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Abstract

A multiscale implementation of hybrid continuous/discontinuous finite element discretizations of nonlocal models for
mechanics and diffusion in two dimensions is developed. The implementation features adaptive mesh refinement based on the
detection of defects and results in an abrupt transition between refined elements that contain defects and unrefined elements free
of defects. An additional difficulty overcome in the implementation is the design of accurate quadrature rules for stiffness matrix
construction that are valid for any combination of the grid size and horizon parameter, the latter being the extent of nonlocal
interactions. As a result, the methodology developed can attain optimal accuracy at very modest additional costs relative to
situations for which the solution is smooth. Portions of the methodology can also be used for the optimal approximation, by
piecewise linear polynomials, of given functions containing discontinuities. Several numerical examples are provided to illustrate
the efficacy of the multiscale methodology.
c⃝ 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Classical partial differential mechanics models for solid mechanics feature local interactions, i.e., a point only
interacts with points within an infinitesimal distance. In contrast, in the peridynamics (PD) model, points interact with
points within a finite influence horizon δ. This nonlocal approach has significant advantages for studying defects such
as the nucleation and propagation of cracks [1–6], problems for which the classical approach breaks down because
the necessary derivatives do not exist.

The peridynamics model admits a variational formulation that in turn suggests the construction of a discretized
model via a finite element method (FEM). For problems with smooth data, FEMs have well-understood convergence
behavior with respect to the typical element size h. This allows for the efficient solution of complex systems. However,
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in cases in which discontinuities are expected, the rapid convergence of FEMs may be lost unless suitable precautions
are taken. Such precautions might involve careful adjustments of the mesh or the use of a discontinuous basis
functions. For these remedies to help, it must also be possible to determine, to reasonable accuracy, the location
and extent of the discontinuities.

In [7], a one-dimensional PD model was considered, using a piecewise linear polynomial basis for which a problem
with smooth data would typically have an L2 convergence rate of O(h2). When discontinuous solutions were consid-
ered, the convergence rate deteriorated to O(h1/2). However, the optimal rate was recovered by adjusting the mesh
to bracket the discontinuity by a single tiny element whose characteristic length was O(h4), whereas the remaining
mesh was essentially unchanged. In [7], the locations of the discontinuities were assumed to be explicitly available to
the algorithm; this made it easy to tailor the mesh or element choice in the optimal way. In practical problems, how-
ever, the detection of discontinuities and the estimation of their extent and severity are not simple tasks. An adaptive
approach must be taken which is able to repeatedly adjust the size, shape, and element type of a local portion of the
mesh, based on some computable numerical error indicators.

Whereas some regions of a solid may contain singularities, there may also exist large regions of smoothness and
regularity, a behavior that is well and efficiently handled by classical partial differential equations (PDEs) approaches.
A multiscale implementation of the peridynamics model in one dimension was developed in [8]; the solution interval
was divided according to the observed behavior, and then a PDE model was applied in subintervals in which the
displacement was detected to be smooth, and an PD model was applied only in the vicinity of discontinuities of
the displacement. The application of the PD model was further divided into the use of discontinuous Galerkin
(DG) discretizations in the elements containing the discontinuity and continuous Galerkin (CG) discretization in
immediately neighboring elements. Thus, elements of the PD-CG type would form an intermediate layer between
the PDE regions of smoothness and the PD-DG regions of sharp local discontinuity. The flexibility rendered
by using multiple models in this way requires, however, a strategy for correctly coupling them over transition
regions.

The work in [7] and [8] was restricted to the one-dimensional case. It is the purpose of this paper to consider the
issues involved in implementing a multiscale PD model in two-dimensional regions. We assume that there are some
curves across which the displacement is discontinuous and which are separated by relative large regions within which
the displacement is smooth. The goal is to implement a finite element discretization that accurately and efficiently
approximates the solution with, if possible, a convergence rate that is comparable to the optimal convergence rate
observed when there are no discontinuities present.

As often occurs when moving from one to two dimensions, the proper treatment of the geometry becomes
significantly more difficult. The most obvious change is that adaptive remeshing becomes much more complicated,
and requires attention to element shape (no small angles) and element connectivity (no hanging nodes).

Another geometric issue involves the treatment of discontinuities. In one dimension, a local discontinuity occurs at
a single point, and isolating that point just requires determining a very small element that contains it. A discontinuity
in two dimensions might, however, constitute a point, a curve intersecting the boundary, or a closed curve contained
within the region. Depending on the geometric complexity and curvature of the discontinuity, the technique of
“covering” by a very small element may become unfeasible.

A third geometric issue arises because the PD model seeks to integrate interactions over a local circular region de-
fined by the horizon δ. An FEM model approximates such integrals using numerical quadrature over the collection of
triangles that form the mesh. However, an effect of the horizon is to render the integrand not smooth across the horizon
circumference, resulting in possibly disastrous failures of standard quadrature methods in triangles that intersect the
horizon circumference.

In this paper, we consider how to handle these and several other obstacles. Our goal is to implement a multiscale
PD finite element method in two dimensions for a problem in which discontinuities are likely to occur but whose
locations are not known. We concentrate on the response necessary for a multiscale PD implementation to adapt to
the discovery of a discontinuity. This response will include local refinement, remodeling, remeshing, new quadrature
rules, and a seamless transition from the nonlocal PD model to a local PDE one. Our goal is an accurate and efficient
computation of approximate solution despite the presence of discontinuities.

Clarification about what is meant by multiscale is perhaps needed. In this paper, multiscale features of solutions,
i.e., large regions over which solutions are smooth vs. small regions over which solutions suffer defects, are resolved
by using grid sizes that are large (small) with respect to the horizon for the former (latter). Thus, our approach is
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multiscale in nature both as a discretization algorithm and as a means for resolving physical phenomena that occur at
different scales.

Although we focus on solid mechanics problems, much of the multiscale methodology we develop also applies to
two other settings. First, it applies to nonlocal models for diffusion because they have a similar structure to that of PD
models. Second, a large portion of the multiscale methodology applies directly to the problem of interpolating given
functions that have jump discontinuities.

The paper is organized as follows. The formulation of the nonlocal problem is given in Section 2. The local grid
refinement method is explained in Section 3. Numerical quadrature issues are discussed in Section 4. The coupling
between local and nonlocal models is discussed in Section 5 and the multiscale implementation strategy is outlined
in Section 6. Numerical results for the interpolation of functions are given in Section 7 and for the PD setting in
Section 8. Finally, in Section 9, remarks are provided about the current work and plans for future work.

2. Nonlocal model problem

For the sake of simplicity, we consider a two-dimensional nonlocal model for a scalar-valued function. Peridynamic
(PD) models are similar except that the solution is a vector-valued function; however, in every significant respect, the
discussions in this work apply to the PD setting.

The action of the operator L : Rn
→ R on u ∈ R is defined as

Lu(x) = −2


Rn


u(x′) − u(x)


γ (x, x′) dx′

∀ x ∈ Rn,

where γ denotes a symmetric kernel, i.e., γ (x, x′) = γ (x′, x) for all x, x′. The interaction domain corresponding to a
given open subset Ω ⊂ Rn is defined as

ΩI = {x′
∈ Rn

\Ω : γ (x, x′) ≠ 0 for some x ∈ Ω}, (1)

i.e., ΩI consists of all points in Rn that interact with points in Ω but are located outside of Ω . In general, ΩI has
nonzero volume in Rn .

With these notations, the nonlocal volume-constrained problem1 we consider is given byLu(x) = −2

Ω∪ΩI


u(x′) − u(x)


γ (x, x′) dx′

= f (x) ∀ x ∈ Ω

u(x) = g(x) ∀ x ∈ ΩI ,

(2)

where f (x) : Ω → R and g(x) : ΩI → R are given functions. Note that the constraint u = g is applied on the set
ΩI having finite volume and not on the boundary of Ω ; hence, the terminology “volume-constrained problem”.

