
LECTURE 1.5: SHRINKING AND BOUNDEDLY-COMPLETE BASES

1. A description of the dual

Recall that a Schauder basis (ei) for a Banach space is a sequence such that for every

x ∈ X, there exists a unique scalar sequence (an) such that
∑
anen converges in norm to x.

In this case, it is known that there exists a constant K, called the basis constant of (ei) in

X, such that for all n ∈ N, the projection Pn : X → X given by Pn

∑
m amem =

∑n
m=1 amem

has norm at most K. We refer to the projection Pn as the nth-basis projection. We say

(ei) ⊂ X is a basic sequence if it is a Schauder basis for its closed span.

Proposition 1.1. If (ei) is a basis for the Banach space X, then X∗ is the collection of all

w∗-converging series
∑∞

i=1 aie
∗
i , which is the collection of all formal series

∑∞
i=1 aie

∗
i such

that supn ‖
∑n

i=1 aie
∗
i ‖ is bounded.

Proof. First, we note that if supn ‖
∑n

i=1 aie
∗
i ‖ = C < ∞, then

∑
biei

x∗
7→

∑
aibi is a well-

defined, continuous, linear functional on X and
∑n

i=1 aie
∗
i →

w∗
x∗ as n→∞. Indeed, for fixed

x =
∑
biei ∈ X and ε > 0, there exists p such that for p 6 m < n, ‖(Pn−Pm)x‖ < ε. Then

|
n∑

i=m+1

aibi| = |(
n∑

i=1

aie
∗
i )((Pn − Pm)(x))| 6 Cε.

Since ε > 0 was arbitrary, we deduce that
∑∞

i=1 aibi is convergent, and x∗ is well-defined.

Moreover,

‖x‖ = lim
n
‖Pnx‖ > lim

n
C−1|(

n∑
i=1

aie
∗
i )(Pnx)| = C−1|x∗(x)|,

whence ‖x∗‖ 6 C is continuous at 0. Of course, x∗ is linear, and therefore it is continuous.

Since x∗n :=
∑n

i=1 aie
∗
i is bounded, in order to check that x∗n →

w∗
x∗, we need only check that

x∗n(x) → x∗(x) for all x in a subset of X which has dense span in X. But obviously this

is true for the basis of X. Thus the formal series
∑∞

i=1 aie
∗
i is w∗-convergent and can be

identified with a member of X∗.

If x∗ ∈ X∗, then let ai = x∗(ei) for each i ∈ N. Then supn ‖
∑n

i=1 aie
∗
i ‖ = supn ‖P ∗nx∗‖ 6

K‖x∗‖. Thus every functional in X∗ arises as the w∗-limit of partial sums of
∑n

i=1 aie
∗
i with

supn ‖
∑n

i=1 aie
∗
i ‖ < ∞. Of course, the identification x∗ 7→

∑∞
i=1 aie

∗
i is a bijection onto the

set of formal series with bounded partial sums with inverse
∑∞

i=1 aie
∗
i 7→ w∗− limn

∑n
i=1 aie

∗
i .

Finally, if
∑n

i=1 aie
∗
i is w∗-convergent to x∗, then supn ‖

∑n
i=1 aie

∗
i ‖ 6 supn ‖P ∗nx∗‖ <∞.

�
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2. Shrinking bases

Let us say that a Schauder basis (ei) for X is shrinking if (e∗i ) is a basis for X∗. Of course,

we know that (e∗i ) is always a Schauder basis for its closed span, so (ei) is shrinking if and

only if the span of (e∗i ) is norm dense in X∗. Moreover, one easily checks that the restriction

of P ∗n to [e∗i ] is the nth basis projection of (e∗i ), and therefore maps into [e∗i ].

Lemma 2.1. Let (ei) be a Schauder basis for X. The following are equivalent.

(i) The basis (ei) is a shrinking basis for X.

(ii) For each x∗ ∈ X∗, limn ‖x∗ − P ∗nx∗‖ = 0.

(iii) Every bounded block sequence in X is weakly null.

