LECTURE 1.5: SHRINKING AND BOUNDEDLY-COMPLETE BASES

1. A DESCRIPTION OF THE DUAL

Recall that a Schauder basis (e;) for a Banach space is a sequence such that for every
x € X, there exists a unique scalar sequence (a,) such that > a,e, converges in norm to x.
In this case, it is known that there exists a constant K, called the basis constant of (e;) in
X, such that for all n € N, the projection P, : X — X given by P, > apnem =>

m=1 4mEm

has norm at most K. We refer to the projection P, as the n'*-basis projection. We say
(e;) C X is a basic sequence if it is a Schauder basis for its closed span.

Proposition 1.1. If (e;) is a basis for the Banach space X, then X* is the collection of all
w*-converging series Y .-, a;ef, which is the collection of all formal series > ;- a;ef such
that sup,, || > 1, aief]| is bounded.

Proof. First, we note that if sup, || > i, a;ef|| = C' < oo, then Y be; N > a;b; is a well-
defined, continuous, linear functional on X and > | a;ef — x* as n — oo. Indeed, for fixed
w*

x =) bie; € X and € > 0, there exists p such that for p < m < n, ||[(P, — Py)z| < e. Then

S b= I Zaz P.)(@))] < Ce.

i=m+1

Since € > 0 was arbitrary, we deduce that ) >°, a;b; is convergent, and z* is well-defined.
Moreover,

2]} = lim || Pu]| > lim C 1|Zal (P,z)| = C~Ya* (2],

whence ||z*|| < C' is continuous at 0. Of course, z* is linear, and therefore it is continuous.
Since x}, 1= > a;e} is bounded, in order to check that =¥ — z*, we need only check that
w*

*

xf(z) — 2*(x) for all z in a subset of X which has dense span in X. But obviously this

n

is true for the basis of X. Thus the formal series > .~ a;e;

identified with a member of X*.
If 2* € X*, then let a; = 2*(e;) for each ¢ € N. Then sup, || > i, aief|| = sup,, ||Pre*|| <
K||z*||. Thus every functional in X* arises as the w*-limit of partial sums of )", a;ef with

is w*-convergent and can be

sup,, || Y00, aief]| < oo. Of course, the identification * — > "°° a;ef is a bijection onto the
set of formal series with bounded partial sums with inverse Zloil a;e; — w*—lim,, Z?Zl a;e;.
Finally, if > | a;ef is w*-convergent to =*, then sup,, || Y"1 | a;ef|| < sup, ||Piz*|| < oo.

U
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2. SHRINKING BASES

Let us say that a Schauder basis (e;) for X is shrinking if (e¢]) is a basis for X*. Of course,

*

we know that (e]

¥) is always a Schauder basis for its closed span, so (e;) is shrinking if and

only if the span of (e}) is norm dense in X*. Moreover, one easily checks that the restriction

of P’ to [e;] is the n'™ basis projection of (e}), and therefore maps into [e].

Lemma 2.1. Let (¢;) be a Schauder basis for X. The following are equivalent.
(i) The basis (e;) is a shrinking basis for X.

(ii) For each x* € X*, lim,, ||a* — Plz*|| = 0.

(111) Every bounded block sequence in X is weakly null.

Proof. (i) = (ii) As we have already mentioned, P : [ef] — [e]] are the basis projections. If

(2
*

(e;) is shrinking, then (e}) is a basis for X*, whence lim, ||[z* — P*z*|| = 0 for any z* € X*.
(17) = (i77) Fix a bounded block sequence (x,,) in X and let C' = sup,, ||z, ||. Fix 2* € X*
and € > 0. Fix ny € N such that [[z* — P’z*|| < € for all n > ny. Then for all n > ny,

min supp(x,) > ng, and (I — P,,)z, = x,. Then
2" (zn)| = [2°(1 = Ppoa)| = |(z" — P a”)zn| < Ce.