We define the bilinear form

A(u, v) =


Ω∪ΩI


Ω∪ΩI


u(x′) − u(x)


v(x′) − v(x)


γ (x, x′) dx′dx, (3)

the “energy” norm |||u||| =


A(u, u)
1/2, the energy space

V (Ω ∪ ΩI ) = {u ∈ L2(Ω ∪ ΩI ) : |||u||| < ∞},

and the constrained energy space

Vc(Ω ∪ ΩI ) = {v ∈ V : v(x) = 0 ∀ x ∈ ΩI }.

1 Because this paper deals with problems in two dimensions, we might more appropriately use the terminology area-constrained problems.
However, in the nonlocal modeling community, it is standard practice for constraints of this type to be referred as volume constraints, regardless of
dimension, so we do so as well here and use “volume” instead of “area” in other instances as well.
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It is shown in, e.g., [9,10], that (2) has the variational formulation
given f ∈ L2(Ω) and g ∈ L2(ΩI ), seek u ∈ V (Ω ∪ ΩI ) such that
u(x) = g(x) ∀ x ∈ ΩI and

A(u, v) =


Ω

f v dx ∀ v ∈ Vc(Ω ∪ ΩI )

(4)

and that the problem (4) is well posed with respect to the energy space V (Ω ∪ ΩI ).
We are interested in localized kernels, that is, we have, for some δ > 0, referred to as the horizon,

γ (x, x′) = 0 whenever x ∉ Hδ(x), (5)

where Hδ(x) = {x′
∈ Rn

: |x′
− x| < δ}. In this case, we have that the interaction domain is given by ΩI =

{x′
∈ Rn

\Ω : |x′
− x| < δ for x ∈ Ω}.

Many kernels, integrable or non-integrable and singular or non-singular, have been proposed in the literature; see,
e.g., [9,10]. For simplicity, we only consider nonsingular localized kernels that are integrable, i.e, for some constant
c∗(δ) > 0 whose value depends on δ,

Rn
γ (x, x′)dx′

=


Hδ(x)

γ (x, x′)dx′
≤ c∗(δ) < ∞ ∀ x ∈ Ω . (6)

Again, in every significant aspect, the discussions in this work apply to more general kernels.

3. Local, abrupt mesh refinement in two dimensions

When a discontinuity in a function has been detected, the multiscale implementation responds by carrying out a
local adaptive abrupt mesh refinement. For two-dimensional problems, the geometry or shape of the discontinuity
zone becomes an issue that, by itself, can present severe challenges to any modeling approach. In general, we restrict
our consideration to cases in which discontinuities occur across curves that are piecewise smooth and connected and
that either form a closed loop or begin and end at distinct points on the boundary. Additional cases, e.g., discontinuities
occurring on curves beginning and ending at different points in the interior, can be handled in a similar manner. In
this section, for the sake of simplicity of exposition, we further restrict attention to settings in which discontinuities
occur across a single curve which splits the domain into two subregions; the discussion directly applies to settings
with multiple discontinuity curves.

Suppose that the region Ω has been subdivided into an initial mesh with a characteristic mesh parameter, i.e., grid
length, h which is nominally chosen so that a desired accuracy would be achieved were solutions to be smooth
everywhere in Ω . Assume that there is some indicator, such as a posterior error estimator, which can be used to
determine which elements contain a portion of the discontinuity curve. Our local mesh refinement strategy adjusts
the initial mesh so that the discontinuity curve is, in a sense that will be explained later, contained within a collection
of long thin elements, whereas the remainder of the region is still covered by elements of regular shape having
characteristic size h. Thus, there is an abrupt transition between regularly-shaped and thin-shaped elements, rather
than the more common approach of having a substantial layer of elements that gradually decrease in size.

The refinement strategy we use defines an indicator function that allows us to identify the set of “discontinuous
elements”, each of which is traversed by the discontinuity curve. Each discontinuous element may then be split into
four small triangles. It is likely that the discontinuity does not affect one or more of the four subelements, which we
may then regard as “continuous elements”. Subsequently, the discontinuous elements are repeatedly split until the
discontinuous elements reach a size of O(ϵ) for some prescribed ϵ > 0. As a result, one has defined a subregion in
which refinement has occurred and which consists of many small elements of size O(ϵ) that cover the discontinuity,
and, in the rest of Ω , a collection of elements of various sizes that do not contain any part of the discontinuity. The
discontinuous elements may be merged into long quadrilaterals of width O(ϵ) and length O(h) and then split to
form triangles. The area covered by the continuous elements can then be newly remeshed using, e.g., a constrained
centroidal Voronoi tessellation [11–13].

The mesh refinement algorithm is summarized as follows.

1. Split: subdivide discontinuous elements until their size reduces to O(ϵ); along the way, continuous subelements
are set aside.
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Fig. 1. Illustration of the local splitting process. Left to right and top to bottom: initial mesh and meshes after first, second, and third splittings. In
all cases, discontinuous elements are identified in yellow. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)

2. Merge: merge the tiny discontinuous subelements into long thin quadrilaterals of width O(ϵ) and length O(h) then
split each quadrilateral into two long thin triangles.

3. Remesh: remesh subregions that do not contain discontinuous elements into quasi-uniform meshes of grid size
O(h).

Fig. 1 illustrates the splitting step in which discontinuous elements (the yellow triangles in the top-left figure), are
subdivided into four smaller triangles (the top-right figure). Note that immediately adjacent elements may also need to
be modified, to avoid hanging nodes. The nodes of the subdivided elements are reexamined to identify which smaller
triangles contain the discontinuity curve (the yellow triangles in the top-right figure) and then those elements are split
again, this process being repeated until the discontinuous elements have all been reduced to the desired size of ϵ. The
bottom figures illustrate the results of two further splittings.

Fig. 2 illustrates the merging step in which the tiny elements of size O(ϵ) are merged to create long quadrilateral
elements of length O(h) and width O(ϵ). For general discontinuity curve shapes and very small ϵ (relative to h), it
may not be possible to cover the discontinuity curve by the set of long thin quadrilaterals. We are content to simply
ensure that the discontinuity curve does intersect with the two short O(ϵ) sides of each quadrilateral; see Fig. 3 for
an illustration. Further discussion of these issues, including how ϵ is chosen, is given in Section 6. Note that the
merging step may not be possible in high curvature regions of the discontinuity curve, in which case the long side
of the quadrilateral may have to be shorter than O(h) or at corners in the discontinuity curve which would have to
remain covered by a regularly shaped element of size O(ϵ).

Fig. 4 illustrates the remeshing step for the subregions outside the set of discontinuous elements as determined
during the merging step. This region consists of two subregions, one on either side of the discontinuity curve, which
are separately remeshed. We first restore the grid points of the original uniform mesh that belong to a subregion; to
these nodes are added the nodes of the long thin elements that also belong to the subregion; see the left plot in Fig. 4.
Then, a subregion is remeshed by adjusting the grid points so that a more regular mesh is produced; see the right plot
in Fig. 4. One such means for doing this is to construct a constrained centroidal Voronoi tessellation (CCVT) [11–13]
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Fig. 2. Illustration of the merging of small isotropic elements containing the discontinuity curve into longer thin quadrilaterals.

Fig. 3. Illustration of the discontinuity curve passing through the short sides of the thin quadrilaterals.

Fig. 4. Illustration of the remeshing of the white regions which do not include discontinuous elements. Left: initial mesh constructed after the
merging step. Right: mesh after CCVT remeshing.

in which the nodes on the thin triangles are held fixed. Depending on the situation, some grid points on the boundary
of the patch could be allowed to slide slightly along the boundary to automatically improve mesh quality, although our
default choice of holding those grid points fixed often works in practice. In Fig. 4, the first image shows the state of
the mesh at the beginning of the remeshing process. The second image is the result after the CCVT process and shows
how the elements other than the thin elements have nearly recovered the optimal size and shape they had before the
discontinuity was discovered and separately handled. In the right-plot of Fig. 4, note the abrupt transition from the set
of thin elements to the set of regularly shaped elements.