Proof. (i)⇒ (ii) As we have already mentioned, P ∗n : [e∗i ]→ [e∗i ] are the basis projections. If

(ei) is shrinking, then (e∗i ) is a basis for X∗, whence limn ‖x∗ − P ∗nx∗‖ = 0 for any x∗ ∈ X∗.
(ii)⇒ (iii) Fix a bounded block sequence (xn) in X and let C = supn ‖xn‖. Fix x∗ ∈ X∗

and ε > 0. Fix n0 ∈ N such that ‖x∗ − P ∗nx
∗‖ < ε for all n > n0. Then for all n > n0,

min supp(xn) > n0, and (I − Pn0)xn = xn. Then

|x∗(xn)| = |x∗(I − Pn0xn)| = |(x∗ − P ∗n0
x∗)xn| 6 Cε.

Since ε > 0 was arbitrary, x∗(xn)→ 0. Since x∗ ∈ X∗ was arbitrary, (xn) is weakly null.

(iii) ⇒ (i) Suppose there exists x∗ ∈ X∗ such that ‖x∗‖X∗/[e∗n] > ε > 0. We may

fix x1 ∈ BX with finite support such that x∗(x1) > ε. Let n1 = max supp(x1). Next,

suppose we have chosen x1, . . . , xk−1 ⊂ BX , n1, . . . , nk−1 such that (x∗ − P ∗ni−1
x∗)(xi) > ε

and supp(xi) ⊂ [1, ni] for each 1 6 i < k. Then since ‖x∗ − P ∗nk−1
x∗‖ > ε, there exists

xk ∈ BX having finite support such that (x∗ − P ∗nk−1
x∗)(xk) > ε. Let nk = max supp(xk).

This completes the recursive construction.

For each i ∈ N, let yi = (I − Pni−1
)xi. Note that supp(yi) ⊂ (ni−1, ni] and ‖yi‖ 6

1 + ‖Pni−1
‖ 6 1 + K. Therefore (yi) is a bounded block sequence. But by our choice,

x∗(yi) = (x∗ − Pni−1
x∗)(xi) > ε for all i. Thus (yi) is a bounded block sequence which fails

to be weakly null.

�

Remark 2.2. The `1 basis is the canonical example of a basis which fails to be shrinking.

The bases of `p, 1 < p <∞, and c0 are shrinking, since every bounded block sequence must

be weakly null.

Lemma 2.3. If (ei) is an unconditional basis for X, then (ei) either `1 embeds into X or

(ei) is shrinking, and exactly one of these alternatives holds.

Proof. Of course, both alternatives cannot hold simultaneously, since the shrinkingness of

(ei) implies the separability of X∗, while the embeddability of `1 into X implies the non-

separability of X∗.
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Suppose (ei) is non-shrinking. Then there exists a bounded block sequence (xn) not weakly

null. By scaling by unimodular multiples and passing to a subsequence, we may assume there

exists x∗ ∈ BX∗ and ε > 0 such that x∗(xn) > ε for all n ∈ N. This means that for any

non-negative scalars (ai)
n
i=1,

‖
n∑

i=1

aixi‖ > x∗(
n∑

i=1

aixi) > ε

n∑
i=1

ai.

If (ei) is K-unconditional, so is (xi), so that for any scalars,

‖
n∑

i=1

aixi‖ > ε/K

n∑
i=1

|ai|,

and (xi) is equivalent to the `1 basis.

�

3. Boundedly-complete bases

We say a basis (ei) for X is boundedly-complete provided that if (ai) is a sequence of scalars

such that supn ‖
∑n

i=1 aiei‖ <∞, then
∑
aiei converges in norm.

Let φ : X → [e∗i ]
∗ be the map given by φ(x)(

∑
aie
∗
i ) =

∑
aie
∗
i (x). Of course, since

[e∗i ] ⊂ X∗, ‖φ(x)‖ 6 ‖x‖. For any x ∈ X, for each n ∈ N, we may fix x∗n such that

‖Pnx‖ = x∗n(Pnx). Let y∗n = P ∗nx
∗
n/K, where K is the basis constant of (ei). Then (y∗n) lies in

the unit ball of [e∗i ] and y∗n(x) = x∗n(Pnx)/K = ‖Pnx‖/K → ‖x‖/K. Thus ‖φ(x)‖ > ‖x‖/K,

and φ is an isomorphic embedding.