Since € > 0 was arbitrary, *(x,) — 0. Since z* € X* was arbitrary, (z,) is weakly null.
(14i) = (i) Suppose there exists z* € X* such that |x*|
fix #; € By with finite support such that z*(x;) > . Let m; = maxsupp(z;). Next,

x*/lex] > € > 0. We may

suppose we have chosen x1,...,74,_1 C Bx, ni,...,n,_1 such that (z* — P;_ 2%)(x;) > ¢
and supp(z;) C [1,n,] for each 1 < i < k. Then since |[z* — Py _ 2*[| > ¢, there exists
7r € By having finite support such that (z* — P 2*)(zx) > €. Let ny = maxsupp(wzy).
This completes the recursive construction.

For each i € N, let y; = (I — P,,_,)z;. Note that supp(y;) C (n;—1,n;] and |[|y;]| <
14+ ||Py,_,|| < 1+ K. Therefore (y;) is a bounded block sequence. But by our choice,
x*(y;) = (2" — Py,_,x*)(x;) > ¢ for all i. Thus (y;) is a bounded block sequence which fails
to be weakly null.

O

Remark 2.2. The ¢; basis is the canonical example of a basis which fails to be shrinking.
The bases of £,, 1 < p < 0o, and ¢, are shrinking, since every bounded block sequence must
be weakly null.

Lemma 2.3. If (¢;) is an unconditional basis for X, then (e;) either ¢, embeds into X or
(e;) is shrinking, and exactly one of these alternatives holds.

Proof. Of course, both alternatives cannot hold simultaneously, since the shrinkingness of
(e;) implies the separability of X*, while the embeddability of ¢; into X implies the non-
separability of X™*.
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Suppose (e;) is non-shrinking. Then there exists a bounded block sequence (x,,) not weakly
null. By scaling by unimodular multiples and passing to a subsequence, we may assume there
exists * € Bx+ and € > 0 such that z*(z,) > ¢ for all n € N. This means that for any
non-negative scalars (a;)?,

n
||Za x| = Zaixi) 252@.
i=1

=1

If (e;) is K-unconditional, so is (xz), so that for any scalars,

n n
1Y il > /K ai,
=1 =1

and (z;) is equivalent to the ¢; basis.

3. BOUNDEDLY-COMPLETE BASES

We say a basis (e;) for X is boundedly-complete provided that if (a;) is a sequence of scalars
such that sup,, || >, a;€;|| < oo, then ) a;e; converges in norm.

Let ¢ : X — [ef]* be the map given by ¢(z)(D> ] aief) = > aef(x). Of course, since
lex] € X*, ||¢(x)| < ||z]|. For any x € X, for each n € N, we may fix z} such that
| Pox|| = 2 (P,z). Let y: = Px’ /K, where K is the basis constant of (e;). Then (y) lies in
the unit ball of [e¢f] and y%(x) = 2} (P.x)/K = ||Pyz||/K — ||z||/K. Thus ||¢(z)] = ||z||/ K,
and ¢ is an isomorphic embedding.

Note that ¢ is just the restriction of the image of x under the canonical embedding of X
into X** to [ef].

7

Proposition 3.1. Let (e;) be a basis and let H = [e]. The following are equivalent.

(i) The basis (e;) is boundedly-complete in X .
(i) If (,) is a block sequence bounded away from zero, supy || 20 || = oo.
(i1i) ¢ : X — H* is onto.
Proof. (i) = (i) Note that if (z;) is a block sequence, eX(32_, ;) = ex(32"_, ;) for each

7=1 7 1T
j >1i. Leta; = e} (Z"7 L 7;). Note that =N ase; = Py SN, ;, and therefore | SN | e <
K| 32N, 2], where K is the basis constant of (e;). Therefore if supy || SN, 2] < oo,
supy || SN | azeq|| < oo. Therefore S75° aze; converges. If mg = 0 and m,, = maxsupp(z,,)

for each n € N,

mn Mn—1
|2all = |l Zaiei - Z a;esl| — 0.

