Advanced
Research
Compnﬁnn

— @!VirginiaTech

Invent the Future

Shared-Memory Programming
in OpenMP

Advanced Research Computing

www.arc.vt.edu @ VirginiaTech

Invent the Future®

o &

Advanced
Research

Computing O u tI i n e o

e\What is OpenMP?

eHow does OpenMP work?
—Architecture
—Fork-join model of parallelism
—Communication

¢OpenMP constructs
—Directives
—Runtime Library API
—Environment variables

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing

Overview

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

Fesedion y What is OpenVIP?

¢ AP| for parallel programming on shared memory
systems

—Parallel “threads”

e|mplemented through the use of:
—Compiler Directives
—Runtime Library
—Environment Variables

eSupported in C, C++, and Fortran

eMaintained by OpenMP Architecture Review
Board (http://www.openmp.org/)

www.arc.vt.edu @ VirginiaTech

Invent the Future®

o &

Advanced
Research

EEEl Advantages

e Code looks similar to sequential
— Relatively easy to learn

— Adding parallelization can be incremental
e No message passing
e Coarse-grained or fine-grained parallelism

e Widely-supported

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research

B8R Disadvantages

e Scalability limited by memory architecture

— To a single node (8 to 32 cores) on most machines
e Managing shared memory can be tricky

e Improving performance is not always
guaranteed or easy

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

& Shared.Memory

eYour laptop

e Multicore, multiple memory NUMA system
—HokieOne (SGI UV)

eOne node on a hybrid system

www.arc.vt.edu @ VirginiaTech

Invent the Future®

o &

Advanced

B8R Fork-join Parallelism

eParallelism by region

eMaster Thread: Initiated at run-time & persists
throughout execution

—Assembles team of parallel threads at parallel regions

execution e—>=ral o Parallel __ Serial 2 Parallel ~_Serial
o
e 3
o
4 CPU)
6 CPU

Master Thread Multi-Threaded

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing 8

How do threads communicate?

I”

e Every thread has access to “global” memory (shared).
Each thread has access to a stack memory (private).

e Use shared memory to communicate between threads.

e Simultaneous updates to shared memory can create a
race condition. Results change with different thread
scheduling.

e Use mutual exclusion to avoid data sharing - but don’t
use too many because this will serialize performance.

MVirginiaTech

WWW.a rC'Vt' ed u g/nvent the Future®

o &

Advanced
Research

fesegor Race Conditions

Example: Two threads (“T1” & “T2”) increment x=0

Start: x=0 Start: x=0

1. T1reads x=0 1. T1reads x=0

2. T1 calculates x=0+1=1 2. T2reads x=0

3. T1 writes x=1 3. T1 calculates x=0+1=1
4. T2reads x=1 4. T2 calculates x=0+1=1
5. T2 calculates x=1+1=2 5. T1 writes x=1

6. T2 writes x=2 6. T2 writes x=1

Result: x=2 Result: x=1

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing

OpenMP Basics

www.arc.vt.edu @ VirginiaTech

Invent the Future®

N

Advanced =
=8 OpenMP Construct
S8 OpenMP Constructs
OpenMP language
extensions
runtime
parallel control data o :
structures work sharing . synchronization functions, env.
environment variables
* governs flow of * distributes work * specifies * coordinates thread *Runtime environment
among threads variables as execution

control in the
shared or private

program
omp_set num threads()
do/parallel do shared and critical and omp_get thread num()
parallel directive and private atomic directives || OMP_NUM THREADS
Section directives clauses barrier directive || OMP SCHEDULE

MVirginiaTech

WWW.a rC'Vt' ed u g/nvent the Future®

O

Advanced

Bl OpenMP Directives

OpenMP directives specify parallelism within source code:

e C/C++: directives begin with the # pragma omp sentinel.