Note that φ is just the restriction of the image of x under the canonical embedding of X

into X∗∗ to [e∗i ].

Proposition 3.1. Let (ei) be a basis and let H = [e∗i ]. The following are equivalent.

(i) The basis (ei) is boundedly-complete in X.

(ii) If (xn) is a block sequence bounded away from zero, supN ‖
∑N

n=1 xn‖ =∞.

(iii) φ : X → H∗ is onto.

Proof. (i) ⇒ (ii) Note that if (xi) is a block sequence, e∗i (
∑i

j=1 xj) = e∗i (
∑k

j=1 xj) for each

j > i. Let ai = e∗i (
∑i

j=1 xj). Note that
∑N

i=1 aiei = PN

∑N
i=1 xi, and therefore ‖

∑N
i=1 aiei‖ 6

K‖
∑N

i=1 xi‖, where K is the basis constant of (ei). Therefore if supN ‖
∑N

i=1 xi‖ < ∞,

supN ‖
∑N

i=1 aiei‖ < ∞. Therefore
∑∞

i=1 aiei converges. If m0 = 0 and mn = max supp(xn)

for each n ∈ N,

‖xn‖ = ‖
mn∑
i=1

aiei −
mn−1∑
i=1

aiei‖ →
n

0.

(ii)⇒ (iii) Fix f ∈ H∗. Let yn =
∑n

i=1 f(e∗i )ei, so that for any
∑
aie
∗
i ∈ H,

|(
∑

aie
∗
i )(yn)| = |

n∑
i=1

aif(e∗i )| = |f(P ∗n
∑

aie
∗
i )| 6 K‖f‖.
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This means (yn) must be norm convergent. Indeed, if it were not so, there would exist

n1 < . . . and ε > 0 such that with x1 = y1 and xk = ynk
− ynk−1

for k > 1, (xk) is a block

sequence in (ei) bounded away from 0 with supn ‖
∑n

i=1 xi‖ = supn ‖yn‖ 6 CK, contradicting

(ii). Then (φ(yn)) is also norm convergent, and also converging w∗ to f in H∗, so that f

must be the norm limit of (yn). To see that φ(yn) →
w∗

f , since (φ(yn)) is bounded, it is

sufficient to check that φ(yn)(x∗)→ f(x∗) for all x∗ in a subset of H with dense span. But

by our choice of yn, φ(yn)(e∗i ) = f(e∗i ) for all n > i.

(iii)⇒ (i) Suppose (ai) is a scalar sequence such that supn ‖
∑n

i=1 aiei‖ = C <∞. Then

supn ‖
∑n

i=1 aie
∗∗
i ‖ < ∞, since φ(ei) = e∗∗i . We have already shown that

∑
bie
∗
i 7→

∑
aibi

defines a member of [e∗i ]
∗. Then there exists x ∈ X such that φ(x) = f . Of course,

ai = f(e∗i ) = φ(xi)(e
∗
i ) = e∗i (x) for each i ∈ N. Thus x =

∑
aiei, from which it follows that∑

aiei is norm convergent.

�

Remark 3.2. The c0 basis is the canonical example of a non-boundedly-complete basis. The

bases of `p, 1 6 p <∞, are boundedly-complete.

Lemma 3.3. Suppose (ei) is an unconditional basis for X. Then either c0 embeds into X

or (ei) is boundedly-complete. Exactly one of these two alternatives holds.

Proof. It follows from Proposition 3.1 that at most one of these two alternatives could hold.