(17) = (i17) Fix f € H*. Let y, = Zl 1f( )ez, so that for any > a;ef € H,

(D aie)) ynl—lzaz = /(P Y ae))| < KJ|f]-
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This means (y,) must be norm convergent. Indeed, if it were not so, there would exist
ny < ...and € > 0 such that with z; = y; and zy = yn, — Yn,_, for k > 1, (x;) is a block
sequence in (e;) bounded away from 0 with sup,, || Y"1, z;|| = sup,, ||[y.|| < CK, contradicting
(77). Then (¢(y,)) is also norm convergent, and also converging w* to f in H*, so that f
must be the norm limit of (y,). To see that ¢(y,) - f, since (¢(y,)) is bounded, it is

sufficient to check that ¢(y,)(z*) — f(z*) for all 2* in a subset of H with dense span. But
by our choice of y,, ¢(y,)(eF) = f(ef) for all n > i.

(¢ii) = (i) Suppose (a;) is a scalar sequence such that sup,, || Y1, a;e;|| = C' < co. Then
sup,, || Yoi, aief*|| < oo, since ¢(e;) = e;*. We have already shown that > bief — > a;b;
defines a member of [ef]*. Then there exists x € X such that ¢(z) = f. Of course,
a; = f(ef) = ¢(x;)(ef) = ef(x) for each ¢ € N. Thus = ) a,e;, from which it follows that

> aje; is norm convergent.

O

Remark 3.2. The ¢j basis is the canonical example of a non-boundedly-complete basis. The
bases of £,, 1 < p < oo, are boundedly-complete.

Lemma 3.3. Suppose (e;) is an unconditional basis for X. Then either ¢y embeds into X
or (e;) is boundedly-complete. Exactly one of these two alternatives holds.

Proof. 1t follows from Proposition 3.1 that at most one of these two alternatives could hold.
Suppose (e;) is not boundedly-complete. Then there exists a seminormalized block sequence
(z,) such that supy || S22, 2, = C' < co. Then for any N € N and any (g,)Y_, with
leal = 1, | 20, enzn|| < CK, where K is the unconditionality constant of (e;). Note that
for any N € N and scalars (a;)Y, with a = maxjc;<y |ag,

N N
Zaixi € co{azgixi seil = 1} C aCK By,
i=1

=1

so that || SN, a,2]] < OK max;<cn |a;|. Since (r;) is seminormalized and basic, it domi-
nates the ¢y basis, and therefore (z;) is equivalent to ¢.
O

Proposition 3.4. Let (e;) be a Schauder basis. Then (e;) is shrinking (resp. boundedly-
complete) if and only if () is boundedly-complete (resp. shrinking).

Proof. Recall that X* can be identified with the set of all formal series > . a;ef with
bounded partial sums, [ef]* can be identified with the set of all formal series ) -, a;e;* with
bounded partial sums, and ¢(e;) = ef* for all ¢ € N. Then (e;) is shrinking if and only if
[ex], which is the set of formal series Y a;ef with bounded partial sums, is equal to the set of
> a;ef which norm converge, and so bounded partial sums are equivalen to norm convergent

in this case. Thus (e;) is shrinking if and only if (e) is boundedly-complete.
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Note that ¢ : X — [ef] is onto if and only if ¢(X) = ¢([e;]) = [o(e;)] = [ef*] = [ef]*, which

)

is precisely what it means for (e}) to be shrinking.
O

4. REFLEXIVITY

Lemma 4.1. The Banach space X admits a non-shrinking basic sequence if and only if it
admits a non-boundedly-complete basic sequence.

We omit the proof of this lemma, since the final theorem of this lecture will be to prove a
stronger result due to Zippin.

Lemma 4.2. If X is not reflexive, there exists a basic sequence (r,) C Bx which is not

weakly null.

Proof. Recall Helly’s theorem, which states that for any x** € X** any finite subset F
of X*, and any ¢ > 0, there exists x € X such that «**(z*) = 2*(x) for all z* € F and
]l < 2=l +e.

