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INTRO: Parallel MATLAB

Parallel MATLAB is an extension of MATLAB that takes
advantage of multicore desktop machines and clusters.

The Parallel Computing Toolbox or PCT runs on a desktop, and
can take advantage of cores (R2014a has no limit, R2013b limit is
12, ...). Parallel programs can be run interactively or in batch.

The Matlab Distributed Computing Server (MDCS) controls
parallel execution of MATLAB on a cluster with tens or hundreds
of cores.

ARC’s clusters (Cascades, DragonsTooth, NewRiver, BlueRidge)
provides MDCS services for up to 224 cores. Currently, single
users are restricted to 96 cores.
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http://www.arc.vt.edu/cascades
http://www.arc.vt.edu/dragonstooth
http://www.arc.vt.edu/newriver
http://www.arc.vt.edu/blueridge


INTRO: What Do You Need?

1 Your machine should have multiple processors or cores:

On a PC: Start :: Settings :: Control Panel :: System
On a Mac: Apple Menu :: About this Mac :: More Info...

2 Your MATLAB must be version 2012a or later:

Go to the HELP menu, and choose About Matlab.

3 You must have the Parallel Computing Toolbox:

At VT, the concurrent (& student) license includes the PCT.
The standalone license does not include the PCT.
To list all your toolboxes, type the MATLAB command ver.
When using an MDCS (server) be sure to use the same
version of Matlab on your client machine.
ARC Clusters currently support R2015a-R2016b.
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PROGRAMMING: Obtaining Parallelism

Three ways to write a parallel MATLAB program:

suitable for loops can be made into parfor loops;

the spmd statement can define cooperating synchronized
processing;

the task feature creates multiple independent programs.

The parfor approach is a limited but simple way to get started.
spmd is powerful, but may require rethinking the program/data.
The task approach is simple, but suitable only for computations
that need almost no communication.
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PROGRAMMING: PARFOR: Parallel FOR Loops

Lecture #2: PARFOR

The simplest path to parallelism is the parfor statement, which
indicates that a given for loop can be executed in parallel.

When the “client” MATLAB reaches such a loop, the iterations of
the loop are automatically divided up among the workers, and the
results gathered back onto the client.

Using parfor requires that the iterations are completely
independent; there are also some restrictions on array-data access.

OpenMP implements a directive for ’parallel for loops’
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PROGRAMMING: ”SPMD” Single Program Multiple Data

Lecture #3: SPMD

MATLAB can also work in a simplified kind of MPI model.

There is always a special “client” process.

Each worker process has its own memory and separate ID.

There is a single program, but it is divided into client and worker
sections; the latter marked by special spmd/end statements.

Workers can “see” the client’s data; the client can access and
change worker data.

The workers can also send messages to other workers.

OpenMP includes constructs similar to spmd.

8 / 1



PROGRAMMING: ”SPMD” Distributed Arrays

SPMD programming includes distributed arrays.

A distributed array is logically one array, and a large set of
MATLAB commands can treat it that way (e.g. ‘backslash’).

However, portions of the array are scattered across multiple
processors. This means such an array can be really large.

The local part of a distributed array can be operated on by that
processor very quickly.

A distributed array can be operated on by explicit commands to
the SPMD workers that “own” pieces of the array, or implicitly by
commands at the global or client level.
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EXECUTION: Models

There are several ways to execute a parallel MATLAB program:

Model Command Where It Runs

Interactive matlabpool This machine

Interactive
parpool

(R2013b)
This machine

Indirect local batch This machine

Indirect remote batch Remote machine
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EXECUTION: Direct using parpool

Parallel MATLAB jobs can be run directly, that is, interactively.

The parpool (previously matlabpool) command is used to reserve
a given number of workers on the local (or perhaps remote)
machine.

Once these workers are available, the user can type commands, run
scripts, or evaluate functions, which contain parfor statements.
The workers will cooperate in producing results.

Interactive parallel execution is great for desktop debugging of
short jobs.

Note: Starting in R2013b, if you try to execute a parallel program
and a pool of workers is not already open, MATLAB will open it
for you. The pool of workers will then remain open for a time that
can be specified under Parallel → Parallel Preferences (default =
30 minutes).
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EXECUTION: Indirect Local using batch

Parallel MATLAB jobs can be run indirectly.

The batch command is used to specify a MATLAB code to be
executed, to indicate any files that will be needed, and how many
workers are requested.

The batch command starts the computation in the background.
The user can work on other things, and collect the results when
the job is completed.

The batch command works on the desktop, and can be set up to
access ARC clusters (e.g. NewRiver).
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EXECUTION: Local and Remote MATLAB Workers
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EXECUTION: Managing Cluster Profiles

MATLAB uses Cluster Profiles (previously called “configurations”)
to set the location of a job. ‘local’ is the default. Others can be
added to send jobs to other clusters (e.g. NewRiver).
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EXECUTION: Ways to Run

Interactively, we call parpool and then our function:

mypool = parpool ( ’local’, 4 )

q = quad_fun ( n, a, b );

delete(mypool)

’local’ is a default Cluster Profile defined as part of the PCT.
The batch command runs a script, with a Pool argument:

job = batch ( ’quad_script’, ’Pool’, 4 )

(or)

job = batch ( ’Profile’,’local’, ’quad_script’, ...

’Pool’, 4 )
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EXECUTION: ARC Clusters

ARC offers resources with Matlab installed, including:
System Usage Nodes Node Description Special Features

Cascades Large-scale CPU 196 32 cores, 128 GB 16 K80 GPGPU

(2× Intel Broadwell) 2 3TB nodes

DragonsTooth Single-node jobs 48 24 cores, 256GB

(2× Intel Haswell)

NewRiver Data Intensive 126 24 cores, 128 GB 8 K80 GPGPU

(2× Intel Haswell) 24 512GB nodes

2 3TB nodes

BlueRidge Large-scale CPU, MIC 408 16 cores, 64 GB 260 Intel Xeon Phi

(2× Intel Sandy Bridge) 4 K40 GPU

18 128GB nodes

ARC has a MDCS that can currently accommodate a combination
of jobs with a total of 224 workers. At this time the queueing
software imposes a limit of 96 workers per user.
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http://www.arc.vt.edu/cascades
http://www.arc.vt.edu/dragonstooth
http://www.arc.vt.edu/newriver
http://www.arc.vt.edu/blueridge


EXECUTION: Configuring Desktop-to-Cluster Submission

If you want to work with parallel MATLAB on ARC resources,
you must first get an account. Go to

http://www.arc.vt.edu/account

Log in (PID and password), select the systems you want to
work with and MATLAB in the Software section, and submit.

Steps to set up submission from your desktop include:
1 Download and add some files to your MATLAB directory
2 Run a script to create a new profile on your desktop.

A new cluster profile (e.g. newriver R2015b) will be created
that can be used in batch().
These steps are described in detail here:

http://www.arc.vt.edu/matlabremote
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EXECUTION: Intracluster Submission

You can also submit jobs to ARC clusters from a cluster login
node.

Pros: Easier to set up. Only one file system to manage.

Cons: Requires logging into the cluster (e.g., with SSH). Have
to use Matlab command line (except on NewRiver).

Setting up intracluster submission is very simple - running a
one-question script at the Matlab command line on the ARC
cluster.
The full steps are described here:

http://www.arc.vt.edu/matlabremote#intracluster
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EXECUTION: Job Monitor

Matlab’s Job Monitor provides a convenient way to track jobs
that are running in the background locally or remotely on ARC’s
machines.
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QUAD: Estimating an Integral
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QUAD: The QUAD FUN Function

funct ion q = quad fun ( n , a , b )

q =0.0 ;
w=(b−a )/ n ;
f o r i =1:n

x = ( ( n− i )∗ a+( i −1)∗b ) / ( n−1);
f x= 4./(1+ x . ˆ 2 ) ;
q = q+w∗ f x ;

end

return
end
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QUAD: Comments

The function quad fun estimates the integral of a particular
function over the interval [a, b].

It does this by evaluating the function at n evenly spaced points,
multiplying each value by the weight (b − a)/n.

These quantities can be regarded as the areas of little rectangles
that lie under the curve, and their sum is an estimate for the total
area under the curve from a to b.

We could compute these subareas in any order we want.

We could even compute the subareas at the same time, assuming
there is some method to save the partial results and add them
together in an organized way.
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QUAD: The Parallel QUAD FUN Function

funct ion q = quad fun ( n , a , b )

q =0.0 ;
w=(b−a )/ n ;

% f o r i =1:n % a v o i d s t a r t i n g p o o l
p a r f o r i =1:n

x = ( ( n− i )∗ a+( i −1)∗b ) / ( n−1);
f x= 4./(1+ x . ˆ 2 ) ;
q = q+w∗ f x ;

end

return
end
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QUAD: Comments

The parallel version of quad fun does the same calculations.

The parfor statement changes how this program does the
calculations. It asserts that all the iterations of the loop are
independent, and can be done in any order, or in parallel.

Execution begins with a single processor, the client. When a parfor
loop is encountered, the client is helped by a “pool” of workers.

Each worker is assigned some iterations of the loop. Once the loop
is completed, the client resumes control of the execution.