* FORTRAN: Directives begin with the ISOMP, CSOMP or *SOMP sentinel.
* F90: !ISOMP free-format

e Parallel regions are marked by enclosing parallel directives
e \Work-sharing loops are marked by parallel do/for

Fortran C/C++

1SOMP parallel # pragma omp parallel
e {...}

'SOMP end parallel

1SOMP parallel do # pragma omp parallel for
DO . for(){...}

1SOMP end parallel do

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing

(@

“API: Functions

omp get num threads () Returns number of threads in team
omp get thread num() Returns thread ID (0 to n-1)
omp get num procs () Returns number of machine CPUs

True if in parallel region & multiple
threads executing

Changes number of threads for
parallel region

omp in parallel ()

omp set num threads (#)

Function Description
omp get dynamic() True if dynamic threading is on.

Set state of dynamic threading

omp set dynamic() (true/false)

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

== API: Environment Variables

*OMP NUM THREADS: Number of Threads

*OMP DYNAMIC: TRUE/FALSE for enable/
disable dynamic threading

1gyww.arc.vt.edu & VirginiaTech

Invent the Future®

Advanced
Research
Computing |

Parallel Regions

1 |SOMP PARALLEL

2 code block

3 call work(...)
4 ISOMP END PARALLEL

eLine 1: Team of threads formed at parallel
region

elines 2-3:
—Each thread executes code block and subroutine calls
—No branching (in or out) in a parallel region

eLine 4: All threads synchronize at end of parallel
region (implied barrier).

MVirginiaTech

WWW.a rC'Vt' ed u g/nvent the Future®

Advanced

B8 Example: Hello World

eUpdate a serial code to run on multiple cores
using OpenMP

1. Start from serial “Hello World” example:
e hello.c, hello.f

2. Create a parallel region

3. ldentify individual threads and print out
information from each

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing

Hello'World in OpenMP

Fortran:

1SOMP PARALLEL
INTEGER tid
tid = OMP_GET THREAD NUM()
PRINT *, ‘Hello from thread = ‘, tid

1SOMP END PARALLEL

C:

#pragma omp parallel
{

int tid;
tid = omp get thread num();
printf (‘Hello from thread =%d\n’, tid);

MVirginiaTech

WWw.a rC'Vt' ed u g/nvent the Future®

Advanced

B8l Compiling:'with OpenMP

*GNU uses —fopenmp flag
gcc program.c -—-fopenmp -0 runme
g++ program.cpp —-fopenmp —0O runme

gfortran program.f —fopenmp -0 runme

e|ntel uses —openmp flag, e.g.

icc program.c -openmp —-O runme

1fort program.f —-openmp —O runme

www.arc.vt.edu @ VirginiaTech

Invent the Future®

O &)
Advanced o
Research
Computing -

OpenMP Constructs

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing

Parallel Region/Work Sharing

Use OpenMP directives to specify Parallel Region and Work-Sharing

constructs.

Code block Each Thread Executes

~ Parallel DO Work Sharing
SECTIONS Work Sharing
SINGLE One Thread
MASTER Only the master thread
_ End Parallel CRITICAL One Thread at a time
Parallel SECTIONS Parallel Constructs

MVirginiaTech

WWW.a rC'Vt' ed u g/nvent the Future®

o ¥

Advanced
Research
Computing

OpenMP parallel constructs

PARALLEL
{codel}
DO
T *
PARALLEL DO do {(I:o de;iN 4
do I = 1,N*4 4 d
PARALLEL {code} ENgnDO °©
{code} end do de3
END PARALLEL END PARALLEL DO {code3}
END PARALLEL
code1 code1l code1l code1
i 1 1 1=1,) I=N+f1 2N I=2N41,3N I=3N+1,4N
code code code code code code codg code y y
1=1,N I=N+{1,2N 1=2N+1,3N 1=3N+1,4N
, code?2 codg2 code2 code2
v y y
code3 code3 code3 code3
Replicated Work Sharing v Combined

www.arc.vt.edu @ VirginiaTech

Invent the Future®

W \lore about OpenMP parallel

Research
Computing

Teqgions.:.