Suppose X is not reflexive. We may fix ** € X** such that

1/2 < [|z™]

By the Hahn-Banach theorem, there exists *** € X** such that ||z™*| < 2, 2**(2*") =,

kkk

and z***|x = 0. Fix a sequence of positive numbers (g,) such that [[(1 — &,)"' < 2.
Recursively apply Helly’s theorem to obtain (z,,) C Bx, (xf) C 2Bx+, and finite sets & =
Fy C Fy C F5 C ... of Bx- such that for all n € N,

(i) for all y™ € [z; — 2™ : 1 <@ < nf, maxg-cp, [y (27)] = (1 —en)lly™]],

(i) for all z* € F,,_y U{a},...,a}_}, o™ (2*) = 2*(x,),

(iii) for all y** € {x1,..., &p_1, 2}, 2k (y*) = ().

Conditions (i) and (ii) guarantee that (z, —x**) is 2-basic. Then [ —z**®@z™** : [z, —x**] —
[z, is an isomorphism between these spaces with inverse I + 2** ® 2***, therefore (z,, — z**)
and (x,) are || + 2™ ® ||| — 2** @ *™*|| < 9-equivalent, and (z,) is bounded and

18-basic. Moreover, for any n € N,
1 = I***(I**) _ x**(w’{) = q;’{(xn)’

whence (z,,) is not weakly null.
U

Lemma 4.3 (James). If (e;) is a basis for X, then X is reflexive if and only if (e;) is both
shrinking and boundedly-complete.

Proof. (e;) is both shrinking and boundedly-complete if and only if (e;) and (e}) are both

(2

shrinking. Then X* = [ef] and X** = [ef]*. Moreover, ¢ : X — [e|* = X™* defined before

1



6 LECTURE 1.5: SHRINKING AND BOUNDEDLY-COMPLETE BASES

Proposition 3.1 is simply the canonical embedding into the second dual, and is onto if (e;)
is boundedly-complete. Therefore X is reflexive in this case.

Next, suppose X is reflexive. Suppose (z,,) is a bounded block sequence in (e;) not weakly
null. Then there exists ¢ > 0 and z* € X* such that, by passing to a subsequence, we
may assume |z*(z,)| > ¢ for all n € N. We may pass to a further subsequence which is
weakly converging to some x € X and note that |z*(x)| > . But for all i € N, ef(z) =
lim, ef(x,) = 0, so x = 0. This contradiction implies that (e;) is shrinking if X is reflexive.
Then X* = [ef]. Since X* is reflexive, (e}) is shrinking, and (e;) is boundedly-complete.

)

O

Corollary 4.4 (Singer). Let X be a Banach space. The following are equivalent.
(i) X is reflexive.

(i1) Every basic sequence in X is shrinking.

(11i) Every basic sequence in X is boundedly-complete.

Proof. If X is reflexive, so is any subspace spanned by a basic sequence, whence all basic
sequences are both shrinking and boundedly-complete. Will show in the final section that
X admits a non-shrinking basic sequence if and only if it admits a non-boundedly-complete

basic sequence, and the former happens when X is not reflexive.
O

5. EXAMPLE: JAMES SPACE

Define the norm || - || on ¢go by letting

k
|2 = sup{z (¢, — €l J@) Pk EN TSy <. < mkﬂ}.
i=1

One can check that this norm turns (e;) into a seminormalized, monotone basis for the
completion J of ¢oo with this norm. One can also check that every normalized block of (e;)
is dominated by the ¢, basis, and so (e;) is shrinking. However, || > ", e;]| = 1 for every
n, which shows that (e;) is not boundedly-complete. If we let s, = > " | e;, we obtain
a boundedly-complete basis for .J, which is necessarily non-shrinking (since J cannot be
reflexive). It is also easy to see that the sequence (s,) itself is not shrinking, since ef(s,) = n
for all n, and this sequence (s,) is normalized and not weakly null. However, it is not too
difficult to see that if (z,,) is a normalized block sequence in J, then (xs,) is equivalent to
the /5 basis, so that neither ¢y nor ¢; can embed into J. This shows that the hypothesis of
unconditionality cannot be dropped from Lemmas 2.3 and 3.3.