MATLAB ensures that the results are the same (with exceptions)
whether the program is executed sequentially, or with the help of
workers.

The user can wait until execution time to specify how many
workers are actually available.
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QUAD: Interactive

To run quad fun.m in parallel on your desktop, type:

n = 10000; a = 0.5; b = 1;

pool = parpool(’local’,4)

q = quad_fun ( n, a, b );

delete(pool)

The word local is choosing the local profile, that is, the cores
assigned to be workers will be on the local machine.

The value ”4” is the number of workers you are asking for. It can
be up to 12 on a local machine. It does not have to match the
number of cores you have.
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QUAD: Indirect Local BATCH

The batch command, for indirect execution, accepts scripts (and
since R2010b functions). We can make a suitable script called
quad script.m:

n = 10000; a = 0.5; b = 1;

q = quad_fun ( n, a, b )

Now we assemble the job information needed to run the script and
submit the job:

job = batch ( ’quad_script’, ’Pool’, 4, ...

’Profile’, ’local’, ...

’AttachedFiles’, { ’quad_fun’ } )
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QUAD: Indirect Local BATCH

After issuing batch(), the following commands wait for the job
to finish, gather the results, and clear out the job information:

wait ( job ); % no prompt until the job is finished

load ( job ); % load data from the job’s Workspace

delete ( job ); % clean up (destroy prior to R2012a)

Note: You may not want to have Matlab wait for long research
runs. Rather, you may want to submit (perhaps a few times) and
come back and check the results later (e.g., with Job Monitor).
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QUAD: Indirect Remote BATCH

The batch command can send your job anywhere, and get the
results back, as long as you have set up an account on the remote
machine, and you have defined a Cluster Profile on your desktop
that tells it how to access the remote machine.

At Virginia Tech, with proper set up, your desktop can send a
batch job to an ARC cluster as easily as running locally:

job = batch ( ’quad_script’, ’Pool’, 4, ...

’Profile’, ’newriver_R2015a, ...

’AttachedFiles’, { ’quad_fun’ } )

The job is submitted. You may wait for it, load it and
destroy/delete it, all in the same way as for a local batch job.
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CONCLUSION: Summary

Introduction: Parallel Computing Toolbox

Models of parallelism: parfor, spmd, distributed

Models of execution: Interactive vs. Indirect, Local vs.
Remote

ARC clusters

Quadrature example: Parallelizing and Running
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CONCLUSION: Desktop Experiments

Virginia Tech has a limited number of concurrent MATLAB
licenses, and including the Parallel Computing Toolbox.

Since Fall 2011, the PCT is included with the student license.

Run ver in the Matlab Command Window to see what licenses
you have available.

If you don’t have a multicore machine, you won’t see any speedup,
but you may still be able to run some ‘parallel’programs.

33 / 1



PARFOR: Parallel For Loops

Introduction

FMINCON Example

Executing a PARFOR Program

PRIME Example

Classification of variables

ODE SWEEP Example

MD Example

Conclusion

34 / 1



INTRO: Parallel Loops in Matlab

In a previous lecture we discussed Matlab’s Parallel Computing
Toolbox (PCT), and the Distributed Computing Server (MDCS)
that runs on Virginia Tech’s cluster(s).

As noted previously there are three ways to write a parallel
Matlab program:

suitable for loops can be made into parfor loops;

the spmd statement can define cooperating synchronized
processing;

the task feature creates multiple independent programs.

Here we focus on parfor loops and on options for parallelism in
Matlab toolboxes.
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INTRO: PCT Disables Multithreading

In your (non-parallel) codes, Matlab will automatically use
multithreading; although your code is running on a single core,
there may be several threads of execution that can be carried out
simultaneously.

This is especially true in linear algebra functions, such as LU, QR
and SVD factorizations.

However, when the PCT is in use, multithreading is disabled. If
your nonparallel code was getting the advantage of multithreading,
then the parallel version might run slower if only a few parallel
cores are used.

For details, refer to:
http://www.mathworks.com/support/solutions/en/data/1-
4PG4AN/index.html?solution=1-4PG4AN
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INTRO: PCT has an “Overhead” Charge

Having twice as many helpers on a job ought to cut the time in
half. But parallelism has an overhead; it takes some time and
space to set it up, to synchronize, to distribute and collect data.

This means that parallelism might not work well for:

a problem that only uses a few workers;

a problem in which each worker only does a small amount of
work;

As you increase the number of workers, the improvement will be
less than expected at first; then it may be linear for a while (the
“sweet spot”), but then it will drop off again as there is not
enough work.
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BUILTIN: Many Functions have Parallelism Built In

Many programmers feel that the parfor command is the simplest
way to get parallel performance. But in fact, there’s a way that’s
even simpler, because now many Matlab functions include a
built-in parallelism option to take advantage of the PCT.

Such functions include an input option or option structure that
allows you to request parallel execution. On invoking this,
Matlab will check your default parallel configuration and take
care of everything for you.

This is the “Royal Road to Parallelism”, and you may find it the
quickest way to profit from the PCT.
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BUILTIN: FMINCON Example

FMINCON is a popular Matlab function available in the
Optimization Toolbox. It finds a local minimizer of a real-valued
function of several real variables with constraints:

min F(X) subject to:

A*X <= B,

Aeq*X = Beq (linear constraints)

C(X) <= 0,

Ceq(X) = 0 (nonlinear constraints)

LB <= X <= UB (bounds)

If no derivative (Jacobian) information is supplied by the user, then
FMINCON uses finite differences to estimate these quantities. If
F, C or Ceq are expensive to evaluate, the finite differencing can
dominate the execution time.
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BUILTIN: Path of a Boat Against a Current

A boat at (x,y)=0 is trying to reach the riverbank at y=1.

The boat is given 10 minutes, and must try to land as far as
possible upstream. In this unusual river, the current is zero
midstream (x=0), increasingly negative above the x axis, and
increasingly positive (helpful) below the x axis!
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BUILTIN: Riding the Helpful Current

The correct solution takes maximum advantage of the favorable
current, and then steers back hard to the land on the line y = 1.
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BUILTIN: The UseParallel Option

FMINCON uses an options structure that contains default
settings. The user can modify these by calling the procedure
optimset. The finite differencing process can be done in parallel if
the user sets the appropriate option:

options = optimset ( optimset( ’fmincon’ ), ...

’LargeScale’,’off’, ...

’Algorithm’, ’active-set’, ...

’Display’ , ’iter’, ...

’UseParallel’, ’Always’);

[ x_star, f_star, exit ] = fmincon ( h_cost, z0, ...

[], [], [], [], LB, UB, h_cnst, options );
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BUILTIN: Toolboxes with Builtin Parallel Functions

Simulink

Code Generation

Computational Biology

Control System Design and Analysis

Image Processing and Computer Vision

Global Optimization

Model-Based Calibration

Optimization

Statistics and Machine Learning

Signal Processing and Communicatons

Verification, Validation and Test

For details, see
https://www.mathworks.com/products/parallel-
computing/parallel-support.html
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PARFOR: Parallel For Loops

The parfor statement indicates that a given for loop can be
executed in parallel.

When the “client” Matlab reaches such a loop, the iterations of
the loop are automatically divided up among the workers, and the
results gathered back onto the client.

Why not replace every for by parfor?

A loop can only be parallelized if the work of each iteration is
logically independent; the results should be the same even if we
were to permute the loop indices.

Matlab also imposes some restrictions on how arrays can be read
and written within a parallel loop.

(And, of course, some loops may have too little work in them to be
worth parallelizing in the first place!)
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PRIME: The Prime Number Example

Let us look at an example in which we want to write a function
that can tell us how many prime numbers there are between 1 and
a user-specified limit N.

There are many clever ways to do such a calculation, but let’s
concentrate on a simple approach, and see how it can be converted
to a parallel approach.

To determine how many primes there are, we need to check each
integer I in the range. To check an integer I, we simply see
whether it is divisible by any integer J strictly between 1 and I.

Notice that the work our program has to do increases nonlinearly
as N increases. Doubling N multiplies the run time roughly by 4.
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PRIME: The Sieve of Eratosthenes
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PRIME: Program Text

function total = prime ( n )

total = 0;

for i = 2 : n <-- Change this for to parfor?

prime = 1;

for j = 2 : i - 1 <-- Don’t change this for to parfor!

if ( mod ( i, j ) == 0 )

prime = 0;

end

end

total = total + prime;

end

return
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PRIME: We can run this in parallel

We can parallelize the loop over i, replacing for by parfor.

However, we can’t parallelize both i and j! Matlab doesn’t allow
nested parallel loops

Why would it be inefficient AND wrong to parallelize the j loop
instead of the i loop?

Another worry: there is a single variable total which is accessed by
each worker. So each worker will start out with a copy of this
variable set to 0, and will increment it independently. At the end
of the loop execution, what do we do with multiple values for a
single variable?

Matlab is smart enough to realize that the right thing to do here
is compute the sum of these values and return that as the final
value of total. This is known as a reduction variable.
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PRIME: Run the function on your machine

pool_obj = parpool ( ’local’, 4 ); <=== Explicitly request

4 workers

n = 50;

while ( n <= 5000000 )

total = prime ( n ); <=== parallel code

fprintf ( 1, ’%8d %8d\n’, n, total );

n = n * 10;

end

delete ( pool_obj ); <=== Release workers
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PRIME: Timing

We can use tic and toc to measure the time required.