There are two OpenMP “modes”
e static mode

— Fixed number of threads
e dynamic mode:

— Number of threads can change under user control from one parallel
region to another (using OMP_set num threads)

— Specified by setting an environment variable
(csh) setenv OMP DYNAMIC true
(bash) export OMP DYNAMIC=true

Note: the user can only define the maximum number of threads, compiler
can use a smaller number

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research

E5E8 Parallel Constructs

ePARALLEL: Create threads, any code is
executed by all threads

eDO/FOR: Work sharing of iterations
eSECTIONS: Work sharing by splitting
*SINGLE: Only one thread

e CRITICAL or ATOMIC: One thread at a time
*MASTER: Only the master thread

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing

The DO. / for directive

Fortran:

1SOMP PARALLEL DO
do i=0,N

C do some work
enddo

'SOMP END PARALLEL DO

C:

#pragma omp parallel for

{
for (i=0; i<N; i++)
// do some work

www.arc.vt.edu

@ VirginiaTech

Invent the Future®

Computing

ige= The DO /-for Directive

1 1SOMP PARALLEL DO

2 do i=1,N

3 a(i) = b(i) + c(i)
4 enddo

5

1SOMP END PARALLEL DO

Line1 Team of threads formed (parallel region).
Line 2-4 Loop iterations are split among threads.

Line 5 (Optional) end of parallel loop (implied barrier at enddo).

Each loop iteration must be independent of other iterations.

www.arc.vt.edu @ VirginiaTech

Invent the Future®

))

Advanced

EEll The Sections Directive

e Different threads will execute different code
e Any thread may execute a section

#pragma omp parallel
{
#pragma omp sections
{
#pragma omp section
{ // do some work }
#pragma omp section
{ // do some different work }
} // end of sections
} // end of parallel region

www.arc.vt.edu @ VirginiaTech

Invent the Future®

o ¥

Advanced

e Merging Parallel Regions

The !SOMP PARALLEL directive declares an entire region as parallel.
Merging work-sharing constructs into a single parallel region eliminates
the overhead of separate team formations.

'SOMP PARALLEL 1SOMP PARALLEL DO
!$°M§ Do_, do i=1,n
O 1= n . . .
. 4 . . = +
b e Y ane
n
!SOMg ENB DO 1$OMP END PARALLEL DO
1$0MP DO . 1 SOMP PARALLEL DO
do i=1,m _ do i=1,m
x(1)=y(i)+z (1) x(i)=y(i)+z (i)
s enddo enddo
1 SOMP END DO
| $OMP END PARALLEL 1$OMP END PARALLEL DO

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research

Computing \ OpenMP Clauses

Control the behavior of an OpenMP directive:
eData scoping (Private, Shared, Default)
eSchedule (Guided, Static, Dynamic, etc.)
e|nitialization (e.g. COPYIN, FIRSTPRIVATE)

e\Whether to parallelize a region or not (if-
clause)

eNumber of threads used (NUM_THREADS)

www.arc.vt.edu @ VirginiaTech

Invent the Future®

o &

Advanced

Eell Private.and Shared Data

eShared: Variable is shared (seen) by all processors.

ePrivate: Each thread has a private instance (copy) of
the variable.

eDefaults: All DO LOOP indices are private, all other
variables are shared.

| SOMP PARALLEL DO SHARED (A, B, C,N)
PRIVATE (1)

!SOMP END PARALLEL DO

3iwww.arc.vt.edu @ VirginiaTech

Invent the Future®

e}

Advanced

i Private data-example

¢ In the following loop, each thread needs its own PRIVATE copy of TEMP.

e If TEMP were shared, the result would be unpredictable since each processor would be writing and
reading to/from the same memory location.