Quite apart from solving nonlocal problems, this refinement method may be suitable for the interpolation of
discontinuous functions. In Section 7, we consider the error for the case of piecewise linear interpolation and compare
results with and without mesh refinement. The results provided in that section suggest that this approach can yield
near optimal convergence rates in spite of the discontinuity. In Section 8, we present a similar study of the refinement
method in the context of the multiscale implementation of the nonlocal problem (2).
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Fig. 5. The eight types of intersections of a disk and a triangle.

4. Quadrature rules for finite element discretizations

Implementation of a finite element method requires the evaluation of integrals. In the nonlocal case, a double
integral arises; see (3). Because the kernels we consider are supported on a disk of radius δ (see (5)), the inner integral
in (3) has a non-smooth integrand, or, equivalently, has the disk Hδ(x) as the integration domain. In particular, if
{φi (x)}M

i=1 denotes a finite element basis and {Ek}
K
k=1 denotes the set of finite elements, then, ignoring the volume

constraint, each entry of the stiffness matrix A has the general form

Ai j = A(φ j , φi )

=


Ω∪ΩI


Ω∪ΩI ∩Hδ(x)

γ (x, x′)

φi (x′) − φi (x)


φ j (x′) − φ j (x)


dx′dx

=

K
k=1


Ek


Ω∪ΩI ∩Hδ(x)

γ (x, x′)

φi (x′) − φi (x)


φ j (x′) − φ j (x)


dx′dx

=

K
k=1


Ek

 K
t=1


Et ∩Hδ(x)

γ (x, x′)

φi (x′) − φi (x)


φ j (x′) − φ j (x)


dx′


dx. (7)

Thus, the inner integral, when expressed as a sum of integrals over the elements which overlap with the support of the
kernel, includes integrals over which Et ∩ Hδ(x) is strictly contained within Et .

In finite element implementations, integrals are typically approximated using a suitable quadrature rule over each
element Et . Using such quadrature rules over an element for which Et ∩ Hδ(x) ≠ Et can result in a serious
loss of accuracy because the integrand may not be smooth. Alternately, in such cases, one can use a quadrature
rule specifically designed for integration over the intersection of an element Et and a disk Hδ(x). In Fig. 5, we
show the eight possible types of domains generated when a triangle and a disk have a non-empty intersection and
Et ∩ Hδ(x) ≠ Et . The variety of cases seem overwhelming, but a little thought shows that, in every case, the
intersection region is the union of zero or one polygon and zero to three circular segments (the subarea of the disk
between a chord and the circle); because polygons can be easily divided into triangles, we see that, in the end, we only
need quadratures over triangles and circular segments. Of course, quadrature rules for triangles are readily available.
Quadrature rules for an arbitrary circular segment are given in [14], with a MATLAB implementation given in [15]. An
implementation modified for the particular needs of problems such as those treated in this paper is available at [16]
and a C implementation is also available. We note that the type of complicated geometries discussed here is also
considered in [17] where details about how to deal with them are given.

Using the approach just described, the integrals appearing in the finite element formulation of the problems we
consider can be approximated to a sufficiently high accuracy so that the overall accuracy of the approximations is
not compromised. The steps needed are to first determine the type of intersection region, decompose that region into
sub-triangles and sub-circular segments, apply appropriate quadrature rules, and summing. Note that other issues
related to quadrature arise if the integrands are singular; here, so as not to obfuscate our presentation of the multiscale



124 F. Xu et al. / Comput. Methods Appl. Mech. Engrg. 307 (2016) 117–143

Fig. 6. For h = 1/8, the shaded areas show the points that interact with the central point and also the stencil of the finite element stiffness matrix
for the local PDE model (left) and for the nonlocal model with δ = 1/100 < h (middle) and h < δ = 1/5 < 2h (right).

implementation, we do not address this issue which rears its head in any type of finite element discretization of
nonlocal problems. Singular integrals can be treated by methods such as those given in, e.g., [18–20].

5. Local–nonlocal coupling

As part of the multiscale implementation, we wish to apply both a nonlocal (PD) model and a local (PDE) model
in different parts of the domain Ω , depending on the presence or lack thereof of solution discontinuities, respectively.
Thus, there will be neighboring points at which distinct models are applied so that seemingly a local–nonlocal coupling
scheme has to be applied.

Let Ωn ⊂ Ω and Ωℓ = Ω\Ωn denote the regions in which the nonlocal and local models are applied, respectively.
The nonlocal–local model, given by−2


Hδ(x)


u(x′) − u(x)


γ (x, x′) dx′

= f (x) for x ∈ Ωn

−∆u(x) = f (x) for x ∈ Ωℓ,

(8)

has to be supplemented with constraints. For simplicity, we only consider Dirichlet type constraints, i.e., we specify
u(x) on the interaction domain ΩI or on the boundary of Ω . If defects occur within Ω within a distance δ from its
boundary ∂Ω , we apply a volume constraint of the form u(x) = g(x) in a δ-neighborhood ΩI exterior to the boundary.
However, if there are no defects near the boundary, the condition u(x) = g(x) is applied only at points precisely on
the boundary. Note that when discontinuities are restricted to the interior of the domain, this method has significant
advantages over the use of a nonlocal model everywhere, as it avoids dealing with the need to specify data over a
volumetric region, data which must be known a priori and thus could perhaps present practical difficulties.

To motivate our strategy for the coupling of local and nonlocal models, we first provide some information about
the finite element stiffness matrix generated for the nonlocal model with the use of continuous piecewise linear (CL)
elements. First, we examine the effects that nonlocality have on the structure of that matrix. Specifically, in Fig. 6,
the shaded areas are indicative of the stencil of that matrix, i.e., the points that interact with a given point and thus
engender nonzero entries in the stiffness matrix. We first plot the familiar stencil for the local PDE model that features
only nearest neighbor interactions. For the δ < h case, we see that second-nearest neighbors are also part of the
stencil. For the case h < δ < 2h we see that third nearest neighbors also enter into the picture. As the ratio δ/h
increases further, one would see further losses in the sparsity of the stiffness matrix due to increasing nonlocality.

We next examine the effects that changes in the ratio δ/h have on the actual entries of the stiffness matrix. We
are particularly interested in what happens for δ ≪ h. For simplicity, here we consider the case in which we use
a piecewise constant kernel γ =

1
4πδ4 1Hδ(x), where 1 denotes the indicator function; the scaling constant 1/4πδ4

guarantees that the nonlocal model reduces to the local one as δ → 0; see, e.g., [21,22]. The results are qualitatively
valid for the other kernels considered in this paper.

For Fig. 7, we have Ω = (0, 1)2 and fix h = 1/4 and vary the values of δ < h. The results in that figure suggest
that, for δ < h, the rows of the stiffness matrix associated with the nonlocal model tend to have values similar to those
for the local model, and the discrepancy tends to decrease in magnitude linearly with δ. This is hardly a surprising
result because it is known that, as δ → 0, the nonlocal operator (in the first equation in (8)) converges to that of the
local problem (in the second equation in (8)), and moreover, the CL element is asymptotically compatible, as shown
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Fig. 7. For h = 1/4, the nonzero entries of the stiffness matrix for the nonlocal problem with δ = 1/10, 1/100, and 1/1000 and for the local partial
differential equation model (left to right and top to bottom).

Fig. 8. For δ = 1/100, the nonzero entries of the stiffness matrix for the nonlocal problem with h = 1/4 (left) and 1/8 (right).

in [21,22]. Thus one expects the nonlocal stiffness matrix, i.e., the discretized nonlocal operator, to converge to the
local stiffness matrix as δ → 0.