Run with 1 client and 0, 2, 4, 8 workers.

N 1+0 1+2 1+4 1+8

50,000 0.13 0.10 0.08 0.06

500,000 3.25 1.66 0.85 0.44

5,000,000 84.9 43.3 21.8 10.09
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PRIME: Timing Comments

The timing data suggests two conclusions:

Parallelism doesn’t pay until your problem is big enough;

AND

Parallelism doesn’t pay until you have a decent number of workers.

(By the way, it is also possible to have too many workers for a
given problem!)
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ODE: A Parameterized Problem

Consider a favorite ordinary differential equation, which describes
the motion of a spring-mass system:

m
d2x

dt2
+ b

dx

dt
+ k x = f (t), x(0) = 0, ẋ(0) = v .
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ODE: A Parameterized Problem

Solutions of this equation describe oscillatory behavior; x(t) swings
back and forth, in a pattern determined by the parameters m, b, k ,
f and the initial conditions.

Each choice of parameters defines a solution, and let us suppose
that the quantity of interest is the maximum deflection xmax that
occurs for each solution.

We may wish to investigate the influence of b and k on this
quantity, leaving m fixed and f zero.

So our computation might involve creating a plot of xmax(b, k).

53 / 1



ODE: Each Solution has a Maximum Value
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ODE: A Parameterized Problem

Evaluating the implicit function xmax(b, k) requires selecting a
pair of values for the parameters b and k , solving the ODE over a
fixed time range, and determining the maximum value of x that is
observed. Each point in our graph will cost us a significant amount
of work.

On the other hand, it is clear that each evaluation is completely
independent, and can be carried out in parallel. Moreover, if we
use a few shortcuts in Matlab, the whole operation becomes
quite straightforward!
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ODE: The Parallel Code

m = 5 . 0 ;
bVa l s = 0 .1 : 0 .05 : 5 ;
kVa l s = 1 .5 : 0 .05 : 5 ;

[ bGr id , kGr id ] = meshgr id ( bVals , kVa l s ) ;

peakVa l s = nan ( s i z e ( kGr id ) ) ;

t i c ;

p a r f o r i j = 1 : numel ( kGr id )

[ T, Y ] = ode45 ( @( t , y ) ode sys tem ( t , y , m, bGr id ( i j ) , . . .
kGr id ( i j ) ) , [ 0 , 2 5 ] , [ 0 , 1 ] ) ;

peakVa l s ( i j ) = max ( Y( : , 1 ) ) ;

end

toc ;
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ODE: PARPOOL or BATCH Execution

pool_obj = parpool(’local’, 4);

ode_sweep_parfor

delete(pool_obj)

ode_sweep_display

- - - - - - - - - - - - - - - - - - - -

job = batch ( ...

’ode_sweep_script’, ...

’Profile’, ’local’, ...

’AttachedFiles’, {’ode_system.m’}, ...

’pool’, 4 );

wait ( job );

load ( job );

ode_sweep_display
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ODE: Display the Results

%
% D i s p l a y t he r e s u l t s .
%

f i g u r e ;

s u r f ( bVals , kVals , peakVals , ’ EdgeColor ’ , . . .
’ I n t e r p ’ , ’ F a c e C o l o r ’ , ’ I n t e r p ’ ) ;

t i t l e ( ’ R e s u l t s o f ODE Parameter Sweep ’ )
x l a b e l ( ’ Damping B ’ ) ;
y l a b e l ( ’ S t i f f n e s s K ’ ) ;
z l a b e l ( ’ Peak D i s p l a c e m e n t ’ ) ;
view ( 50 , 30 )
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ODE: A Parameterized Problem
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ODE: A Very Loosely Coupled Calculation

In the PRIME program, the parfor loop was invoked in the outer
loop; in each iteration there is a reasonable workload/.

In the ODE parameter sweep, we have several thousand IVP’s to
solve, but we could solve them in any order, on various computers,
or any way we wanted to. All that was important was that when
the computations were completed, every value xmax(b, x) had
been computed.

This kind of loosely-coupled problem can be treated as a task
computing problem, wherein Matlab can treat this problem as a
collection of many little tasks to be computed in an arbitrary
fashion and assembled at the end.
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MD: A Molecular Dynamics Simulation

Compute the positions and velocities of N particles at a sequence
of times. The particles exert a weak attractive force on each other.
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MD: The Molecular Dynamics Example

The MD program runs a simple molecular dynamics simulation.

There are N molecules being simulated.

The program runs a long time; a parallel version would run faster.

There are many for loops in the program that we might replace by
parfor, but it is a mistake to try to parallelize everything!

Matlab has a profile command that can report where the CPU
time was spent - which is where we should try to parallelize.
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MD: Profile the Sequential Code

>> profile on

>> md

>> profile viewer

Step Potential Kinetic (P+K-E0)/E0

Energy Energy Energy Error

1 498108.113974 0.000000 0.000000e+00

2 498108.113974 0.000009 1.794265e-11

... ... ... ...

9 498108.111972 0.002011 1.794078e-11

10 498108.111400 0.002583 1.793996e-11

CPU time = 415.740000 seconds.

Wall time = 378.828021 seconds.
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MD: Where is Execution Time Spent?
This is a static copy of a profile report

Home

Profile Summary
Generated 27-Apr-2009 15:37:30 using cpu time.

Function Name Calls Total Time Self Time* Total Time Plot

(dark band = self time)

md 1 415.847 s 0.096 s

compute 11 415.459 s 410.703 s

repmat 11000 4.755 s 4.755 s

timestamp 2 0.267 s 0.108 s

datestr 2 0.130 s 0.040 s

timefun/private/formatdate 2 0.084 s 0.084 s

update 10 0.019 s 0.019 s

datevec 2 0.017 s 0.017 s

now 2 0.013 s 0.001 s

datenum 4 0.012 s 0.012 s

datestr>getdateform 2 0.005 s 0.005 s

initialize 1 0.005 s 0.005 s

etime 2 0.002 s 0.002 s

Self time is the time spent in a function excluding the time spent in its child functions. Self time also includes overhead resulting from

the process of profiling.

Profile Summary file://localhost/Users/burkardt/public_html/m_src/md/md_profile.txt/file0.html

1 of 1 4/27/09 3:39 PM
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MD: The COMPUTE Function

f u n c t i o n [ f , pot , k i n ] = compute ( np , nd , pos , v e l , mass )

f = z e r o s ( nd , np ) ;
pot = 0 . 0 ;

f o r i = 1 : np
f o r j = 1 : np

i f ( i ˜= j )
r i j ( 1 : nd ) = pos ( 1 : nd , i ) − pos ( 1 : nd , j ) ;
d = s q r t ( sum ( r i j ( 1 : nd ) . ˆ 2 ) ) ;
d2 = min ( d , p i / 2 .0 ) ;
pot = pot + 0 .5 ∗ s i n ( d2 ) ∗ s i n ( d2 ) ;
f ( 1 : nd , i ) = f ( 1 : nd , i ) − r i j ( 1 : nd ) ∗ s i n ( 2 . 0 ∗ d2 ) / d ;

end
end

end

k i n = 0 .5 ∗ mass ∗ sum ( v e l ( 1 : nd , 1 : np ) . ˆ 2 ) ;

r e t u r n
end
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MD: Can We Use PARFOR?

The compute function fills the force vector f(i) using a for loop.

Iteration i computes the force on particle i, determining the
distance to each particle j, squaring, truncating, taking the sine.

The computation for each particle is “independent”; nothing
computed in one iteration is needed by, nor affects, the
computation in another iteration. We could compute each value on
a separate worker, at the same time.

The Matlab command parfor will distribute the iterations of this
loop across the available workers.

Tricky question: Could we parallelize the j loop instead?

Tricky question: Could we parallelize both loops?
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MD: Speedup

Replacing “for i” by “parfor i”, here is our speedup:
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MD: Speedup

Parallel execution gives a huge improvement in this example.

There is some overhead in starting up the parallel process, and in
transferring data to and from the workers each time a parfor loop
is encountered. So we should not simply try to replace every for
loop with parfor.

That’s why we first searched for the function that was using most
of the execution time.

The parfor command is the simplest way to make a parallel
program, but in the next lecture we will see some alternatives.
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MD: PARFOR is Particular

We were only able to parallelize the loop because the iterations
were independent, that is, the results did not depend on the order
in which the iterations were carried out.

In fact, to use Matlab’ parfor in this case requires some extra
conditions, which are discussed in the PCT User’s Guide. Briefly,
parfor is usable when vectors and arrays that are modified in the
calculation can be divided up into distinct slices, so that each slice
is only needed for one iteration.

This is a stronger requirement than independence of order!

Trick question: Why was the scalar value POT acceptable?
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PARFOR: Direct Execution

Parallel MATLAB jobs can be run directly, that is, interactively.

The parpool command is used to reserve a given number of
workers on the local (or perhaps remote) machine.

Once these workers are available, the user can type commands, run
scripts, or evaluate functions, which contain parfor statements.
The workers will cooperate in producing results.

Interactive parallel execution is great for desktop debugging of
short jobs.