6. A STRONGER RESULT

Theorem 6.1 (Zippin). If (e;) is a non-shrinking (resp. non-boundedly-complete) basis for
X, then X admits a non-boundedly-complete (resp. non-shrinking) basis.
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Lemma 6.2. (i) If E is a Banach space and F,G are subspaces with dim E/F,dim E/G =
1, then there erists an automorphism D : E — E such that ||D],||D7|| < 5 and
D(F)=aG.

(i1) Suppose E is a Banach space and z,y € X and x*,y* € X* are such that z*(z) =
y*(y) = 1. Then there exists an automorphism A : E — E taking x to y and ker(z*)
to ker(y*) such that || A|, |A|I”* < K for some function K which depends only on

max||z[[, [lyll, l=1], [ly™1}-

Proof. (i) If F' = G, we take D to be the identity. Otherwise let M = G N F. Note that
dim F//M,dim G/M = 1. We may fix x € F such that ||z|| = 1 and |z||p;s > 1/2. By
the Hahn-Banach theorem, we may fix f € E* such that f(z) =1, fly;y =0, and || f] < 2.
Moreover, F' Nker(f) = M. Similarly, we may fix y € G and g € E* such that g(y) = 1,
flar =0, |lg]| €2, and GNker(g) = M. Define A: FF —F@® M by Az = (f(2),z — f(2)z)
and B: G — F& M by Bz = (g9(2),z — g(2)y). Note that ||A|],|B|| < 5, and A, B are
inverses. Indeed, A~!(a,2) = ax + z and B™'(a,z) = ay + 2. Then D = B~ A.
(i1) Define B : E — F &, ker(z*), C': E — F &, ker(y*) by

Bz = (2"(2),z —a"(2)x), Cz=(y'(2),z =y (2)y).
One easily checks that B, C are isomorphisms with inverses given by B7!(a, z) = az + z,
CY(a,z) = ay + z. Fix any isomorphism D : ker(z*) — ker(y*) such that ||D||, [|D7!| < 5.
Then we may take A = C~'D’'B, where D' : Fd ker(z*) — FP ker(y*) is given by D'(a, z) =
(a, Dz). Of course, Az = y. For z € ker(z*), CD'Bz = C(0,2) = C(0,Dz) = Dz € ker(y*).
Similarly, one may check that A~'y = z and A~ (ker(y*)) = x*.
0

Proposition 6.3. If (z,,) is any block of the basis (e;), there exists a basis (f;) for [e;] having
(xn) as a subsequence. Moreover, if x* is such that x*(z,) = 1 for all n € N, then there
exists a basis (f;) for [e;] and an infinite subset P of N such that (f;)icp = (x;)ien and such
that x*(f;) =0 for all i ¢ P.

Proof. We may first assume that (x,) and (e,) are normalized. Fix 0 = ky < k1 < ... such
that with E; = [e; : ki1 < j < k], »; € E; for all i. Note that (£;) is an FDD for X.
We may fix a seminormalized block sequence (x}) of (e]) biorthogonal to (z;) and such that
xf € lef @ k1 <1< ky]. Then for each i, there exists an automorphism A, of FE, taking
ek, to x,. For k, 1 < i < ky, let f; = A,e;. Then (fi)f;kn71+
constant not exceeding K, which depends on sup |||, |[eX||, and fx, = x,. It follows that

| is a basis for E,, with basis

(f;) is a basis for X having (x,) as a subsequence.