We also examine, in Fig. 8, the effect of varying h for fixed δ < h. We observe that because 0 < δ < h for
both cases that the two stencils are the same, i.e., they only involve first and second-nearest neighbor interactions.
However, for the larger value of h, i.e., for the case of lesser relative nonlocality as indicated by the smaller ratio δ/h,
the discrepancy from the local PDE stiffness matrix case is smaller. This again shows that as δ becomes smaller with
respect to h, the nonlocal stiffness matrix converges to the local one.

These observations inform our local–nonlocal coupling strategy. We begin with the following requirements:
transitions from the nonlocal to the local model only occur in regions where:

1. the solution is smooth;
2. h ≫ δ, i.e., the local grid size is much greater than the horizon δ;
3. continuous finite element spaces are used for both models.
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The first requirement ensures that the local model is valid in the transition region. The other two ensure that
the stiffness matrices are essentially the same, i.e., that the differences in the entries of the nonlocal and local
stiffness matrices corresponding to adjacent nodes are negligible relative to the overall error incurred in discretization.
Specifically, with respect to the second requirement, we see from Fig. 7 that the difference between the nonlocal and
local stiffness matrices seems to be of O(δ) as δ → 0. Thus, in a practical setting, if h denotes a desired grid size in
regions where the solution is smooth, one should choose δ = O(h2) to insure that the overall approximation error is
of O(h2).

The coupling strategy we use is very simple. Let G N = {x j }
N
j=1 denote the set of interior nodes of the grid in Ω .

Then, let Gloc ⊂ G N denote the subset of “local” nodes; these should be chosen in regions of Ω in which the solution
is smooth. Then, Gnonlocal = G\Gloc denotes the subset of “nonlocal” nodes. The row in the global stiffness matrix
corresponding to a local (respectively, nonlocal) node is determined from the weak form of the local (respectively,
nonlocal) model. For example, suppose we have δ = 0.01 and a uniform Cartesian grid with h = 1/4; note that
δ ≪ h. Let Gloc consist of the leftmost and rightmost pairs of interior nodes so that Gnonlocal consists of the three
central interior nodes. Using our coupling strategy, the resulting global stiffness matrix is then given by

4 −1 0 −1 0 0 0
−1 4 −1 0 −1 0 0

0.01 −0.97 3.91 −0.97 0.01 −0.97 −0.01
−0.97 0.01 −0.97 3.91 −0.97 0.01 −0.97

0.01 −0.97 0.01 −0.97 3.91 −0.97 0.01
0 0 −1 0 −1 4 −1
0 0 0 −1 0 −1 4


.

A finite element “crime” is committed by our strategy, namely the loss of symmetry of the stiffness matrix.
However, because δ ≪ h, this crime does not appreciably affect the approximation. For example, we may apply
the patch test to our coupling scheme. Thus, if we try to reproduce the solution u(x, y) = x + y, the error incurred
is of the order of the machine precision with respect to any of the L2, L∞, or H1 norms and for a range of grid sizes
from 1/2 to 1/128. The loss of symmetry can impose a higher cost in solving the discretized problem; if this is a
burden, there are ways to recover the symmetry. At the moment, we will not concern ourselves with the symmetry
issue because our primary goal is to demonstrate the effectiveness of the multiscale implementation.

It is important to note that, in the mechanics setting, the discussion of the sparsity pattern of the stiffness matrix
applies to the bond-based peridynamic model of [4]. For the more generally applicable state-based peridynamic model
of [6], the stiffness matrices are considerably less sparse due to the fact that there is more complex interaction behavior
between material points.

6. Multiscale implementation

We now have in hand the ingredients needed to define the multiscale implementation of the two-dimensional
peridynamics (PD) model. We assume that the solution is a smooth function of position except for jump discontinuities
across one or more separate curves, that the discontinuity curves are well separated except perhaps at isolated
intersection points, and that each discontinuity curve forms a closed loop entirely within the domain or is a segment
that intersects the boundary at exactly two distinct points.

We assume we are given a grid to which the local refinement strategy has already been applied, with a mesh
size parameter h, peridynamics horizon δ, and refinement parameter ϵ. We also assume that we have classified every
element as either a discontinuous or continuous one, i.e., the thin elements following the discontinuities or the regularly
shaped elements, respectively. Starting from this information, we classify every node in the grid. First, every node in
a discontinuous element is classified as a PD-DG node (peridynamics-discontinuous Galerkin). Secondly, every node
that is not yet classified, but which is contained in an element less than δ in distance from a discontinuous element is
classified as PD-CG (peridynamics-continuous Galerkin). The remaining nodes are classified as PDE-CG (local PDE
model-continuous Galerkin).

Assuming the grid refinement strategy was carried out, the grid now consists of discontinuous elements, all of
whose nodes are of the PD-DG class, with length O(h) and width O(ϵ). Furthermore, there are one or more transition
layers of continuous elements that have at least some PD-CG nodes, whereas the remaining continuous elements
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Fig. 9. A multiscale implementation of peridynamics in one dimension [8]. The discontinuity in the displacement occurs in the element of size
ϵ = O(h4).

Fig. 10. The interaction domain of a triangle ∆ABC is the shaded regions which can be regarded as the union of the triangle, three disks, and three
rectangles.

consist entirely of PDE-CG nodes; both of these types of elements have all sides of length O(h). For ϵ ≪ h, the layer
of PD-CG elements is one element thick. Thus, we obtain a grid that is logically similar to the one-dimensional grid
shown in Fig. 9, which is given in [8].

Note that at any stage of the classification process, we wish to identify all continuous elements that are within δ

of any discontinuous element. Whereas such a test is obvious to the eye, computationally, it requires a bit of care.
Referring to Fig. 10, suppose that triangle ∆ABC is a discontinuous element; then the δ-neighborhood of ∆ABC
for δ ≪ h can be thought of as the union of the triangle itself, three rectangular strips, and three disks, resulting in
a convex domain. Instead of checking whether any point in an unclassified triangle is within the δ neighborhood of
∆ABC , we choose the quicker approximate test based on checking whether or not that triangle shares any vertices
with ∆ABC . This rough estimate can save a lot of time and indeed works well in our numerical experiments.

6.1. Choice of the refinement parameter ϵ

We still have to discuss the choice of ϵ and, in particular, how it is related to the grid size h used in regions
where the solution is smooth. In the one-dimensional case, we can choose ϵ = h4 and contain the points at which
discontinuity occurs within intervals of that length [8]. This ensures that the multiscale implementation can recover,
even for discontinuous solutions, the asymptotic O(h2) decay rate of the L2-norm of the error for piecewise linear
elements, which is the optimal rate even for smooth solutions. In two dimensions, if the discontinuity curves are
straight-line segments, then one can again contain the discontinuity within thin elements of thickness ϵ = h4 and
again recover the full O(h2)L2-norm convergence rate. However, for general curved discontinuity paths, even if they
are smooth, it is not possible to contain the discontinuity within straight-sided elements of thickness ϵ = O(h4); the
best one can do is to have ϵ = O(h2). Thus, instead, we make sure that the thin elements are indeed of thickness
ϵ = O(h4) and that the discontinuity curve passes through the short sides of the thin elements, as illustrated in
Fig. 3. As illustrated in the numerical examples provided in Sections 7 and 8, this seems to suffice to recover the
O(h2)L2-norm convergence rate for piecewise linear approximations.