It’s an inefficient way to work on a cluster, because no one else can
use the workers until you release them!

So...don’t use the Matlab queue on an ARC Cluster, from your
desktop machine or from an interactive session on an ARC Cluster
login node! In our examples, we will indeed use NewRiver, but
always through the indirect batch system.
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PARFOR: Indirect Execution

Parallel PARFOR Matlab jobs can be run indirectly.

The batch command is used to specify a MATLAB code to be
executed, to indicate any files that will be needed, and how many
workers are requested.

The batch command starts the computation in the background.
The user can work on other things, and collect the results when
the job is completed.

The batch command works on the desktop, and can be set up
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PARFOR: Variable Classification
Advanced Topics

error if it contains any variables that cannot be uniquely categorized or if any
variables violate their category restrictions.

Classification Description

Loop Serves as a loop index for arrays

Sliced An array whose segments are operated on by different
iterations of the loop

Broadcast A variable defined before the loop whose value is used
inside the loop, but never assigned inside the loop

Reduction Accumulates a value across iterations of the loop,
regardless of iteration order

Temporary Variable created inside the loop, but unlike sliced or
reduction variables, not available outside the loop

Each of these variable classifications appears in this code fragment:

��������	�
��

��	
�������������	�
�� 
����
�������	�
��

�������������	�
��

����
�	������	�
�� ��	
���	��������	�
��

Loop Variable
The following restriction is required, because changing i in the parfor body
invalidates the assumptions MATLAB makes about communication between
the client and workers.

2-15
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PARFOR: A Variable Classification Example

Advanced Topics

error if it contains any variables that cannot be uniquely categorized or if any
variables violate their category restrictions.

Classification Description

Loop Serves as a loop index for arrays

Sliced An array whose segments are operated on by different
iterations of the loop

Broadcast A variable defined before the loop whose value is used
inside the loop, but never assigned inside the loop

Reduction Accumulates a value across iterations of the loop,
regardless of iteration order

Temporary Variable created inside the loop, but unlike sliced or
reduction variables, not available outside the loop

Each of these variable classifications appears in this code fragment:

��������	�
��

��	
�������������	�
�� 
����
�������	�
��

�������������	�
��

����
�	������	�
�� ��	
���	��������	�
��

Loop Variable
The following restriction is required, because changing i in the parfor body
invalidates the assumptions MATLAB makes about communication between
the client and workers.

2-15

NB: ”The range of a parfor statement must be increasing
consecutive integers”
Trick Ques: What values to a, i, and d have after exiting the loop ?
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PARFOR: Sliced variables:
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PARFOR: Allocating the loop indices

How are the loop indices
distributed among the workers ?

Run ii=1:1000 on 4 workers.

≈ 63% indices allocated in the
first 4 chunks.

Indices then assigned in smaller
chunks as a worker finishes

Similar to OpenMP’s Dynamic
assignment 0 50 100 150 200 250 300
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PARFOR: batch options
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CONCLUSION: Summary of PARFOR Examples

In the FMINCON example, all we had to do to take advantage of
parallelism was set an option (and possibly make sure some
workers were available).

By timing the PRIME example, we saw that it is inefficient to work
on small problems, or with only a few processors.

In the ODE SWEEP example, the loop we modified was not a
small internal loop, but a big “outer” loop that defined the whole
calculation.

In the MD example, we did a profile first to identify where the
work was.
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CONCLUSION: Summary of PARFOR Examples

We only briefly mentioned the limitations of the parfor statement.

You can look in the User’s Guide for some more information on
when you are allowed to turn a for loop into a parfor loop. It’s not
as simple as just knowing that the loop iterations are independent.
Matlab has concerns about data usage as well.

Matlabs built in program editor (mlint) knows all about the
rules for using parfor. You can experiment by changing a for to
parfor, and the editor will immediately complain to you if there is a
reason that Matlab will not accept a parfor version of the loop.
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SPMD: is not PARFOR

Previous Lecture: PARFOR

The parfor command, described earlier, is easy to use, but it only
lets us do parallelism in terms of loops. The only choice we make
is whether a loop is to run in parallel.

We can’t determine how the loop iterations are divided up;

we can’t be sure which worker runs which iteration;

workers cannot exchange data.

Using parfor, the individual workers are anonymous, and all the
data are shared (or copied and returned).
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SPMD: is Single Program, Multiple Data

Lecture: SPMD

The SPMD construct is like a very simplified version of MPI.
There is one client process, supervising workers who cooperate on
a single program. Each worker (sometimes also called a “lab”) has
an identifier, knows how many total workers there are, and can
determine its behavior based on that identifier.

each worker runs on a separate core (ideally);

each worker uses a separate workspace;

a common program is used;

workers meet at synchronization points;

the client program can examine or modify data on any worker;

any two workers can communicate directly via messages.
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SPMD: The SPMD Environment

Matlab sets up one special agent called the client.

Matlab sets up the requested number of workers, each with a
copy of the program. Each worker “knows” it’s a worker, and has
access to two special functions:

numlabs(), the number of workers;

labindex(), a unique identifier between 1 and numlabs().

The empty parentheses are usually dropped, but remember, these
are functions, not variables!

If the client calls these functions, they both return the value 1!
That’s because when the client is running, the workers are not.
The client could determine the number of workers available by

n = matlabpool ( ’size’ ) or

n = pool_obj.NumWorkers
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SPMD: The SPMD Command

The client and the workers share a single program in which some
commands are delimited within blocks opening with spmd and
closing with end.

The client executes commands up to the first spmd block, when it
pauses. The workers execute the code in the block. Once they
finish, the client resumes execution.

The client and each worker have separate workspaces, but it is
possible for them to communicate and trade information.

The value of variables defined in the “client program” can be
referenced by the workers, but not changed.

Variables defined by the workers can be referenced or changed by
the client, but a special syntax is used to do this.
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SPMD: How SPMD Workspaces Are Handled

Client Worker 1 Worker 2

a b e | c d f | c d f

-------------------------------

a = 3; 3 - - | - - - | - - -

b = 4; 3 4 - | - - - | - - -

spmd | |

c = labindex(); 3 4 - | 1 - - | 2 - -

d = c + a; 3 4 - | 1 4 - | 2 5 -

end | |

e = a + d{1}; 3 4 7 | 1 4 - | 2 5 -

c{2} = 5; 3 4 7 | 1 4 - | 5 6 -

spmd | |

f = c * b; 3 4 7 | 1 4 4 | 5 6 20

end
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SPMD: When is Workspace Preserved?

A program can contain several spmd blocks. When execution of
one block is completed, the workers pause, but they do not
disappear and their workspace remains intact. A variable set in one
spmd block will still have that value if another spmd block is
encountered. Unless the client has changed it, as in our example.
You can imagine the client and workers simply alternate execution.
In Matlab, variables defined in a function “disappear” once the
function is exited. The same thing is true, in the same way, for a
Matlab program that calls a function containing spmd blocks.
While inside the function, worker data is preserved from one block
to another, but when the function is completed, the worker data
defined there disappears, just as the regular Matlab data does.
It’s not legal to nest an smpd block within another spmd block or
within a parfor loop. Some additional limitations are discussed at

http://www.mathworks.com/help/distcomp/programming-tips_brukbnp-9.html?searchHighlight=nested+spmd
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QUAD: The Trapezoid Rule

Area of one trapezoid = average height * base.
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QUAD: The Trapezoid Rule

To estimate the area under a curve using one trapezoid, we write∫ b

a
f (x) dx ≈ (

1

2
f (a) +

1

2
f (b)) ∗ (b − a)

We can improve this estimate by using n − 1 trapezoids defined by
equally spaced points x1 through xn:∫ b

a
f (x) dx ≈ (

1

2
f (x1) + f (x2) + ... + f (xn−1) +

1

2
f (xn)) ∗ b − a

n − 1

If we have several workers available, then each one can get a part
of the interval to work on, and compute a trapezoid estimate
there. By adding the estimates, we get an approximation to the
integral of the function over the whole interval.
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QUAD: Use the ID to assign work

To simplify things, we’ll assume our original interval is [0,1], and
we’ll let each worker define a and b to mean the ends of its
subinterval. If we have 4 workers, then worker number 3 will be
assigned [12 ,

3
4 ].

To start our program, each worker figures out its interval:

fprintf ( 1, ’ Set up the integration limits:\n’ );

spmd

a = ( labindex() - 1 ) / numlabs();

b = labindex() / numlabs();

end
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QUAD: One Name Must Reference Several Values

Each worker has its own workspace. It can “see” the variables on
the client, but it usually doesn’t know or care what is going on on
the other workers.

Each worker defines a and b but stores different values there.

The client can “see” the workspace of all the workers. Since there
are multiple values using the same name, the client must specify
the index of the worker whose value it is interested in. Thus a{1}
is how the client refers to the variable a on worker 1. The client
can read or write this value.

Matlab’s name for this kind of variable, indexed using curly
brackets, is a composite variable. The syntax is similar to a cell
array.