The second statement is similar, except we define the automorphism A; on E; by using the

functionals ej. and x* rather than ey, and z;. Then in this case, the members ( fi)f;l;il 4 of

kn—1
i1=kn_1+
Therefore with P = {k, : n € N}, we reach the conclusion.

the basis are the image of (¢;) 1 C ker(ey, ) under A;, which maps ker(ej, ) into ker(z*).

O
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Proof of Theorem 6.1. If (e;) is not shrinking, there exists a bounded block sequence (z,,) of
(e;) and x* € X* such that 2*(z) = 1 for all n € N. We may fix a basis (f;) having (z,) as a
subsequence, say (f,)nep, such that forn ¢ P, z*(f,) = 0. Let g; = f; ifi ¢ P, gx, = x1, and
Gkniy = Tnt1 — Tn. Then sup,, || Y0 gx, || = sup, ||zn|| < oo, while (z,,) does not converge.
Therefore if (g;) is a basic sequence, it is not boundedly-complete. We will show that (g;) is
a basis for X.

Fix x = Y7 a;fi. Let b; = a; for i ¢ P and let by, = > .° ai,. To see that this sum

converges, note that for any m < n,

IZ% = \x*(zn: ai fi)| = 2" ((Pr, = Phpi—1) (@),

and this quantity vanishes as m tends to infinity. Fix any n € N with n > ky. Let p be the
maximum natural number ¢ such that k; < n. Then

n

n p p
Z bigi — Z a; fi = Z b, Gk — Z A, T
i=1 i=1 i=1

i=1
p

P p—1
i=1 =1

=1

- bk:ﬂ+1 xkp :

As n — 00, p — o0, and this quantity vanishes. Therefore >".° b;g; = =.
Next, suppose that " b;g; = 0. Then for n ¢ P and m > n, b, = fX(>.7" big;) — 0.
Note that by, — 0, since (gi, ) is bounded away from zero. But for any n € N and m > k41,

f;n(z bigi) = br, — bk, ., = 0.
i=1

Thus (bg,) is a constant sequence converging to zero, and is therefore constantly zero. We
have shown that b,, = 0 for all n € N.

If (e;) is not boundedly-complete, there exists a block sequence (z,,) of (e;) bounded away
from 0 such that sup,, || Y1, z;]| < co. We may pass to another basis (f;) which has (z,) as
a subsequence, say (f,). Let g; = fiif ¢ ¢ {k, : n € N}, gy, = >, z;. Therefore if (g;) is a
basic sequence, it is not shrinking, since z*(gx, ) = 1 for all n € N if 2* is any Hahn-Banach
extension of xj. We will show that (g;) is a basis for X.
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Fix x =) a,f; € [fi]. Let by, = ag, — ax,,, and b; = a; for i ¢ K := {ky,ky,...}. Then
for any n € N, if p is the minimum natural number such that n < &,

n n p—1 p—1
Yoaifi= Y aifi+ Y (o —ar)Ti+ag, Y
i=1 i=1,ig K i=1 i=1
n p—1 p—1
= Z azfz—f_zzbkxz'f—akpzxz
i=1,i¢ K i=1 j=i
n )
= Z azfz—i_zzbkxz—i_akpzxz
i=1,i¢ K j=1 i=1
n p—1
= Z azgz+zbk Ik, +Clkpzim Zbigrirak,,zlii-
i=1i¢ K i=1 i=1

P

Note that a, — 0 as p — oo, while ) ;—; ' stays bounded. Therefore subtracting > ;" | b;g;

from this term leaves a sequence Whlch vanishes as n — oo. From this it follows that
Z? 1 bigi — Z.

We show uniqueness. Suppose » .~ b;g; = 0. For each i ¢ K, b; = f(> .2, bigi) = 0.
Then > % bigi = > o0 be,gr, = 0. For any m,n € N with m > n + 1,

m

(x;kz_ Lp+1 ZZbka n_ n+1 Zzbkz)x]:bkn

=1 j=1 7j=1 1=3
This vanishes as m tends to infinity, so that by, = 0 for all n € N, and b,, = 0 for all n € N.
O