7. Piecewise linear interpolation of discontinuous functions

As already mentioned, the refinement method described in Section 3 may be used independently of its application
to nonlocal problems, e.g., it may be used as a procedure for improving the accuracy of interpolation of given functions
having jump discontinuities. Studying the performance of the refinement method in this setting is also useful because
it gives us a best-case scenario to compare to when solving nonlocal problems using our multiscale finite element
implementation.
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Table 1

Example 1. L2 errors of the piecewise linear interpolant of φ1(x, y) corresponding to
initial uniform meshes of size h with no refinement and adaptive abrupt mesh refinement.

h Uniform meshes Refined meshes
L2 error Rate L2 error Rate

1/4 5.683e−01 – 5.101e−02 –
1/6 4.665e−01 0.487 2.083e−02 2.209
1/8 4.050e−01 0.491 1.276e−02 1.705
1/10 3.629e−01 0.493 8.069e−03 2.053
1/12 3.316e−01 0.494 5.208e−03 2.401

For a given function, one knows where discontinuities occur so that, in principle, one can use that information to
explicitly guide the refinement by, e.g., defining indicator functions that determine which nodes are on which side
of a discontinuity. However, for complicated discontinuity curves, this process may be cumbersome, so that we can
ignore the fact we know where the discontinuities occur and apply our adaptive abrupt refinement strategy, i.e., at each
stage of the refinement process, we evaluate the function values collected at mesh nodes and then determine whether
more data may be needed in certain locations. The strategy we use detects a discontinuity curve crossing an element
if it detects a large directional derivative, as approximated by a finite difference quotient, of the function along an
element edge. For both strategies, only function evaluations at the nodes are needed. The discovery of the location of
a discontinuity affects the local sampling rate, the mesh refinement, and the merging step, which seek to isolate the
discontinuity within a thin transition zone.

We consider three illustrative examples for the continuous piecewise linear interpolation of discontinuous functions
defined over the square Ω = (−1, 1)2.

Example 1. Consider the function

φ1(x, y) =


1 if (x < 0 and y < 0) or (x ≥ 0 and y ≥ 0)

0 otherwise

for which discontinuities occur across straight line segments. The top-left image of Fig. 11 shows this function which
is constant over each of the four unit sub-squares but has a jump of magnitude 1 between any pair of abutting sub-
squares. The remaining plots in Fig. 11 show the result of the refinement process starting from several initial uniform
meshes with different grid sizes h. This is in keeping with our goal of choosing a grid size h based on the accuracy we
would like to achieve for the piecewise linear interpolation of a smooth function and then effect refinement so that,
even in the presence of discontinuities, we still achieve an accuracy of O(h2). Note that the sequence of grid plots in
Fig. 11 corresponds to h-refinement whereas each individual plot also shows, for each h, the abrupt grid refinement
in the vicinity of the discontinuity curve.

We choose ϵ = h4; as discussed in Section 6.1, because we have straight discontinuity curves, the refinement
process results in the discontinuity line segments being covered by elements of thickness O(h4) and length O(h)

whereas the rest of the mesh has an essentially undisturbed grid size of O(h). Note that the red lines in Fig. 11 are
actually made up of pairs of triangular grid cells forming rectangles having long side O(h) and short side O(h4),
except for two isotropic elements of length and width O(h4) surrounding the intersection of the two discontinuity
lines; see Fig. 12. That figure along with Fig. 11 also illustrates the abrupt transition between thin and regularly
shaped elements, exactly as desired. Table 1 shows that without applying our adaptive abrupt grid refinement strategy,
i.e., for each h simply using a uniform grid, the approximation is only O(h1/2) accurate, but with our grid refinement
strategy, we recover, for the discontinuous function φ1(x, y), the O(h2) accuracy of piecewise linear approximations
of smooth functions using quasi-uniform grids of size h.

Example 2. Consider the function

φ2(x, y) =


xy + cos(2πx2) − sin(2πx2) if x2

+ y2
≤ 0.25

xy + cos(2πx2) − sin(2πx2) + (10x − 10) if x2
+ y2 > 0.25
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Fig. 11. Example 1. Top left: plot of φ1(x, y). The remaining figures, from left to right and top to bottom, display refined meshes generated from
initial uniform meshes of size h = 1/4, 1/6, 1/8, 1/10, and 1/12. The red lines actually consist of pairs of triangular grid cells forming rectangles
having long side O(h) and short side O(h4). (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

Fig. 12. Example 1. Zoom-in near the point (0, 0) of the refined mesh obtained from the initial uniform mesh of size h = 1/4.

for which discontinuities occur across a curve, specifically a circle. Fig. 13 provides a plot of φ2(x, y) and shows
several refined meshes resulting from initial uniform meshes with different grid sizes h. We again choose ϵ = O(h4).
As discussed in Section 6.1, because we now have curved discontinuities, the thin elements no longer contain the
circle across which φ2(x, y) is discontinuous, but we have made sure that circle passes through the short sides of
those elements.

We also use this example to illustrate some of the influences that the initial mesh may have on the final refined one.
In particular, the domain Ω and the discontinuity curve for the function φ2(x, y) are such that, geometrically speaking,
the problem is symmetric under midline and diagonal reflections and 90◦ rotations. One may want the refined mesh to
share such symmetries, at least with respect to 90◦ rotations. However, if the initial uniform mesh does not have this
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Fig. 13. Example 2. Top left: plot of the function φ2(x, y). Remaining plots, left to right and top to bottom: refined meshes generated from initial
uniform meshes of size h = 1/4, 1/6, 1/8, 1/10, and 1/12. The red lines actually consist of pairs of triangular grid cells forming rectangles having
long side O(h) and short side O(h4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 2

Example 2. L2 errors of the piecewise linear interpolant of φ2(x, y) corresponding to
initial uniform meshes of size h with no refinement and adaptive abrupt mesh refinement.

h Uniform meshes Refined meshes
L2 error Rate L2 error Rate

1/4 4.243e+00 – 8.366e−01 –
1/6 2.566e+00 1.241 3.662e−01 2.037
1/8 2.789e+00 −0.289 2.141e−01 1.866
1/10 2.743e+00 0.0731 1.434e−01 1.794
1/12 2.181e+00 1.259 9.938e−02 2.013

symmetry, there is no mechanism in the refinement process that will bring about symmetry. Fig. 14, however, shows
that the refinement procedure will do a much better job at preserving symmetry if the initial mesh shares symmetries
with the domain and function.

Fig. 15 illustrates the refined meshes resulting from the use of two different approaches for the detection of the
discontinuity curve, namely, the direct use of the indicator function and using finite difference quotient approximations
along element edges for derivative estimation. We observe that the resulting meshes are very similar.

Table 2 shows that without grid refinement the error behavior is erratic and certainly does not converge as O(h2).
However, with our adaptive abrupt grid refinement strategy, we, for the most part, recover, for the discontinuous
function φ2(x, y), the O(h2) accuracy of piecewise linear approximations of smooth functions using quasi-uniform
grids of size h.
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Fig. 14. Example 2. Using an initial mesh with 90◦ rotational symmetry (top left) results in better rotational symmetry of the refined mesh (top
right) compared to the analogous result (bottom right) for an initial mesh lacking in such symmetry (bottom left). The red lines actually consist of
pairs of triangular grid cells forming rectangles having long side O(h) and short side O(h4). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

Fig. 15. Example 2. Refined meshes resulting from the use of the indicator function (left) and difference quotients along element edges (right).
The red lines actually consist of pairs of triangular grid cells forming rectangles having long side O(h) and short side O(h4). (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

Example 3. Consider the function

φ3(x, y) =


x if y < 0.2 sin(πx) and (x − 0.5)2

+ (y + 0.3)2
≥ 0.01

x − 1 if y < 0.2 sin(πx) and (x − 0.5)2
+ (y + 0.3)2 < 0.01

1 + sin(x) if y ≥ 0.2 sin(πx) and (x + 0.5)2
+ (y − 0.3)2

≥ 0.01
sin(x) if y ≥ 0.2 sin(πx) and (x + 0.5)2

+ (y − 0.3)2 < 0.01.

We again choose ϵ = O(h4). This example also serves to illustrate that even away from the discontinuity, one may
want to use different mesh sizes in different regions.