Suppose (ei) is not boundedly-complete. Then there exists a seminormalized block sequence

(xn) such that supN ‖
∑N

n=1 xn‖ = C < ∞. Then for any N ∈ N and any (εn)Nn=1 with

|εn| = 1, ‖
∑N

n=1 εnxn‖ 6 CK, where K is the unconditionality constant of (ei). Note that

for any N ∈ N and scalars (ai)
N
i=1 with a = max16i6N |ai|,

N∑
i=1

aixi ∈ co
{
a

N∑
i=1

εixi : |εi| = 1
}
⊂ aCKBX ,

so that ‖
∑N

i=1 aixi‖ 6 CK max16i6N |ai|. Since (xi) is seminormalized and basic, it domi-

nates the c0 basis, and therefore (xi) is equivalent to c0.

�

Proposition 3.4. Let (ei) be a Schauder basis. Then (ei) is shrinking (resp. boundedly-

complete) if and only if (e∗i ) is boundedly-complete (resp. shrinking).

Proof. Recall that X∗ can be identified with the set of all formal series
∑∞

i=1 aie
∗
i with

bounded partial sums, [e∗i ]
∗ can be identified with the set of all formal series

∑∞
i=1 aie

∗∗
i with

bounded partial sums, and φ(ei) = e∗∗i for all i ∈ N. Then (ei) is shrinking if and only if

[e∗i ], which is the set of formal series
∑
aie
∗
i with bounded partial sums, is equal to the set of∑

aie
∗
i which norm converge, and so bounded partial sums are equivalen to norm convergent

in this case. Thus (ei) is shrinking if and only if (e∗i ) is boundedly-complete.
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Note that φ : X → [e∗i ] is onto if and only if φ(X) = φ([ei]) = [φ(ei)] = [e∗∗i ] = [e∗i ]
∗, which

is precisely what it means for (e∗i ) to be shrinking.

�

4. Reflexivity

Lemma 4.1. The Banach space X admits a non-shrinking basic sequence if and only if it

admits a non-boundedly-complete basic sequence.

We omit the proof of this lemma, since the final theorem of this lecture will be to prove a

stronger result due to Zippin.

Lemma 4.2. If X is not reflexive, there exists a basic sequence (xn) ⊂ BX which is not

weakly null.

Proof. Recall Helly’s theorem, which states that for any x∗∗ ∈ X∗∗, any finite subset F

of X∗, and any ε > 0, there exists x ∈ X such that x∗∗(x∗) = x∗(x) for all x∗ ∈ F and

‖x‖ 6 ‖x∗∗‖+ ε.

Suppose X is not reflexive. We may fix x∗∗ ∈ X∗∗ such that

1/2 < ‖x∗∗‖X∗∗/X 6 ‖x∗∗‖ < 1.

By the Hahn-Banach theorem, there exists x∗∗∗ ∈ X∗∗∗ such that ‖x∗∗∗‖ < 2, x∗∗∗(x∗∗) =,

and x∗∗∗|X ≡ 0. Fix a sequence of positive numbers (εn) such that
∏

(1 − εn)−1 < 2.

Recursively apply Helly’s theorem to obtain (xn) ⊂ BX , (x∗n) ⊂ 2BX∗ , and finite sets ∅ =

F0 ⊂ F1 ⊂ F2 ⊂ . . . of BX∗ such that for all n ∈ N,

(i) for all y∗∗ ∈ [xi − x∗∗ : 1 6 i 6 n], maxx∗∈Fn |y∗∗(x∗)| > (1− εn)‖y∗∗‖,
(ii) for all x∗ ∈ Fn−1 ∪ {x∗1, . . . , x∗n−1}, x∗∗(x∗) = x∗(xn),

(iii) for all y∗∗ ∈ {x1, . . . , xn−1, x∗∗}, x∗n(y∗) = x∗∗∗(y∗).

Conditions (i) and (ii) guarantee that (xn−x∗∗) is 2-basic. Then I−x∗∗⊗x∗∗∗ : [xn−x∗∗]→
[xn] is an isomorphism between these spaces with inverse I + x∗∗⊗ x∗∗∗, therefore (xn− x∗∗)
and (xn) are ‖I + x∗∗ ⊗ x∗∗∗‖‖I − x∗∗ ⊗ x∗∗∗‖ 6 9-equivalent, and (xn) is bounded and

18-basic. Moreover, for any n ∈ N,

1 = x∗∗∗(x∗∗) = x∗∗(x∗1) = x∗1(xn),

whence (xn) is not weakly null.