1SOMP PARALLEL DO SHARED (A,B,C,N) PRIVATE (temp,i)

do i=1,N

temp = A(i)/B(1)

C(i) = temp + cos(temp)
enddo

!SOMP END PARALLEL DO

e A lastprivate(temp) clause will copy the last loop(stack) value of temp to the (global) temp storage
when the parallel DO is complete.

e A firstprivate(temp) would copy the global temp value to each stack’s temp.

www.arc.vt.edu @ VirginiaTech

Invent the Future®

O

Advanced

i Data Scoping Example (Code)

int tid, pr=-1, fp=-1, sh=-1, df=-1;

printf ("BEGIN: pr is %d, fp is %d, sh is %d, df is %d.
\n",pr, fp, sh,df) ;

fpragma omp parallel shared(sh) private(pr,tid) firstprivate (fp)

{
tid = omp get thread num();

printf ("Thread %d START : pr is %d, fp is %d, sh is %d, df is %d.
\n", tid, pr, fp, sh,df);

pr = tid * 4; fp = pr; sh = pr; df = pr;

printf ("Thread %d UPDATE: pr is %d, fp is %d, sh is %d, df is %
\n",tid, pr, fp, sh,df);

} /* end of parallel section */

printf ("END: pr 1is %d, fp 1is %d, sh 1is %d, df 1s %d.
\n",pr, fp, sh,df);

www.arc.vt.edu @ VirginiaTech

Invent the Future®

e}

Advanced

Hesegct Data Scoping Example (Code)

$ icc -openmp omp Scope.C —-O Omp Scope
$./omp scope
BEGIN: pr is -1, fp is

|
[}
-

sh is -1, df is -1.

Thread 0 START : pr is 0, fp is -1, sh is -1, df is -1.
Thread 1 START : pr is 0O, fp is -1, sh is -1, df 1is -1.
Thread 1 UPDATE: pr is 4, fp is 4, sh is 4, df is 4.
Thread 2 START : pr is 0, fp is -1, sh is -1, df 1is -1.
Thread 2 UPDATE: pr is 8, fp is 8, sh is 8, df is 8.
Thread 0 UPDATE: pr is 0, fp is 0, sh is 0, df 1is O.
Thread 3 START : pr is 0, fp is -1, sh is 8, df is 8.
Thread 3 UPDATE: pr is 12, fp is 12, sh is 12, df is 12.

END: pr is -1, fp is -1, sh is 12, df is 12.

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing |

Distriioutiop of work - SCHEDULE Clause

IOMPS PARALLEL DO SCHEDULE(STATIC)

Each CPU receives one set of contiguous iterations
(~total_no_iterations /no_of cpus).

IOMPS PARALLEL DO SCHEDULE(STATIC,C)
lterations are divided round-robin fashion in chunks of size C.

IOMPS PARALLEL DO SCHEDULE(DYNAMIC,C)
lterations handed out in chunks of size C as CPUs become available.

IOMPS PARALLEL DO SCHEDULE(GUIDED,C)

Each of the iterations are handed out in pieces of exponentially
decreasing size, with C minimum number of iterations to dispatch
each time (Important for load balancing.)

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

Research Load Imbalances

Computing

Thread O > Unused
Thread 1 N Resources
Thread 2 >
Thread 3 >
>
Time

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research
Computing

Example.- SCHEDULE(STATIC,16)