Fig. 16 provides plots of φ3(x, y) and of several refined meshes resulting from initial meshes with different grid
sizes h. For this function, away from discontinuity curves, the two small circular regions interior to the circles call for
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Fig. 16. Example 3. Top left: plot of the function φ3(x, y). Remaining plots, left to right and top to bottom: refined meshes generated from initial
uniform meshes of size h = 1/4, 1/6, 1/8, 1/10, and 1/12. The red lines actually consist of pairs of triangular grid cells forming rectangles having
long side O(h) and short side O(h4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)

Table 3

Example 3. L2 errors of the piecewise linear interpolant of φ3(x, y) corresponding to
initial uniform meshes of size h with no refinement and adaptive abrupt mesh refinement.

h Uniform meshes Refined meshes
L2 error Rate L2 error Rate

1/4 3.089e−01 – 4.726e−02 –
1/6 2.882e−01 0.171 2.029e−02 2.086
1/8 2.349e−01 0.711 1.245e−02 1.696
1/10 2.547e−01 −0.362 7.994e−03 1.987
1/12 2.188e−01 0.837 5.211e−03 2.348

a finer mesh compared to the mesh for the regions exterior to the circles; however, both meshes are quasi-uniform and
of grid size O(h). For large h, the refinement procedure produces a transition zone of several layers, but this effect
diminishes as h decreases to the local h imposed in the circle interiors. The red lines again consist of thin elements of
length O(h) and width O(ϵ) = O(h4).

Table 3 shows errors and rates for uniform meshes and refined meshes. The comments made for Table 2 apply to
this case as well.

8. Examples of the multiscale implementation

We now turn to the implementation of the multiscale method for nonlocal problems in two dimensions. In
Section 8.2, we present an example for the full implementation as described in Sections 2–6 in which we pretend
we do not know the location of the discontinuity curves and allow our adaptive process to identify them and then to
effect the needed refinement. Before we do so, we first present, in Section 8.1, a partial implementation in which,
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Fig. 17. Plot of the exact solution (9).

instead of using adaptivity to effect refinement, we assume we know where the discontinuities are located and then
manually construct the needed refined meshes. We do so to determine a second baseline (in addition to that given by
Section 7) for our refined meshes which we then use to judge the effectiveness of the full implementation which is
what one would apply in practice.

8.1. Multiscale implementation using manual refinement

8.1.1. Discontinuity across edges of a triangle
Consider the manufactured solution in the square domain Ω = (−1, 1)2 given by

u(x, y) =


x2

+ y2 if (x, y) ∈ ∆
−x2

− y2 otherwise,
(9)

where ∆ denotes the equilateral triangle having vertices (−1/2, −
√

3/6), (1/2, −
√

3/6), and (0,
√

3/3) and across
whose edges the function (9) experiences a jump discontinuity. Note that discontinuity path itself has a discontinuous
geometric derivative. A plot of the function (9) is provided in Fig. 17.

The manual refinement process proceeds as follows. Let h denote a measure of the unrefined grid size which, in this
example, can be taken to be the mesh size along the edges of the square domain Ω . First, we cover the discontinuity
path, i.e., the equilateral triangle ∆, with congruent quadrilaterals of length O(h) and width O(h4); this is possible
because the discontinuity path consists of straight line segments. The remainder of the interior of ∆ is then subdivided
into smaller equilateral triangles having sides of length O(h) whereas the remainder of its exterior in Ω is remeshed
using a CCVT approach. We also manually assign nodes to the different node classes. Specifically, PD-DG nodes
are restricted to the vertices of the elements that contain the discontinuity path, PD-CG nodes form a transition layer
around them, and most of the nodes in the region both inside and outside of ∆ are PDE-CG nodes, which is exactly
the desired distribution for the multiscale model. Fig. 18 shows, for several grid sizes h, the results of this meshing
and the assignment of nodes to the different node classes. Also plotted in that figure are the “boundary” nodes, i.e., the
nodes at which the Dirichlet constraint on the solution is applied. Note that for the values of h < 1/2, those nodes are
located simply at the boundary of the region Ω , as is expected because those nodes are separated from the nonlocal
PD-DG nodes by CG nodes. However, for h = 1/2, we see that additional boundary nodes are needed outside of
Ω because the nonlocal PD-CG nodes are connected to the nodes on the boundary of Ω . Of course, in practice, one
would almost surely use a grid size smaller than h = 1/2, so that this anomaly does not occur unless discontinuity
curves intersect the boundary.

Table 4 lists the exact counts of the PD-DG, PD-CG, and PDE-CG nodes for each of the meshes; these are the
nodes that correspond to the nodal degrees of freedom whereas, at the remaining “boundary” nodes, the approximate
solution is specified by the Dirichlet constraint. The number N pde

cg of PDE-CG nodes grows quadratically (proportional

to area) whereas the numbers N pd
dg and N pd

cg of PD-DG and PD-CG nodes, respectively, grow linearly (proportional
to length). Table 4 also lists the total degrees of freedom used for solving the nonlocal problem using the abruptly
refined grids and the judicious use of CG and DG elements in different regions, the degrees of freedom one would
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Fig. 18. For the exact solution (9) with manual grid refinement and for h = 1/2, 1/4, 1/8, and 1/16 (left to right and top to bottom), manually
refined meshes and distribution of node types. Red nodes are PD-DG nodes, blue ones are PD-CG nodes, cyan ones are PDE-CG nodes, and
magenta ones are boundary nodes. The lines linked by red nodes actually consist of pairs of triangular grid cells forming rectangles having long
side O(h) and short side O(h4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

use in determining an approximation to a smooth solution of the related PDE problem on a uniform grid of size
h, and the percentage of additional degrees of freedom used to solve the problem with a discontinuous solution
using our approach. We see that the percentage overhead decreases linearly in h as the problem size grows, as is
expected from the growth rates for the number of each class of nodes. The grid sizes h used for Table 4 are rather
large so that the overhead is significant. However, the smaller grid sizes used in most practical situations, we can
expect much lower overheads in the number of degrees of freedom; for example, for h = 1/100, one can expect
an approximately 10% overhead whereas for h = 1/1000 it would be approximately 1%. Thus, we do observe that
the multiscale implementation efficiently limits the additional costs incurred for treating the discontinuity using our
refinement approach.

We now use grids such as those illustrated in Fig. 18 to solve the coupled local–nonlocal problem (8) where, for
the nonlocal problem, we choose the kernel γ (x, x′) =

40
3πδ4 (1 −

r2

δ2 )2(1 +
2r2

δ2 )1Hδ(x), where 1 denotes the indicator
function and r = |x − x′

| the Euclidean distance between x and x′. The scaling constant that appears in the kernel
guarantees that the nonlocal model reduces to the local one as δ → 0. This kernel and its first derivatives vanish at the
boundary of Hδ(x). Kernels that are less smooth require careful treatment, especially with regard to the quadrature
rules used to construct stiffness matrices.

Table 5 shows, for δ fixed at 0.01, the convergence behavior of the L2 and L∞ norms of the errors as h decreases
from 1/2 to 1/32. The L2 error approaches the optimal rate of 2, but the L∞ exhibits no convergence. This is all to
be expected; our goal was to achieve optimal convergence with respect to the L2 norm, which is what was achieved.
However, no amount of grid refinement is going to help with the L∞ norm because regardless of the degree of
polynomials used or of the grid size, the error in the approximation of a function having a jump discontinuity will
remain of O(1); see [7] for a further discussion. These results are also consistent with what was reported in [8] for
the one-dimensional case. However, if when calculating errors we simply exclude the elements known to contain the
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Table 4
For the exact solution (9) with manual grid refinement and for several initial grid sizes h, the distribution
of node types and the degrees of freedom resulting from the multiscale implementation. Also listed are
the number of degrees of freedom for the local PDE model using a uniform unrefined grid of grid size
h. Percentage overhead refers to the additional degrees of freedom (DOF) used for the nonlocal model
with abruptly refined grids relative to a local model with a uniform grid.

h 1/2 1/4 1/8 1/16 1/32

N pd
dg 12 24 48 96 192

N pd
cg 7 22 45 93 191

N pde
cg 0 20 170 861 3785

Nonlocal DOF 81 187 503 1530 5130

Local DOF 9 49 225 961 3969

Percentage overhead 800.0 281.6 123.6 59.2 29.3

Table 5
For the exact solution (9) with manual grid refinement, errors in the approximate solutions obtained
using the multiscale implementation with manually generated refined meshes.