The workers can “see” the client’s variables and inherits a copy of
their values, but cannot change the client’s data.
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QUAD: Dealing with Composite Variables

So in QUAD, each worker could print a and b:

spmd

a = ( labindex() - 1 ) / numlabs();

b = labindex() / numlabs();

fprintf ( 1, ’ A = %f, B = %f\n’, a, b );

end

———— or the client could print them all ————

spmd

a = ( labindex() - 1 ) / numlabs();

b = labindex() / numlabs();

end

for i = 1 : 4 <-- "numlabs" wouldn’t work here!

fprintf ( 1, ’ A = %f, B = %f\n’, a{i}, b{i} );

end
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QUAD: The Solution in 4 Parts

Each worker can now carry out its trapezoid computation:

spmd

x = linspace ( a, b, n );

fx = f ( x ); (Assume f can handle vector input.)

quad_part = ( b - a ) / ( n - 1 ) *

* ( 0.5 * fx(1) + sum(fx(2:n-1)) + 0.5 * fx(n) );

fprintf ( 1, ’ Partial approx %f\n’, quad_part );

end

with result:

2 Partial approx 0.874676

4 Partial approx 0.567588

1 Partial approx 0.979915

3 Partial approx 0.719414
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QUAD: Combining Partial Results

We really want one answer, the sum of all these approximations.

One way to do this is to gather the answers back on the client, and
sum them:

quad = sum ( quad_part{1:4} );

fprintf ( 1, ’ Approximation %f\n’, quad );

with result:

Approximation 3.14159265
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QUAD: Source Code for QUAD FUN

f u n c t i o n v a l u e = quad fun ( n )

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗80
%
%% QUAD FUN demons t r a t e s MATLAB’ s SPMD command f o r p a r a l l e l programming .
%
% D i s c u s s i o n :
%
% A b lock o f s t a t emen t s t ha t beg in w i th the SPMD command a r e c a r r i e d
% out i n p a r a l l e l o ve r a l l the LAB’ s . Each LAB has a un ique v a l u e
% o f LABINDEX , between 1 and NUMLABS.
%
% Va lues computed by each LAB are s t o r e d i n a compos i t e v a r i a b l e .
% The c l i e n t copy o f MATLAB can a c c e s s t h e s e v a l u e s by u s i n g an i ndex .
%
% L i c e n s i n g :
%
% This code i s d i s t r i b u t e d under the GNU LGPL l i c e n s e .
%
% Mod i f i ed :
%
% 18 August 2009
%
% Author :
%
% John Burkardt
%
% Parameter s :
%
% Input , i n t e g e r N, the number o f p o i n t s to use i n each s u b i n t e r v a l .
%
% Output , r e a l VALUE, the e s t ima t e f o r the i n t e g r a l .
%

f p r i n t f ( 1 , ’\n ’ ) ;
f p r i n t f ( 1 , ’QUAD FUN\n ’ ) ;
f p r i n t f ( 1 , ’ Demonstrate the use o f MATLAB ’ ’ s SPMD command\n ’ ) ;
f p r i n t f ( 1 , ’ to c a r r y out a p a r a l l e l computat ion .\n ’ ) ;

%
% The e n t i r e i n t e g r a l goes from 0 to 1 .
% Each LAB, from 1 to NUMLABS, computes i t s s u b i n t e r v a l [A ,B ] .
%

f p r i n t f ( 1 , ’\n ’ ) ;

spmd
a = ( l a b i n d e x − 1 ) / numlabs ;
b = l a b i n d e x / numlabs ;
f p r i n t f ( 1 , ’ Lab %d works on [%f ,% f ] .\ n ’ , l a b i nd e x , a , b ) ;

end
%
% Each LAB now e s t ima t e s the i n t e g r a l , u s i n g N po i n t s .
%

f p r i n t f ( 1 , ’\n ’ ) ;

spmd
i f ( n == 1 )

q u a d l o c a l = ( b − a ) ∗ f ( ( a + b ) / 2 ) ;
e l s e

x = l i n s p a c e ( a , b , n ) ;
f x = f ( x ) ;
q u a d l o c a l = ( b − a ) ∗ ( f x (1 ) + 2 ∗ sum ( f x ( 2 : n−1) ) + f x ( n ) ) . . .

/ ( 2 . 0 ∗ ( n − 1 ) ) ;
end
f p r i n t f ( 1 , ’ Lab %d computed app rox imat i on %f\n ’ , l a b i nd e x , q u a d l o c a l ) ;

end
%
% The v a r i a b l e Q has been computed by each LAB .
% Va r i a b l e s computed i n s i d e an SPMD sta tement a r e s t o r e d as ” compos i t e ”
% v a r i a b l e s , s i m i l a r to MATLAB’ s c e l l a r r a y s . Out s ide o f an SPMD
% statement , compos i t e v a r i a b l e v a l u e s a r e a c c e s s i b l e to the
% c l i e n t copy o f MATLAB by i ndex .
%
% The GPLUS f u n c t i o n adds the i n d i v i d u a l v a l u e s , r e t u r n i n g
% the sum to each LAB − so QUAD i s a l s o a compos i t e va lue ,
% but a l l i t s v a l u e s a r e equa l .
%

spmd
quad = gp l u s ( q u a d l o c a l ) ;

end
%
% Outs ide o f an SPMD statement , the c l i e n t copy o f MATLAB can
% ac c e s s any en t r y i n a compos i t e v a r i a b l e by i n d e x i n g i t .
%

v a l u e = quad{1} ;

f p r i n t f ( 1 , ’\n ’ ) ;
f p r i n t f ( 1 , ’ R e s u l t o f quad ra tu r e c a l c u l a t i o n :\n ’ ) ;
f p r i n t f ( 1 , ’ Es t imate QUAD = %24.16 f\n ’ , v a l u e ) ;
f p r i n t f ( 1 , ’ Exact v a l u e = %24.16 f\n ’ , p i ) ;
f p r i n t f ( 1 , ’ E r r o r = %e\n ’ , abs ( v a l u e − p i ) ) ;
f p r i n t f ( 1 , ’\n ’ ) ;
f p r i n t f ( 1 , ’QUAD FUN\n ’ ) ;
f p r i n t f ( 1 , ’ Normal end o f e x e c u t i o n .\n ’ ) ;

r e t u r n
end
f u n c t i o n v a l u e = f ( x )

%∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗80
%
%% F i s the f u n c t i o n to be i n t e g r a t e d .
%
% D i s c u s s i o n :
%
% The i n t e g r a l o f F(X) from 0 to 1 i s e x a c t l y PI .
%
% Mod i f i ed :
%
% 17 August 2009
%
% Author :
%
% John Burkardt
%
% Parameter s :
%
% Input , r e a l X(∗ ) , the v a l u e s where the i n t e g r a nd i s to be e v a l u a t e d .
%
% Output , r e a l VALUE( ) , the i n t e g r a nd v a l u e s .
%

v a l u e = 4 .0 . / ( 1 + x .ˆ2 ) ;

r e t u r n
end
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QUAD: Source Code for QUAD FUN (cont’d)

f p r i n t f ( 1 , ’\n ’ ) ;
f p r i n t f ( 1 , ’QUAD FUN\n ’ ) ;
f p r i n t f ( 1 , ’ Demonstrate the use o f MATLAB ’ ’ s SPMD command\n ’ ) ;
f p r i n t f ( 1 , ’ to c a r r y out a p a r a l l e l computat ion .\n ’ ) ;

%
% The e n t i r e i n t e g r a l goes from 0 to 1 .
% Each LAB, from 1 to NUMLABS, computes i t s s u b i n t e r v a l [A ,B ] .
%

f p r i n t f ( 1 , ’\n ’ ) ;

spmd
a = ( l a b i n d e x − 1 ) / numlabs ;
b = l a b i n d e x / numlabs ;
f p r i n t f ( 1 , ’ Lab %d works on [%f ,% f ] .\ n ’ , l a b i nd e x , a , b ) ;

end
%
% Each LAB now e s t ima t e s the i n t e g r a l , u s i n g N po i n t s .
%

f p r i n t f ( 1 , ’\n ’ ) ;

spmd
i f ( n == 1 )

q u a d l o c a l = ( b − a ) ∗ f ( ( a + b ) / 2 ) ;
e l s e

x = l i n s p a c e ( a , b , n ) ;
f x = f ( x ) ;
q u a d l o c a l = ( b − a ) ∗ ( f x (1 ) + 2 ∗ sum ( f x ( 2 : n−1) ) + f x ( n ) ) . . .