�

Lemma 4.3 (James). If (ei) is a basis for X, then X is reflexive if and only if (ei) is both

shrinking and boundedly-complete.

Proof. (ei) is both shrinking and boundedly-complete if and only if (ei) and (e∗i ) are both

shrinking. Then X∗ = [e∗i ] and X∗∗ = [e∗i ]
∗. Moreover, φ : X → [e∗i ]

∗ = X∗∗ defined before
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Proposition 3.1 is simply the canonical embedding into the second dual, and is onto if (ei)

is boundedly-complete. Therefore X is reflexive in this case.

Next, suppose X is reflexive. Suppose (xn) is a bounded block sequence in (ei) not weakly

null. Then there exists ε > 0 and x∗ ∈ X∗ such that, by passing to a subsequence, we

may assume |x∗(xn)| > ε for all n ∈ N. We may pass to a further subsequence which is

weakly converging to some x ∈ X and note that |x∗(x)| > ε. But for all i ∈ N, e∗i (x) =

limn e
∗
i (xn) = 0, so x = 0. This contradiction implies that (ei) is shrinking if X is reflexive.

Then X∗ = [e∗i ]. Since X∗ is reflexive, (e∗i ) is shrinking, and (ei) is boundedly-complete.

�

Corollary 4.4 (Singer). Let X be a Banach space. The following are equivalent.

(i) X is reflexive.

(ii) Every basic sequence in X is shrinking.

(iii) Every basic sequence in X is boundedly-complete.

Proof. If X is reflexive, so is any subspace spanned by a basic sequence, whence all basic

sequences are both shrinking and boundedly-complete. Will show in the final section that

X admits a non-shrinking basic sequence if and only if it admits a non-boundedly-complete

basic sequence, and the former happens when X is not reflexive.

�

5. Example: James space

Define the norm ‖ · ‖ on c00 by letting

‖x‖2 = sup
{ k∑

i=1

|(e∗mi
− e∗mi+1

)(x)|2 : k ∈ N, 1 6 m1 < . . . < mk+1

}
.

One can check that this norm turns (ei) into a seminormalized, monotone basis for the

completion J of c00 with this norm. One can also check that every normalized block of (ei)

is dominated by the `2 basis, and so (ei) is shrinking. However, ‖
∑n

i=1 ei‖ = 1 for every

n, which shows that (ei) is not boundedly-complete. If we let sn =
∑n

i=1 ei, we obtain

a boundedly-complete basis for J , which is necessarily non-shrinking (since J cannot be

reflexive). It is also easy to see that the sequence (sn) itself is not shrinking, since e∗1(sn) = n

for all n, and this sequence (sn) is normalized and not weakly null. However, it is not too

difficult to see that if (xn) is a normalized block sequence in J , then (x2n) is equivalent to

the `2 basis, so that neither c0 nor `1 can embed into J . This shows that the hypothesis of

unconditionality cannot be dropped from Lemmas 2.3 and 3.3.

6. A stronger result

Theorem 6.1 (Zippin). If (ei) is a non-shrinking (resp. non-boundedly-complete) basis for

X, then X admits a non-boundedly-complete (resp. non-shrinking) basis.



LECTURE 1.5: SHRINKING AND BOUNDEDLY-COMPLETE BASES 7

Lemma 6.2. (i) If E is a Banach space and F,G are subspaces with dimE/F, dimE/G =

1, then there exists an automorphism D : E → E such that ‖D‖, ‖D−1‖ 6 5 and

D(F ) = G.

(ii) Suppose E is a Banach space and x, y ∈ X and x∗, y∗ ∈ X∗ are such that x∗(x) =

y∗(y) = 1. Then there exists an automorphism A : E → E taking x to y and ker(x∗)

to ker(y∗) such that ‖A‖, ‖A‖−1 6 K for some function K which depends only on

max{‖x‖, ‖y‖, ‖x∗‖, ‖y∗‖}.

