h is a permutation, since the unique solution of x3 = c
(mod n) is x = c(n−1)/3 (mod n). Clearly, x3−ax−b = 0 has at most three solutions,
so no line intersects the graph of h (or h0) in four points. Furthermore, x3 − ax − b
cannot have exactly two roots in Zn unless it has a double root, since

x3 − ax− b = (x− r1)(x− r2)(x− r3)
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implies that r3 = br−1
1 r−1

2 unless r1 = 0 or r2 = 0. If r1 = 0, then x3 − ax − b =
x3 − x2(r2 + r3) + xr2r3, so r3 = −r2, and either both r2 and r3 are in Zn or neither
is. (The same holds for r1 and r3 if r2 = 0.) If it has a double root, then

x3 − ax− b = (x− r1)
2(x− r2) = x3 − (2r1 + r2)x

2 + (r2
1 + 2r1r2)x− r2

1r2,

so r2 = −2r1. Therefore, a = 3r2
1 and b = −2r3

1. This gives n − 1 lines containing
exactly two points (r1 = 0 gives a triple root).

Each of the X collinear triples of h contains three pairs of points. No pair is
contained in two triples, since two collinear triples that intersect in two points form a
collinear quadruple. Furthermore, only n−1 pairs are not contained in some collinear
triple, so we have 3X + (n − 1) =

(
n
2

)
, or X = (n − 1)(n − 2)/6. We may conclude

that, for each prime n > 2 congruent to 2 mod 3, there is some permutation with
(n− 1)(n− 2)/6 collinear triples, but no collinear quadruples. Unfortunately, such a
construction cannot work for p = 1 (mod 3), since no cubic permutation polynomials
exist for such p (q.v. [3]).

Now, suppose that a permutation has X collinear triples but no collinear quadru-
ples. Each of the X triples contains three pairs of points and, again, each such
pair appearing in a triple appears in only one of them. Therefore, we must have
3X ≤ n(n− 1)/2, i.e., X ≤ bn(n− 1)/6c – and this holds for any n.

By the above observations, lim supn→∞CT (n)/n2 = 1/6. However, the question
remains what the lower bound is when n 6≡ 2 (mod 3), or when n is composite. There
is also a gap of about n/3 between the upper and lower bounds even in the case of
n ≡ 2 (mod 3). We also wish to know:

Problem 4. What is the maximum number CT0(n) of collinear triples in a subset of
Zn × Zn which has no collinear quadruples?

1.3 Pair Packing

We return to the argument of Proposition 2. Consider the following “greedy” process
for finding an assignment of K pairs to L lines. We proceed through the lines one at
a time, and when we reach Ei with K ′ pairs/edges unaccounted for, we place into it

min

{
K ′,

(
τ(dK ′/(L− i + 1)e)

2

)}
edges, arranged as a graph on τ(dK ′/(L− i + 1)e) vertices. That is, we distribute
the remaining edges as equally as possible into the remaining lines, but round the
number of edges we place into the current line Ei up to the nearest triangular number
whenever possible. One might conjecture that this process results in the optimal
configuration, i.e, minimizing T (K, L) – but it does not. Indeed, already for K = 28
and L = 2, the optimal configurations are (m1, m2) = (21, 5) and (20, 6), neither of
which has a line with mi = 15 =

(
τ(28/2)

2

)
.

Problem 5. Describe those configurations which achieve T (K, L).
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It is easy to see that, for each K and L, some optimal configuration has at most
one mi which is not a triangular number. Furthermore, if mi ≤ r for some r, then we
may move q points from the largest line mj =

(
a
2

)
+ q, 1 ≤ q ≤ a, to line i and in the

process change the number of total triples by(
τ(q + r)

3

)
−

(
a + 1

3

)
+

(
a

3

)
≤

(
τ(a + r)

3

)
−

(
a

2

)
.

Therefore, we have a contradiction if
(

τ(a+r)
3

)
<

(
a
2

)
. Since τ(x) ≤ 2 +

√
2x,(

τ(a + r)

3

)
≤

(2 +
√

2(a + r))3

6

For r large, a = 2r3/4 provides a contradiction. Therefore,

Proposition 5. If mini mi = r, r sufficiently large, in a configuration (m1, . . . ,mL)
achieving T (K, L), then maxi mi ≤ 2r3/2.

It is easy to see that the function

g(x) =

(
(1 +

√
1 + 8x)/2

3

)
=

x

6

(√
1 + 8x− 3

)
is concave-up for x ≥ 0. Therefore, by Jensen’s Inequality, T (K, L) ≥ Lg(K/L).
This, in particular, implies that the number of collinear triples in a subset of Zn×Zn

of cardinality X, n prime, is � X3/n2 when X/n →∞.
Surely, more than this can be said concerning Problem 5.
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