/ ( 2 . 0 ∗ ( n − 1 ) ) ;
end
f p r i n t f ( 1 , ’ Lab %d computed app rox imat i on %f\n ’ , l a b i nd e x , q u a d l o c a l ) ;

end
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QUAD: Source Code for QUAD FUN (cont’d)

%
% The v a r i a b l e q u a d l o c a l has been computed by each LAB .
% Va r i a b l e s computed i n s i d e an SPMD sta tement a r e s t o r e d as ” compos i t e ”
% v a r i a b l e s , s i m i l a r to MATLAB’ s c e l l a r r a y s . Out s ide o f an SPMD
% statement , compos i t e v a r i a b l e v a l u e s a r e a c c e s s i b l e to the
% c l i e n t copy o f MATLAB by i ndex .
%
% The GPLUS f u n c t i o n adds the i n d i v i d u a l v a l u e s , r e t u r n i n g
% the sum to each LAB − so QUAD i s a l s o a compos i t e va lue ,
% but a l l i t s v a l u e s a r e equa l .
%

spmd
quad = gp l u s ( q u a d l o c a l ) ; % Note use o f a gop

end
%
% Outs ide o f an SPMD statement , the c l i e n t copy o f MATLAB can
% ac c e s s any en t r y i n a compos i t e v a r i a b l e by i n d e x i n g i t .
%

v a l u e = quad{1} ;

f p r i n t f ( 1 , ’\n ’ ) ;
f p r i n t f ( 1 , ’ R e s u l t o f quad ra tu r e c a l c u l a t i o n :\n ’ ) ;
f p r i n t f ( 1 , ’ Es t imate QUAD = %24.16 f\n ’ , v a l u e ) ;
f p r i n t f ( 1 , ’ Exact v a l u e = %24.16 f\n ’ , p i ) ;
f p r i n t f ( 1 , ’ E r r o r = %e\n ’ , abs ( v a l u e − p i ) ) ;
f p r i n t f ( 1 , ’\n ’ ) ;
f p r i n t f ( 1 , ’QUAD FUN\n ’ ) ;
f p r i n t f ( 1 , ’ Normal end o f e x e c u t i o n .\n ’ ) ;

r e t u r n
end
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DISTRIBUTED: The Client Can Distribute

If the client process has a 300x400 array called a, and there are
4 SPMD workers, then the simple command

ad = distributed ( a );

distributes the elements of a by columns:

Worker 1 Worker 2 Worker 3 Worker 4

Col: 1:100 | 101:200 | 201:300 | 301:400 ]

Row

1 [ a b c d | e f g h | i j k l | m n o p ]

2 [ A B C D | E F G H | I J K L | M N O P ]

... [ * * * * | * * * * | * * * * | * * * * ]

300 [ 1 2 3 4 | 5 6 7 8 | 9 0 1 2 | 3 4 5 6 ]

By default, the last dimension is used for distribution.
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DISTRIBUTED: Workers Can Get Their Part

Once the client has distributed the matrix by the command

ad = distributed ( a );

then each worker can make a local variable containing its part:

spmd

al = getLocalPart ( ad );

[ ml, nl ] = size ( al );

end

On worker 3, [ ml, nl ] = ( 300, 100 ), and al is

[ i j k l ]

[ I J K L ]

[ * * * * ]

[ 9 0 1 2 ]

Notice that local and global column indices will differ!
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DISTRIBUTED: The Client Can Collect Results

The client can access any worker’s local part by using curly
brackets. Thus it could copy what’s on worker 3 by

worker3_array = al{3};

However, it’s likely that the client simply wants to collect all the
parts and put them back into one normal Matlab array. If the
local arrays are simply column-sections of a 2D array:

a2 = [ al{:} ]

Suppose we had a 3D array whose third dimension was 3, and we
had distributed it as 3 2D arrays. To collect it back:

a2 = al{1};

a2(:,:,2) = al{2};

a2(:,:,3) = al{3};
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DISTRIBUTED: Methods to Gather Data

Instead of having an array created on the client and distributed
to the workers, it is possible to have a distributed array constructed
by having each worker build its piece. The result is still a
distributed array, but when building it, we say we are building a
codistributed array.

Codistributing the creation of an array has several advantages:

1 The array might be too large to build entirely on one core (or
processor);

2 The array is built faster in parallel;

3 You avoid the communication cost of distributing it.

101 / 1



DISTRIBUTED: Accessing Distributed Arrays

The command al = getLocalPart ( ad ) makes a local copy of
the part of the distributed array residing on each worker. Although
the workers could reference the distributed array directly, the local
part has some uses:

references to a local array are faster;

the worker may only need to operate on the local part; then
it’s easier to write al than to specify ad indexed by the
appropriate subranges.

The client can copy a distributed array into a “normal” array
stored entirely in its memory space by the command

a = gather ( ad );

or the client can access and concatenate local parts.
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DISTRIBUTED: Conjugate Gradient Setup

Because many Matlab operators and functions can automatically
detect and deal with distributed data, it is possible to write
programs that carry out sophisticated algorithms in which the
computation never explicitly worries about where the data is!

The only tricky part is distributing the data initially, or gathering
the results at the end.

Let us look at a conjugate gradient code which has been modified
to deal with distributed data.

Before this code is executed, we assume the user has requested
some number of workers, using the interactive parpool or indirect
batch command. (R2013b and later can do this automatically).
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DISTRIBUTED: Conjugate Gradient Setup

% Sc r i p t to i n voke con j uga t e g r a d i e n t s o l u t i o n
% f o r s p a r s e d i s t r i b u t e d ( or not ) a r r a y
%

N = 1000 ;
nnz = 5000 ;
r c = 1/10 ; % r e c i p r o c a l c o n d i t i o n number

A = sprandsym (N, nnz/Nˆ2 , rc , 1 ) ; % symmetr ic , p o s i t i v e d e f i n i t e
A = d i s t r i b u t e d (A ) ;%A = d i s t r i b u t e d . sprandsym ( ) i s not a v a i l a b l e

b = sum (A, 2 ) ;
% f p r i n t f ( 1 , ’\n i s d i s t r i b u t e d ( b ) : %2 i \n ’ , i s d i s t r i b u t e d ( b ) ) ;

[ x , e norm ] = cg emc ( A, b ) ;

f p r i n t f ( 1 , ’ E r r o r r e s i d u a l : %8.4 e \n ’ , e norm {1}) ;

np = 10 ;
f p r i n t f ( 1 , ’ F i r s t few x v a l u e s : \n ’ ) ;
f p r i n t f ( 1 , ’ x ( %02 i ) = %8.4e \n ’ , [ 1 : np ; ga th e r ( x ( 1 : np ) ) ’ ] ) ;

sprandsym sets up a sparse random symmetric array A.
distributed ‘casts’ A to a distributed array on the workers.
Why do we write e norm{1} & gather(x) ?
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DISTRIBUTED: Conjugate Gradient Iteration

f u n c t i o n [ x , resnrm ] = cg emc ( A, b , x0 , t o l , i tmax )
% Conjugate g r a d i e n t i t e r a t i o n f o r A x = b ,
% ( from G i l l , Murray and Wright , p 147)

% Po s s i b l y s upp l y m i s s i n g i npu t pa ramete r s ( omi t ted )
spmd

% i n i t i a l i z a t i o n
p = c o d i s t r i b u t e d . z e r o s ( s i z e ( x0 ) ) ;
beta = 0 ;
r = A∗x0 − b ;
rknrm= r ’∗ r ;
x = x0 ;
i t e r = 0 ;

% CG loop
w h i l e 1

p = beta∗p − r ;
tmp = A∗p ;
a lpha = rknrm /(p ’∗ tmp ) ;
x = x + a lpha∗p ;
r = r + a lpha∗tmp ;
rkpnrm= r ’∗ r ;
beta = rkpnrm/ rknrm ;
rknrm = rkpnrm ;
i t e r = i t e r + 1 ;
resnrm= norm (A∗x − b ) ;
i f i t e r >= itmax | | resnrm <= t o l

break
end

end % wh i l e 1
end % spmd

end % fun c t i o n
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DISTRIBUTED: Comment

In cg emc.m, we can remove the spmd block and simply invoke
distributed(); the operational commands don’t change.

There are several comments worth making:

The communication overhead can be severely increased

Not all Matlab operators have been extended to work with
distributed memory. In particular, (the last time we asked),
the backslash or “linear solve” operator x=A\b can’t be used
yet for sparse distributed arrays.

Getting “real” data (as opposed to matrices full of random
numbers) properly distributed across multiple processors
involves more choices and more thought than is suggested by
the conjugate gradient example !
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DISTRIBUTED: Linear Boundary Value Problem

In the next example, we demonstrate a mixed approach wherein
the stiffness matrix (K) is initially constructed as a
codistributed array on the workers. Each worker then modifies its
localPart, and also assembles the local contribution to the
forcing term (F). The local forcing arrays are then used to build a
codistributed array.
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DISTRIBUTED: FD LBVP script

%% FD LBVP SCRIPT i n v o k e s the f u n c t i o n f d l b v p f u n
%
% L i c e n s i n g :
%
% This code i s d i s t r i b u t e d under the GNU LGPL l i c e n s e .
%
% Author :
%
%% Gene C l i f f

n = 100 ; % g r i d paramete r

% De f i n e c o e f f i c i e n t f u n c t i o n s and boundary data f o r LBVP
hnd l p = @( x ) 0 ;
c q = 4 ; % p o s i t i v e f o r e xac t s o l u t i o n match
hnd l q = @( x ) c q ;
c r = −4;
h n d l r = @( x ) c r∗x ; % l i n e a r f o r e xac t s o l u t i o n match

a lpha = 0 ;
beta = 2 ;

% Invoke s o l v e r
f p r i n t f ( 1 , ’\n Invoke f d l b v p f u n \n ’ ) ;
T = f d l b v p f u n (n , hnd l p , hnd l q , hnd l r , a lpha , beta ) ;

% gathe r the d i s t r i b u t e d s o l u t i o n on the c l i e n t p r o c e s s