Proof. (i) If F = G, we take D to be the identity. Otherwise let M = G ∩ F . Note that

dimF/M, dimG/M = 1. We may fix x ∈ F such that ‖x‖ = 1 and ‖x‖F/M > 1/2. By

the Hahn-Banach theorem, we may fix f ∈ E∗ such that f(x) = 1, f |M ≡ 0, and ‖f‖ 6 2.

Moreover, F ∩ ker(f) = M . Similarly, we may fix y ∈ G and g ∈ E∗ such that g(y) = 1,

f |M ≡ 0, ‖g‖ 6 2, and G ∩ ker(g) = M . Define A : F → F⊕M by Az = (f(z), z − f(z)x)

and B : G → F ⊕M by Bz = (g(z), z − g(z)y). Note that ‖A‖, ‖B‖ 6 5, and A,B are

inverses. Indeed, A−1(a, z) = ax+ z and B−1(a, z) = ay + z. Then D = B−1A.

(ii) Define B : E → F⊕1 ker(x∗), C : E → F⊕1 ker(y∗) by

Bz = (x∗(z), z − x∗(z)x), Cz = (y∗(z), z − y∗(z)y).

One easily checks that B,C are isomorphisms with inverses given by B−1(a, z) = ax + z,

C−1(a, z) = ay + z. Fix any isomorphism D : ker(x∗)→ ker(y∗) such that ‖D‖, ‖D−1‖ 6 5.

Then we may take A = C−1D′B, where D′ : F⊕1ker(x∗)→ F⊕1ker(y∗) is given by D′(a, z) =

(a,Dz). Of course, Ax = y. For z ∈ ker(x∗), CD′Bz = C(0, z) = C(0, Dz) = Dz ∈ ker(y∗).

Similarly, one may check that A−1y = x and A−1(ker(y∗)) = x∗.

�

Proposition 6.3. If (xn) is any block of the basis (ei), there exists a basis (fi) for [ei] having

(xn) as a subsequence. Moreover, if x∗ is such that x∗(xn) = 1 for all n ∈ N, then there

exists a basis (fi) for [ei] and an infinite subset P of N such that (fi)i∈P = (xi)i∈N and such

that x∗(fi) = 0 for all i /∈ P .

Proof. We may first assume that (xn) and (en) are normalized. Fix 0 = k0 < k1 < . . . such

that with Ei = [ej : ki−1 < j 6 ki], xi ∈ Ei for all i. Note that (Ei) is an FDD for X.

We may fix a seminormalized block sequence (x∗n) of (e∗i ) biorthogonal to (xi) and such that

x∗n ∈ [e∗i : kn−1 < i 6 kn]. Then for each i, there exists an automorphism An of En taking

ekn to xn. For kn−1 < i 6 kn, let fi = Anei. Then (fi)
kn
i=kn−1+1 is a basis for En with basis

constant not exceeding K, which depends on sup ‖x∗n‖, ‖e∗n‖, and fkn = xn. It follows that

(fi) is a basis for X having (xn) as a subsequence.

The second statement is similar, except we define the automorphism Ai on Ei by using the

functionals e∗ki and x∗ rather than e∗ki and x∗i . Then in this case, the members (fi)
kn−1
i=kn−1+1 of

the basis are the image of (ei)
kn−1
i=kn−1+1 ⊂ ker(e∗kn) under Ai, which maps ker(e∗kn) into ker(x∗).

Therefore with P = {kn : n ∈ N}, we reach the conclusion.

�
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Proof of Theorem 6.1. If (ei) is not shrinking, there exists a bounded block sequence (xn) of

(ei) and x∗ ∈ X∗ such that x∗(x) = 1 for all n ∈ N. We may fix a basis (fi) having (xn) as a

subsequence, say (fn)n∈P , such that for n /∈ P , x∗(fn) = 0. Let gi = fi if i /∈ P , gk1 = x1, and

gkn+1 = xn+1 − xn. Then supn ‖
∑n

i=1 gkn‖ = supn ‖xn‖ < ∞, while (xn) does not converge.