Errors over all elements

h L∞ error Rate L2 error Rate

1/2 1.057e+01 – 1.058e+01 –
1/4 3.255e−01 5.021 2.352e−01 5.491
1/8 1.496e−01 1.121 2.625e−02 3.163
1/16 1.458e−01 0.0372 5.962e−03 2.139
1/32 1.492e−01 −0.0336 1.545e−03 1.949

Errors excluding thin elements

h L∞ error Rate L2 error Rate H1 error rate

1/2 9.001e+00 – 9.714e+00 – 3.092e+01 –
1/4 2.514e−01 5.162 2.343e−01 5.374 9.769e−01 4.984
1/8 4.037e−02 2.639 2.616e−02 3.163 9.871e−02 3.307
1/16 6.735e−03 2.583 5.935e−03 2.140 3.105e−02 1.669
1/32 1.788e−03 1.913 1.538e−03 1.948 1.397e−02 1.152

discontinuity, the convergence rates measured over the remaining elements now approach the optimal rates for all
norms, even for the H1 norm of the error which we can now report on because that norm is now bounded for the
exact solution, the discontinuity now being excluded. This illustrates that the combination of abrupt refinement and
using DG elements near the discontinuity does not cause a spread of errors away from the elements containing the
discontinuity path.

Fig. 19 illustrates different aspects of the approximate solution for the case h = 1/8. Suppressing the elements
containing the discontinuity results in a plot that accurately approximates the solution. The numerical solution over the
discontinuity elements illustrates how the jump in the solution is handled. The bottom-right plot illustrates how well
our method does at capturing the discontinuity in the solution while also preserving the smoothness of the solution
away from the discontinuity without any numerical artifacts such as Gibbs phenomena.

Table 6 provides further insight by listing the number of nonzeros in the stiffness matrices resulting from using the
nonlocal model everywhere, using the multiscale implementation of the nonlocal model for which the nonlocal model
is used only in the vicinity of discontinuities, and using a local PDE model everywhere on a uniform grids (with
no refinement) of grid size h. We also provide the percentage overhead, i.e., the percentage of additional nonzero
entries, incurred by the multiscale implementation over the local one. For the relatively coarse grid sizes h used
for that table, the overhead is significant but, because that overhead reduces linearly in h, for the smaller grid sizes
used in practical situations, the percentage overhead in the number of nonzero stiffness matrix entries will be much
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Fig. 19. For the exact solution (9) with manual grid refinement, plots of approximate solution for h = 1/8. Top-left: the complete approximate
solution. Top-middle: the solution over elements not containing the discontinuity. Top-right: the solution over elements inside the triangle. Bottom-
left: solution over elements outside the triangle. Bottom-middle: solution over elements covering the edges of the triangle. Bottom-right: cross
section of solution at y = 0.

Table 6
For the exact solution (9) with manual grid refinement and for several initial grid sizes h, the number
of nonzero stiffness matrix entries resulting from applying the nonlocal model everywhere and from
the multiscale implementation of the nonlocal model. Also given are the number of nonzero entries
in the stiffness matrix corresponding to the local PDE model with a uniform unrefined grid of grid
size h. Here, percentage overhead refers to the additional nonzero entries resulting from the multiscale
implementation relative to that for the local model.

h 1/2 1/4 1/8 1/16 1/32

Nonlocal 2139 6831 16 943 43 610 127 004
Multiscale 2139 6652 15 150 33 681 81 789
Local 63 343 1 575 6 727 27 783
Percentage overhead 3295 1839 862 401 194

smaller. For example, for h = 1/100 and 1/1000, one can expect percentage overheads of approximately 60% and
6%, respectively. Clearly, for practical values of h, the multiscale implementation involves significantly fewer nonzero
entries compared to the full nonlocal treatment and very little overhead compared to the local model.

8.1.2. A solution with discontinuity across a circle
As a second test, we consider a manufactured solution within the square domain Ω = (−1/2, 1/2)2 given by

u =


2(x2

+ y2) if x2
+ y2 > 1/9

x2
+ y2 otherwise

(10)

for which the discontinuity path is a circle of radius 1/3 centered at the origin. A plot of the exact solution (10) is
given in Fig. 20.

We again manually generate refined meshes with ϵ = O(h4). Because of the curvature of the discontinuity path,
with this choice of ϵ, the thin elements cannot cover that curve so that we again just make sure that the path passes
through the short sides of those elements. We use the kernel γ (x, x′) =

24
πδ4 (1−

r2

δ2 )21Hδ(x); the scaling constant again
guarantees that as δ → 0, the nonlocal problem reduces to the local PDE problem. We set δ = 0.01. Fig. 21 displays
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Fig. 20. Plot of the exact solution (10).

Fig. 21. For the exact solution (10) with manual grid refinement and for h = 1/4, 1/8, 1/16, and 1/32 (left to right and top to bottom), manually
refined meshes and distribution of node types. Red nodes are PD-DG nodes, blue ones are PD-CG nodes, cyan ones are PDE-CG nodes, and
magenta ones are boundary nodes. The lines linked by red nodes actually consist of pairs of triangular grid cells forming rectangles having long
side O(h) and short side O(h4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

the distribution of node types for this problem for refined meshes with several values of h whereas Table 7 provides
the actual node counts. Note that in the upper-left plot in Fig. 21 the thin elements are not anywhere near as visible
as they were in the correspondingly positioned plot in Fig. 18. This is simply due to the fact that the former is for
h = 1/4 so that h4

= 1/256 whereas the latter is for h = 1/2 so that h4
= 1/16. Table 8 displays the convergence

behavior of approximate solutions generated for several values of h with δ fixed at 0.01. Fig. 22 illustrates features
of the numerical solution obtained for h = 1/32. Again, plotting over just the continuous elements shows excellent
agreement with the true solution. Even though now the discontinuity curve is not completely contained within the
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Table 7
For the exact solution (10) with manual grid refinement and for several initial grid sizes h, the
distribution of node types and the degrees of freedom resulting from the multiscale implementation.
Also listed are the number of degrees of freedom for the local PDE model using a uniform unrefined
grid of grid size h. Percentage overhead refers to the additional degrees of freedom (DOF) used for the
nonlocal model with abruptly refined grids relative to a local model with a uniform grid.

h 1/4 1/8 1/16 1/32 1/64

N pd
dg 18 34 68 136 270

N pd
cg 9 36 66 135 263

N pde
cg 0 13 151 818 3682

Nonlocal DOF 119 255 623 1768 5558
Local DOF 9 49 225 961 3969
Percent overhead 1222 420 177 84 40

Table 8
For the exact solution (10) with manual grid refinement, errors in the approximate solutions obtained
using the multiscale implementation with manually generated refined meshes.