ISOMP parallel do schedule(static,16)

do i=1,128 'OMP_NUM_ THREADS=4
A(i1)=B(1)+C (1)
enddo
thread0: do i=1,16 thread2: do i=33,48
A(i)=B(i)+C (i) A(i)=B(i)+C (i)
enddo enddo
do i=65,80 do i = 97,112
A(i)=B(i)+C (i) A(i)=B(i)+C (i)
enddo enddo
threadl: do i=17,32 thread3: do i=49,64
A(i)=B(i)+C (1) A(i)=B(i)+C (1)
enddo enddo
do i = 81,96 do i = 113,128
A(i)=B(i)+C (i) A(i)=B(i)+C (i)
enddo enddo

www.arc.vt.edu

@ VirginiaTech

Invent the Future®

Advanced

i) Scheduling Options

Static Dynamic
PROS PROS
 Low compute overhead « Potential for better load
 No synchronization overhead balancing, especially if chunk
per chunk is low
« Takes better advantage of data
locality CONS
* Higher compute overhead
CONS « Synchronization cost
« Cannot compensate for load associated per chunk of work
imbalance

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

igse) Scheduling Options

 When shared array data is
reused multiple times,
prefer static scheduling to o
dynamic 1$OMP do

do j=1,n

_ _ do i=1l,n
* Every invocation of the A(i,j)=A(i,j) *scale

scaling would divide the end do
iterations among CPUs the end do
same way for static but not

so for dynamic scheduling end do
1SOMP end parallel

1SOMP parallel private (i,j,iter)
do iter=1l,niter

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

s _Comparison of 'scheduling options

static or compute
dynamic overhead

chunk size chunk #

simple static simple no N/P P static lowest
interleaved simple vyes C N/C static low
simple . : . .
dynamic dynamic optional C N/C dynamic medium
guided guided optional eI S T AL dynamic high

from N/P N/C

runtime runtime no varies varies varies varies

www.arc.vt.edu @ VirginiaTech

Invent the Future®

O -

Advanced

E8l8 Matrix Multiplication - Serial

[¥** |nitialize matrices ***/
for (i=0; i<NRA; i++)
for (j=0; j<NCA; j++)
alilljl= i+
[etc...also initialize b and c]

/*** Multiply matrices ***/
for (i=0; i<NRA; i++)
for(j=0; j<NCB; j++)
for (k=0; k<NCA; k++)
clil[i] += ali]lk] * b[K][j];

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

B8 Example: Matrix Multiplication

Parallelize matrix multiplication from serial:
C version: mm.c
Fortran version: mm.f

1. Use OpenMP to parallelize loops
2. Determine public / private variables

3. Decide how to schedule loops

www.arc.vt.edu @ VirginiaTech

Invent the Future®

o ¥

Advanced

el \atrix Multiplication - OpenMP

Computing

/*** Spawn a parallel region explicitly scoping all variables ***/
#pragma omp parallel shared(a,b,c,nthreads,chunk) private(tid,i,j,k)

{
tid = omp_get_thread_num();

/*¥** |nitialize matrices ***/
#pragma omp for schedule (static, chunk)
for (i=0; i<NRA; i++)
for (j=0; j<NCA; j++)
alilljl= i+j;

#pragma omp for schedule (static, chunk)
for (i=0; i<NRA; i++) {
printf("Thread=%d did row=%d\n",tid,i);
for(j=0; j<NCB; j++)
for (k=0; k<NCA,; k++)
c[illj] +=ali][k] * bK][l;

www.arc.vt.edu @ VirginiaTech

Invent the Future®

ey - Matrix Multiplication: Work

Research
Computing

Sharing

ePartition by rows:

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

£8E8 Reduction; Clause

eThread-safe way to combine private copies of
a variable into a single result

e\/ariable that accumulates the result is the
“reduction variable”

e After loop execution, master thread collects
private values of each thread and finishes the
(global) reduction

eReduction operators and variables must be
declared

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

el Reduction Example: Vector Norm

Computing

doukle n sqr=0; //square of the vector norm
Fpragma omp parallel shared(vec, dim) private (i) //create threads

//S5plit up the for loop

//Use the reduction() clause to have OpenMP

//sum up all of the private copies of n_sqgr

#fpragma omp for reduction(+:n sqr)

for(i=0; i<dim; i++) //iterate through the rows of the result
n sqr += vec[i]*vec[i]:

3
on
Hh

printf ("Done.\n\

L

An\n",sqrt(n_sqr)):;

www.arc.vt.edu @ VirginiaTech

Invent the Future®

O &)
Advanced o
Research
Computing -

SYNCHRONIZATION

www.arc.vt.edu @ VirginiaTech

Invent the Future®

e}

Advanced

==l Nowait Clause

* When a work-sharing | SOMP PARALLEL
region is exited, a barrier is 'SOMP DO
Implied - all threads must do i=1l,n
reach the barrier before work (1)
any can proceed. enddo

1SOMP END DO NOWAIT

* By using the NOWAIT 'SOMP DO schedule (dynamic, M)

clause at the end of each

do i=1,m
loop inside the parallel x (i) =y (i) +z (i)
region, an unnecessary enddo
synchronization of threads '$SOMP END DO
can be avoided. !SOMP END PARALLEL

www.arc.vt.edu @ VirginiaTech

Invent the Future®

o ¥

Advanced
Research
Computing

Barriers

* Create a barrier to synchronize threads

#pragma omp parallel
{

// all threads do some work
#pragma omp barrier
// all threads do more work

}

* Barrier is implied at the end of a parallel region

www.arc.vt.edu @ VirginiaTech

Invent the Future®

el \utual Exclusion: Critical/Atomic

Research

el ~Directives-

e ATOMIC For a single command (e.g. incrementing a variable)

e CRITICAL Directive: Longer sections of code

!SOMP PARALLEL SHARED (sum,X,Y)

1$OMP PARALLEL SHARED (X,Y) 'ééﬁp CRITICAL

call update (x)
call update (y)
sum=sum+1

!SOMP END CRITICAL

1 SOMP ATOMIC
sum=sum+1

1SOMP END PARALLEL

1SOMP END PARALLEL

P |

-]

T J
Y

Master Thread CRITICAL section

LT

MVirginiaTech

WWW.a rC'Vt' ed u g/nvent the Future®

O

Advanced

el \Mutual exclusion: lock routines

Computing

When each thread must execute a section of code serially, locks provide a more
flexible way of ensuring serial access than CRITICAL and ATOMIC directives

call OMP INIT LOCK (maxlock)
1SOMP PARALLEL SHARED (X,Y)

call OMP_ set lock (maxlock)
call update (x)
call OMP unset lock (maxlock)

1SOMP END PARALLEL
call OMP DESTROY LOCK (maxlock)

www.arc.vt.edu @ VirginiaTech

Invent the Future®

O &)
Advanced o
Research
Computing -

Performance Optimization

www.arc.vt.edu @ VirginiaTech

Invent the Future®

o ¥

Advanced
Research
Computing

OpenMP wallclock timers

Real*8 :: omp get wtime, omp get wtick() (Fortran)
double omp get wtime (), omp get wtick() (C)

double t0, tl, dt, res;

t0 = omp get wtime() ;

<work>

tl = omp get wtime();

dt = t1 - t0;

res = 1.0/omp get wtick() ;

printf (“Elapsed time = %1f\n”,dt);
printf (“clock resolution = %$1f\n”, res);

MVirginiaTech

WWW.a rC'Vt' ed u g/nvent the Future®

Advanced

Research Timer Cgmpa riSOn

Computing

#Case 1:
Normal C Timer: 0.230 seconds

OpenMP Timer: 0.105319 seconds

#Case 2 (more efficient
threading) :

Normal C Timer: 0.200 seconds
OpenMP Timer: 0.012919 seconds

@ VirginiaTech

www.arc.vt.edu

Invent the Future®

Advanced

iml Shared.memory to OpenMP

e All processors connected to same memory
and all memory is identical

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced
Research

i Reality is More Complicated

* |thaca node (8 cores, 24 GB memory):

— 2 sockets with 4 cores each
— 32 KB L1 cache, 256KB L2 cache, 8MB L3 cache

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

B8 |ikwid-topology

(O I 7 I
)

fu

)