Therefore if (gi) is a basic sequence, it is not boundedly-complete. We will show that (gi) is

a basis for X.

Fix x =
∑∞

i=1 aifi. Let bi = ai for i /∈ P and let bkn =
∑∞

i=n aki . To see that this sum

converges, note that for any m 6 n,

|
n∑

i=m

aki | = |x∗(
kn∑

i=km

aifi)| = |x∗((Pkn − Pkm−1)(x))|,

and this quantity vanishes as m tends to infinity. Fix any n ∈ N with n > k1. Let p be the

maximum natural number i such that ki 6 n. Then

n∑
i=1

bigi −
n∑

i=1

aifi =

p∑
i=1

bkigki −
p∑

i=1

akixi

=

p∑
i=1

bkixi −
p−1∑
i=1

bki+1
xi −

p∑
i=1

(bki − bki+1
)xi

= bkp+1xkp .

As n→∞, p→∞, and this quantity vanishes. Therefore
∑∞

i=1 bigi = x.

Next, suppose that
∑∞

i=1 bigi = 0. Then for n /∈ P and m > n, bn = f ∗n(
∑m

i=1 bigi) →m 0.

Note that bkn → 0, since (gkn) is bounded away from zero. But for any n ∈ N and m > kn+1,

f ∗kn(
m∑
i=1

bigi) = bkn − bkn+1 →
m

0.

Thus (bkn) is a constant sequence converging to zero, and is therefore constantly zero. We

have shown that bn = 0 for all n ∈ N.

If (ei) is not boundedly-complete, there exists a block sequence (xn) of (ei) bounded away

from 0 such that supn ‖
∑n

i=1 xi‖ <∞. We may pass to another basis (fi) which has (xn) as

a subsequence, say (fkn). Let gi = fi if i /∈ {kn : n ∈ N}, gkn =
∑n

i=1 xi. Therefore if (gi) is a

basic sequence, it is not shrinking, since x∗(gkn) = 1 for all n ∈ N if x∗ is any Hahn-Banach

extension of x∗1. We will show that (gi) is a basis for X.
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Fix x =
∑
aifi ∈ [fi]. Let bkn = akn − akn+1 and bi = ai for i /∈ K := {k1, k2, . . .}. Then

for any n ∈ N, if p is the minimum natural number such that n < kp,

n∑
i=1

aifi =
n∑

i=1,i/∈K

aifi +

p−1∑
i=1

(aki − akp)xi + akp

p−1∑
i=1

xi

=
n∑

i=1,i/∈K

aifi +

p−1∑
i=1

p−1∑
j=i

bkjxi + akp

p−1∑
i=1

xi

=
n∑

i=1,i/∈K

aifi +

p−1∑
j=1

j∑
i=1

bkjxi + akp

p−1∑
i=1

xi

=
n∑

i=1,i/∈K

aigi +

p−1∑
i=1

bkigki + akp

p−1∑
i=1

xi =
n∑

i=1

bigi + akp

p−1∑
i=1

xi.

Note that akp → 0 as p→∞, while
∑p−1

i=1 xi stays bounded. Therefore subtracting
∑n

i=1 bigi
from this term leaves a sequence which vanishes as n → ∞. From this it follows that∑n

i=1 bigi → x.

We show uniqueness. Suppose
∑∞

i=1 bigi = 0. For each i /∈ K, bi = f ∗i (
∑∞

i=1 bigi) = 0.

Then
∑∞

i=1 bigi =
∑∞

i=1 bkigki = 0. For any m,n ∈ N with m > n+ 1,

(x∗n − x∗n+1)(
m∑
i=1

i∑
j=1

bkixj) = (x∗n − x∗n+1)(
m∑
j=1

m∑
i=j

bki)xj = bkn .

This vanishes as m tends to infinity, so that bkn = 0 for all n ∈ N, and bn = 0 for all n ∈ N.
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