Tg = ga the r (T) ; % When ’ batch ’ f i n i s h e s the ’ pool ’ i s c l o s e d
% and d i s t r i b u t e d data i s l o s t
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DISTRIBUTED: FD LBVP code

f u n c t i o n T = f d l b v p f u n (n , hnd l p , hnd l q , hnd l r , a lpha , beta )
% F i n i t e−d i f f e r e n c e app rox imat i on to the BVP
% T’ ’ ( x ) = p ( x ) T’ ( x ) + q ( x ) T( x ) + r ( x ) , 0 \ l e x \ l e 1
% with T(0) = alpha , T(1) = beta

% Mod i f i ed :
%
% 2 March 2012
%
% Author :
%
% Gene C l i f f

% We use a un i fo rm g r i d w i th n i n t e r i o r g r i d p o i n t s
% From Numer i ca l Ana l y s i s , Burden & Fa i r e s , 2001 , \S˜11 .3

h = 1/(n+1); ho2 = h /2 ; h2 = h∗h ;
spmd

A = c o d i s t r i b u t e d . z e r o s (n , n ) ;
locP = ge tLo c a lPa r t ( c o d i s t r i b u t e d . co l on (1 , n ) ) ; %index v a l s on l a b
l ocP = locP ( : ) ;% make i t a column a r r a y

% Loop ove r columns e n t e r i n g u n i t y above / below the d i a g on a l e n t r y
% a long wi th 2 p l u s the a p p r o p r i a t e q f u n c t i o n v a l u e s
% Note tha t columns 1 and n a r e e x c e p t i o n s

f o r j j=locP ( 1 ) : locP ( end )
% on the d i a g on a l
A( j j , j j ) = 2 + h2∗ f e v a l ( hnd l q , j j ∗h ) ;
% above the d i a g on a l

i f j j ˜= 1 ; A( j j −1, j j ) = −1+ho2∗ f e v a l ( hnd l p , ( j j −1)∗h ) ; end
% below the d i a g ona l
i f j j ˜= n ; A( j j +1, j j ) = −1+ho2∗ f e v a l ( hnd l p , j j ∗h ) ; end

end

l o cF = −h2∗ f e v a l ( hnd l r , locP∗h ) ; % hnd l r okay f o r v e c t o r i n pu t

i f l a b i n d e x ( ) == 1
locF ( 1 ) = locF ( 1 ) + a lpha∗(1+ho2∗ f e v a l ( hnd l p , h ) ) ;

end
i f l a b i n d e x ( ) == numlabs ( ) ;

l o cF ( end ) = locF ( end ) + beta∗(1−ho2∗ f e v a l ( hnd l p , 1−h ) ) ;
end

% co d i s t = c o d i s t r i b u t o r 1 d ( dim , p a r t i t i o n , g l o b a l s i z e ) ;
c o d i s t = c o d i s t r i b u t o r 1 d (1 , c o d i s t r i b u t o r 1 d . u n s e t P a r t i t i o n , [ n , 1 ] ) ;
F = c o d i s t r i b u t e d . b u i l d ( locF , c o d i s t ) ; % d i s t r i b u t e the a r r a y ( s )

end % spmd b lo ck

T = A\F ; % mld i v i d e i s d e f i n e d f o r c o d i s t r i b u t e d a r r a y s
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DISTRIBUTED: FD LBVP code (cont’d)

l o cF = −h2∗ f e v a l ( hnd l r , locP∗h ) ; % hnd l r okay f o r v e c t o r i n pu t

i f l a b i n d e x ( ) == 1
locF ( 1 ) = locF ( 1 ) + a lpha∗(1+ho2∗ f e v a l ( hnd l p , h ) ) ;

end
i f l a b i n d e x ( ) == numlabs ( ) ;

l o cF ( end ) = locF ( end ) + beta∗(1−ho2∗ f e v a l ( hnd l p , 1−h ) ) ;
end

% co d i s t = c o d i s t r i b u t o r 1 d ( dim , p a r t i t i o n , g l o b a l s i z e ) ;
c o d i s t = c o d i s t r i b u t o r 1 d (1 , c o d i s t r i b u t o r 1 d . u n s e t P a r t i t i o n , [ n , 1 ] ) ;
F = c o d i s t r i b u t e d . b u i l d ( locF , c o d i s t ) ; % d i s t r i b u t e the a r r a y ( s )

end % spmd b lo ck

T = A\F ; % mld i v i d e i s d e f i n e d f o r c o d i s t r i b u t e d a r r a y s
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DISTRIBUTED: 2D Finite Element Heat Model

Next, we consider an example that combines SPMD and
distributed data to solve a steady state heat equations in 2D, using
the finite element method. Here we demonstrate a different
strategy for assembling the required arrays.

Each worker is assigned a subset of the finite element nodes. That
worker is then responsible for constructing the columns of the
(sparse) finite element matrix associated with those nodes.

Although the matrix is assembled in a distributed fashion, it has to
be gathered back into a standard array before the linear system
can be solved, because sparse linear systems can’t be solved as a
distributed array (yet).

This example is available as in the fem 2D heat folder.
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DISTRIBUTED: The Grid & Node Coloring for 4 labs
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DISTRIBUTED: Finite Element System matrix

The discretized heat equation results in a linear system of the form

K z = F + b

where K is the stiffness matrix, z is the unknown finite element
coefficients, F contains source terms and b accounts for boundary
conditions.

In the parallel implementation, the system matrix K and the
vectors F and b are distributed arrays. The default distribution of
K by columns essentially associates each SPMD worker with a
group of finite element nodes.
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DISTRIBUTED: Finite Element System Matrix

To assemble the matrix, each worker loops over all elements. If
element E contains any node associated with the worker, the
worker computes the entire local stiffness matrix K . Columns of K
associated with worker nodes are added to the local part of K. The
rest are discarded (which is OK, because they will also be
computed and saved by the worker responsible for those nodes ).

When element 5 is handled, the “blue”, “red” and “black”
processors each compute K . But blue only updates column 11 of
K, red columns 16 and 17, and black columns 21, 22, and 23.

At the cost of some redundant computation, we avoid a lot of
communication.
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Assemble Codistributed Arrays - code fragment

spmd
%
% Set up c o d i s t r i b u t e d s t r u c t u r e
%
% Column p o i n t e r s and such f o r c o d i s t r i b u t e d a r r a y s .
%

Vc = c o d i s t r i b u t e d . co l on (1 , n e qu a t i o n s ) ;
lP = ge tLo c a lPa r t (Vc ) ;
lP 1= lP ( 1 ) ; lP end = lP ( end ) ; %f i r s t and l a s t columns o f K on t h i s l a b
c o d i s t V c = g e t C o d i s t r i b u t o r (Vc ) ; dPM = co d i s t V c . P a r t i t i o n ;

. . .
% spa r s e a r r a y s on each l a b
%

K lab = s p a r s e ( n equa t i on s , dPM( l a b i n d e x ) ) ;
. . .

% Bu i l d the f i n i t e e l ement ma t r i c e s − Begin l oop ove r e l ement s
%

f o r n e l =1: n e l emen t s
n o d e s l o c a l = e conn ( n e l , : ) ;% which nodes a r e i n t h i s e l ement

% sub s e t o f nodes / columns on t h i s l a b
l a b n o d e s l o c a l = e x t r a c t ( n o d e s l o c a l , lP 1 , lP end ) ;

. . . i f empty do noth ing , e l s e accumulate K lab , e t c end
end % n e l

%
% Assemble the ’ lab ’ p a r t s i n a c o d i s t r i b u t e d format .
% syn tax f o r v e r s i o n R2009b

c o d i s t m a t r i x = c o d i s t r i b u t o r 1 d ( 2 , dPM, [ n equa t i on s , n e qu a t i o n s ] ) ;
K = c o d i s t r i b u t e d . b u i l d ( K lab , c o d i s t m a t r i x ) ;

end % spmd
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DISTRIBUTED: 2D Heat Equation - The Results
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IMAGE: Image Processing in Parallel

Here is a mysterious SPMD program to be run with 3 workers:

x = imread ( ’ b a l l o o n s . t i f ’ ) ;

y = imno i s e ( x , ’ s a l t & pepper ’ , 0 .30 ) ;

yd = d i s t r i b u t e d ( y ) ;

spmd
y l = ge tLo c a lPa r t ( yd ) ;
y l = med f i l t 2 ( y l , [ 3 , 3 ] ) ;

end

z ( 1 : 4 80 , 1 : 6 4 0 , 1 ) = y l {1} ;
z ( 1 : 4 8 0 , 1 : 6 4 0 , 2 ) = y l {2} ;
z ( 1 : 4 8 0 , 1 : 6 4 0 , 3 ) = y l {3} ;

f i g u r e ;
s u b p l o t ( 1 , 3 , 1 ) ; imshow ( x ) ; t i t l e ( ’X ’ ) ;
s u b p l o t ( 1 , 3 , 2 ) ; imshow ( y ) ; t i t l e ( ’Y ’ ) ;
s u b p l o t ( 1 , 3 , 3 ) ; imshow ( z ) ; t i t l e ( ’Z ’ ) ;

Without comments, what can you guess about this program?
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IMAGE: Image → Noisy Image → Filtered Image

This filtering operation uses a 3x3 pixel neighborhood.
We could blend all the noise away with a larger neighborhood.
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IMAGE: Image → Noisy Image → Filtered Image