(I ¥ I
'I

A1)

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

B8 |ikwid-topology

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced ®
B8R OpenMP and cc-NUMA

Intel Nehalem microarchitecture

quadruple associative Instruction Cache 32 KByte,
128-entry TLB-4K, 7 TLB-2/4M per thread

ecc-NUMA = cache R S—

Uncore

Prefetch Buffer (16 Bytes) e
Prediction connect <
° global/bimodal, >
Predecode & loop, indirect 4x20Bit
‘ O e re I I I l O I I - l | I I I O rI I I Instruction Length Decoder jmp 64CTls
111111 I

Instruction Queue L, _

18 x86 Instructions BB > o

; Memory >

Alignment »

§ Controller >
m e O r a e S S rere R, S,
I I I C C l l 1 1,33 GTls

Complex
Decoder

Common

o e
’ Loop Y L3-Cache
O e r n E l I I Z e Stream | —{Decoded Instruction Queue (28 HOP entries) |- picro 8 MByte
. Decoder i T i I Instruction .

| MicroOp Fusion | Sequencer

2 I 1 1 1

Retirement | 2 x Register Allocation Table (RAT) |

multiple levels of cache === !

l l 2 : 2 256 KByte
[) | Reservation Station (128-entry) fused ‘ 8-way,
g || 64 Byte
o reduce the time to
private
Integer/ Integer/ L2-Cache
MMX ALU, MMX.
Branch ALU
512-entry
L2-TLB-4K

Result Bus
256

octuple associative Data Cache 32 KByte, |‘
64-entry TLB-4K, 32-entry TLB-2/4M |'

GT/s: gigatransfers per second

@ VirginiaTech

WWW.a rC'Vt' ed u Invent the Future®

Advanced ®
B8R OpenMP and cc-NUMA

eSetup is advantageous because it allows
individual CPU cores to get data more quickly
from memory

eMaintaining cache coherence is expensive

eResult: you want to associate specific memory
to specific CPU cores

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

Fessgien] Opehl\/ll? and cc-NUMA

1. Bind specific threads to specific cores:
Intel: export KMP_AFFINITY="proclist=[SCPUSET]"
GCC: export GOMP_CPU_AFFINITY="SCPUSET"

2. Associate memory with a specific thread:

— First-touch policy: use parallel initialization so
that values are initialized by the thread that will
modify the value

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

e SAXPY Example (Code)

//serial initialization:

//0S will allocate all data close to initial thread
for (1=0;1<N;i1++) al[il=b[i]=c[1]=0.0;

//saxpying with poor memory placement

fpragma omp parallel for

for (1=0;1i<N;i++) a[i]=b[i]+scalar*c[i];

//parallel initialization: data allocated where
used

pragma omp parallel for

for (1=0;1<N;i++) a[il]l=b[i]l=c[1]=0.0;
//saxpying with optimal memory placement
#pragma omp parallel for

for (1=0;1i<N;i++) al[i]l=b[i]+scalar*c[i];

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

gy SAXPY Example (Output)

Computing

S 1cc -openmp omp saxpy.C -0 Saxpy
S ./saxpy

SAXPY with Serial Initialization:
Elapsed time = 0.105552

SAXPY with Parallel
Initialization:

Elapsed time = 0.012795

MVirginiaTech

WWW.a rC'Vt' ed u g/nvent the Future®

Advanced
Research

Eei Online Content

¢ ARC OpenMP page:
http://www.arc.vt.edu/openmp

eOpenMP Application Programming Interface:
http://www.openmp.org/mp-documents/
OpenMP4.0.0.pdf

e LNL Examples:
https://computing.linl.gov/tutorials/openMP/
exercise.html

www.arc.vt.edu @ VirginiaTech

Invent the Future®

Advanced

£ Thank You!

www.arc.vt.edu @ VirginiaTech

Invent the Future®