% Read a c o l o r image , s t o r e d as 480 x640x3 a r r a y .
%

x = imread ( ’ b a l l o o n s . t i f ’ ) ;
%
% Create an image Y by add ing ” s a l t and pepper ” n o i s e to X .
%

y = imno i s e ( x , ’ s a l t & pepper ’ , 0 .30 ) ;
%
% Make YD, a d i s t r i b u t e d v e r s i o n o f Y .
%

yd = d i s t r i b u t e d ( y ) ;
%
% Each worker works on i t s ” l o c a l p a r t ” , YL .
%

spmd
y l = ge tLo c a lPa r t ( yd ) ;
y l = med f i l t 2 ( y l , [ 3 , 3 ] ) ;

end
%
% The c l i e n t r e t r i e v e s the data from each worker .
%

z ( 1 : 4 80 , 1 : 6 4 0 , 1 ) = y l {1} ;
z ( 1 : 4 8 0 , 1 : 6 4 0 , 2 ) = y l {2} ;
z ( 1 : 4 8 0 , 1 : 6 4 0 , 3 ) = y l {3} ;

%
% Di s p l a y the o r i g i n a l , no i s y , and f i l t e r e d v e r s i o n s .
%

f i g u r e ;
s u b p l o t ( 1 , 3 , 1 ) ; imshow ( x ) ; t i t l e ( ’ O r i g i n a l image ’ ) ;
s u b p l o t ( 1 , 3 , 2 ) ; imshow ( y ) ; t i t l e ( ’ No i sy Image ’ ) ;
s u b p l o t ( 1 , 3 , 3 ) ; imshow ( z ) ; t i t l e ( ’ Median F i l t e r e d Image ’ ) ;
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CONTRAST: Image → Contrast Enhancement → Image2

%
% Get 4 SPMD worke r s
%

pa rpoo l open 4
%
% Read an image
%

x = imageread ( ’ s u r f s u p . t i f ’ ) ;
%
% Since the image i s b l a c k and white , i t w i l l be d i s t r i b u t e d by columns
%

xd = d i s t r i b u t e d ( x ) ;
%
% Each worker enhances the c o n t r a s t on i t s p o r t i o n o f the p i c t u r e
%

spmd
x l = ge tLo c a lPa r t ( xd ) ;
x l = n l f i l t e r ( x l , [ 3 , 3 ] , @con t r a s t enhance ) ;
x l = u i n t 8 ( x l ) ;

end
%
% Concatenate the s ubma t r i c e s to as semb le the whole image
%

xf spmd = [ x l {:} ] ;

p a r poo l / d e l e t e
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CONTRAST: Image → Contrast Enhancement → Image2

When a filtering operation is done on the client, we get picture 2.
The same operation, divided among 4 workers, gives us picture 3.
What went wrong?
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CONTRAST: Image → Contrast Enhancement → Image2

Each pixel has had its contrast enhanced. That is, we compute
the average over a 3x3 neighborhood, and then increase the
difference between the center pixel and this average. Doing this for
each pixel sharpens the contrast.

+-----+-----+-----+

| P11 | P12 | P13 |

+-----+-----+-----+

| P21 | P22 | P23 |

+-----+-----+-----+

| P31 | P32 | P33 |

+-----+-----+-----+

P22 <- C * P22 + ( 1 - C ) * Average

with C > 1 (specified)
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CONTRAST: Image → Contrast Enhancement → Image2

When the image is divided by columns among the workers,
artificial internal boundaries are created. The nlfilter algorithm
turns any pixel lying along the boundary to white. (The same
thing happened on the client, but we didn’t notice!)

Worker 1 Worker 2

+-----+-----+-----+ +-----+-----+-----+ +----

| P11 | P12 | P13 | | P14 | P15 | P16 | | P17

+-----+-----+-----+ +-----+-----+-----+ +----

| P21 | P22 | P23 | | P24 | P25 | P26 | | P27

+-----+-----+-----+ +-----+-----+-----+ +----

| P31 | P32 | P33 | | P34 | P35 | P36 | | P37

+-----+-----+-----+ +-----+-----+-----+ +----

| P41 | P42 | P43 | | P44 | P45 | P46 | | P47

+-----+-----+-----+ +-----+-----+-----+ +----

Dividing up the data has created undesirable artifacts!
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CONTRAST: Image → Contrast Enhancement → Image2

The result is spurious lines on the processed image.
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CONTRAST2: Workers Need to Communicate

The spurious lines would disappear if each worker could just be
allowed to peek at the last column of data from the previous
worker, and the first column of data from the next worker.

Just as in MPI, Matlab includes commands that allow workers to
exchange data.

The command we would like to use is labSendReceive() which
controls the simultaneous transmission of data from all the workers.

data_received = labSendReceive ( to, from, data_sent );
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CONTRAST2: Whom Do I Want to Communicate With?

spmd

xl = getLocalPart ( xd );

if ( labindex() ~= 1 )

previous = labindex() - 1;

else

previous = numlabs();

end

if ( labindex() ~= numlabs())

next = labindex() + 1;

else

next = 1;

end
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CONTRAST2: First Column Left, Last Column Right

column = labSendReceive ( previous, next, xl(:,1) );

if ( labindex() < numlabs() )

xl = [ xl, column ];

end

column = labSendReceive ( next, previous, xl(:,end) );

if ( 1 < labindex() )

xl = [ column, xl ];

end
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CONTRAST2: Filter, then Discard Extra Columns

xl = nlfilter ( xl, [3,3], @enhance_contrast );

if ( labindex() < numlabs() )

xl = xl(:,1:end-1);

end

if ( 1 < labindex() )

xl = xl(:,2:end);

end

xl = uint8 ( xl );

end
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CONTRAST2: Image → Enhancement → Image2

Four SPMD workers operated on columns of this image.
Communication was allowed using labSendReceive.
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BATCH: Indirect Execution

We can run quick, local interactive jobs using the matlabpool or
parpool command to get parallel workers.

The batch command is an alternative which allows you to execute
a Matlab script (using either parfor or spmd statements) in the
background on your desktop...or on a remote machine.

The batch command includes a matlabpool or pool argument
that allows you to request a given number of workers.

For remote jobs, the number of cores or processors you are asking
for is the matlabpool plus one, because of the client.
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BATCH: Contrast2

Running contrast2 on NewRiver and locally:

% Run on NewRiver

job = batch ( ’contrast2_script’, ...

’Profile’, ’newriver_R2015b’, ...

’CaptureDiary’, true, ...

’AttachedFiles’, { ’contrast2_fun’, ’contrast_enhance’, ’surfsup.tif’ }, ...

’CurrentDirectory’, ’.’, ...

’pool’, n );

% Run locally

x = imread ( ’surfsup.tif’ );

xf = nlfilter ( x, [3,3], @contrast_enhance );

xf = uint8 ( xf );

% Wait for NewRiver job to complete

wait ( job );

% Load results from NewRiver job

load ( job );
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BATCH: Contrast2

Notes:

We need to include both scripts and the input file
surfsup.tif in the AttachedFiles flag

We can do some work before issuing wait()

We leverage two kinds of parallelism:

Parallel (using spmd) on an ARC Cluster
Run locally while job is running on an ARC Cluster
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CONCLUSION: Summary of Examples

The QUAD example showed a simple problem that could be done
as easily with SPMD as with PARFOR. We just needed to learn
about composite variables!

The CONJUGATE GRADIENT example showed that many
Matlab operations work for distributed arrays, a kind of array
storage scheme associated with SPMD.

The LBVP & FEM 2D HEAT examples show how to construct
local arrays and assemble these to codistributed arrays. This
enables treatment of very large problems.

The IMAGE and CONTRAST examples showed us problems which
can be broken up into subproblems to be dealt with by SPMD
workers. We also saw that sometimes it is necessary for these
workers to communicate, using a simple message-passing system.
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CONCLUSION: VT MATLAB LISTSERV

There is a local LISTSERV for people interested in MATLAB on
the Virginia Tech campus. We try not to post messages here
unless we really consider them of importance!

Important messages include information about workshops, special
MATLAB events, and other issues affecting MATLAB users.

To subscribe to this email list, send a blank email to

mathworks-g+subscribe@vt.edu

The subject and body of the message should both be empty.
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CONCLUSION: Where is it?

Matlab Parallel Computing Toolbox Product Documentation
http://www.mathworks.com/help/toolbox/distcomp/

Gaurav Sharma, Jos Martin,
MATLAB: A Language for Parallel Computing, International
Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

An Adobe PDF with these notes, along with a zipped-folder
containing the Matlab codes can be downloaded from the
ARC website at

http://www.arc.vt.edu/matlab#resources
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AFTERWORD: PMODE

PMODE allows interactive parallel execution ofMatlab
commands. PMODE achieves this by defining and submitting a
parallel job, and it opens a Parallel Command Window connected
to the labs running the job. The labs receive commands entered in
the Parallel Command Window, process them, and send the
command output back to the Parallel Command Window.

pmode start ’local’ 2 will initiate pmode; pmode exit will
delete the parallel job and end the pmode session

This may be a useful way to experiment with computations on the
labs.
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THE END

Please complete the evaluation form

Thanks
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