Errors over all elements

h L∞ error Rate L2 error Rate

1/4 2.518e−01 – 1.1249e−01 –
1/8 1.188e−01 1.084 1.429e−02 2.977
1/16 1.082e−01 0.135 3.985e−03 1.842
1/32 1.051e−01 0.042 7.340e−04 2.441
1/64 1.047e−01 0.005 2.041e−04 1.847

Errors excluding thin elements

h L∞ error Rate L2 error Rate H1 error Rate

1/4 8.184e−01 – 5.086e−01 – 2.638e+00 –
1/4 1.572e−01 – 1.108e−01 – 4.328e−01 –
1/8 1.831e−02 3.102 1.412e−02 2.9731 6.338e−02 2.772
1/16 5.329e−03 1.781 3.952e−03 1.8366 2.875e−02 1.141
1/32 1.055e−03 2.337 7.235e−04 2.4495 1.306e−02 1.138
1/64 3.093e−04 1.770 2.017e−04 1.8426 6.243e−03 1.065

Table 9
For the exact solution (10) with manual grid refinement and for several initial grid sizes h, the number of
nonzero stiffness matrix entries resulting from applying the nonlocal model everywhere and from the multiscale
implementation of the nonlocal model. Also given are the number of nonzero entries in the stiffness matrix
corresponding to the local PDE model with a uniform unrefined grid of grid size h. Here, percentage overhead refers
to the additional nonzero entries resulting from the multiscale implementation relative to that for the local model.

1/4 1/8 1/16 1/32 1/64

Nonlocal 4445 10 037 22 043 54 340 147 792
Multiscale 4445 9 839 20 322 44 698 103 350
Local 63 343 1 575 6 727 27 783
Percent overhead 6956 2 769 1 190 564 272

thin elements, the comments made for the corresponding tables and figures of Section 8.1.1 apply here as well (see
Table 9).
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Fig. 22. For the exact solution (10) with manual grid refinement, plots of approximate solution for h = 1/32. Top-left: the complete approximate
solution. Top-middle: the solution over elements not containing the discontinuity. Top-right: the solution over elements inside the circle. Bottom-
left: solution over elements outside the circle. Bottom-middle: solution over elements covering the circle. Bottom-right: cross section of solution at
y = 0.

Table 10
For the exact solution (10) with adaptive abrupt grid refinement and for several initial grid sizes h, the distribution of
node types and the degrees of freedom resulting from the multiscale implementation. Also listed are the number of
degrees of freedom for the local PDE model using a uniform unrefined grid of grid size h. Percentage overhead refers
to the additional degrees of freedom (DOF) used for the nonlocal model with adaptively refined grids relative to a
local model with a uniform grid.

h 1/4 1/8 1/16 1/32

N pd
dg 32 38 78 156

N pd
cg 21 36 69 135

N pde
cg 28 85 156 826

Nonlocal DOF 229 275 684 1876
Local DOF 9 49 225 961
Percent overhead 2444 461 204 95

8.2. Multiscale implementation with adaptive abrupt mesh refinement

Now we consider the full-fledged implementation of the multiscale model with adaptive abrupt grid refinement,
as outlined in Section 3. We again use the exact solution (10), choose δ fixed at 0.01, use the kernel γ (x, x′) =

24
πδ4 (1 −

r2

δ2 )21Hδ(x), and set ϵ = O(h4). We consider the solution for a sequence of values h from 1/4 to 1/32. The
thin elements resulting from the adaptive abrupt grid refinement process again do not entirely contain the discontinuity
curve but their short sides do so, as discussed in Section 8.1.2.

Fig. 23 presents the distribution of node types, Table 10 provides the node type counts, Table 11 records the
convergence behavior, Fig. 24 provides plots of different aspects of the approximate solution, and Table 12 provides
counts of the number of nonzero entries of stiffness matrices. These results are well in line with the behavior already
seen for the interpolation examples and for manual grid refinement; see, e.g., Section 8.1.2. In particular, the adaptive
abrupt grid refinement process that constitutes our multiscale implementation described in Section 3 results in optimal
accuracy even in the presence of discontinuities in the solution.
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Fig. 23. For the exact solution (10) with adaptive abrupt grid refinement and for h = 1/4, 1/8, 1/16, and 1/32 (left to right and top to bottom),
adaptively refined meshes and distribution of node types. Red nodes are PD-DG nodes, blue ones are PD-CG nodes, cyan ones are PDE-CG nodes,
and magenta ones are boundary nodes. The red lines actually consist of pairs of triangular grid cells forming rectangles having long side O(h) and
short side O(h4). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 11
For the exact solution (10) with adaptive abrupt grid refinement, errors in the approximate solutions obtained using the multiscale implementation
with adaptively generated refined meshes.

Errors over all elements

h L∞error Rate L2 error Rate

1/4 5.623e−02 – 2.738e−02 –
1/8 9.818e−02 −0.804 9.192e−03 1.575
1/16 9.573e−02 0.036 2.902e−03 1.663
1/32 9.421e−02 0.023 7.114e−04 2.029

Errors excluding thin elements

h L∞error Rate L2 error Rate H1 error Rate

1/8 2.362e−01 – 7.767e−02 – 8.559e−01 –
1/4 4.784e−02 – 2.724e−02 – 2.742e−01 –
1/8 1.307e−02 1.872 9.052e−03 1.589 4.916e−02 2.480
1/16 4.060e−03 1.687 2.877e−03 1.654 2.783e−02 0.821
1/32 1.019e−03 1.995 7.050e−04 2.029 6.838e−03 2.025

9. Concluding remarks

We have developed a multiscale implementation of finite element discretizations of nonlocal models in two
dimensions that appear in diffusion and mechanics problems. Using piecewise linear approximations and an adaptive
abrupt mesh refinement process, the methodology relies on abruptly refined meshes, seamless coupling of local to
nonlocal discretized models, and judicious application of discontinuous and continuous Galerkin methods. As a result,
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Fig. 24. For the exact solution (10) with adaptive abrupt grid refinement, plots of approximate solution for h = 1/32. Top-left: the complete
approximate solution. Top-middle: the solution over elements not containing the discontinuity. Top-right: the solution over elements inside the
circle. Bottom-left: solution over elements outside the circle. Bottom-middle: solution over elements covering the circle. Bottom-right: cross
section of solution at y = 0.

Table 12
For the exact solution (10) with adaptive abrupt grid refinement and for several initial grid sizes h, the number of
nonzero stiffness matrix entries resulting from applying the nonlocal model everywhere and from the multiscale
implementation of the nonlocal model. Also given are the number of nonzero entries in the stiffness matrix
corresponding to the local PDE model with a uniform unrefined grid of grid size h. Here, percentage overhead refers
to the additional nonzero entries resulting from the multiscale implementation relative to that for the local model.

h 1/4 1/8 1/16 1/32

Nonlocal 7 033 10 761 24 378 58 132
Multiscale 7 033 10 553 22 553 48 371
Local 63 343 1 575 6 727
Percent overhead 11 063 2 977 1 332 619

even for discontinuous solutions, second-order L2 convergence rates are achieved with little additional costs over the
use of local models everywhere.

Here, we make brief comments about future efforts related to making our methodology more efficient and for
extending it beyond the two-dimensional, time-independent setting.

A step in the mesh refinement process, as illustrated in the left plot of Fig. 2, is the construction of a string of small
isotropic elements that contains the curve across which the solution is discontinuous. Ultimately, we refine these
elements so that their linear size is of O(h4). Then, if the domain and discontinuity curve have linear dimension ≈ L
and the non-refined grid is of size h ≈ L/N for some positive integer N , the number of tiny elements would grow to
be of O(1/N 4). Such growth is prohibitive with respect to memory and compute costs. A possible way to mitigate this
situation is to not wait until the refinement of the elements containing the discontinuity is completed to combine the
tiny isotropic elements into long thing elements as illustrated in the right plot of Fig. 2. Instead that combination step
is effected after several steps, after which one could just refine the length and width of the quadrilaterals themselves.

The use of DG methods in the elements containing the discontinuity is a major contributor to the overheads incurred
in the number of degrees of freedom and in the number of nonzero stiffness matrix entries. Of course, for small grid
sizes this may not matter much because the number of such elements would be small compared to the total number of
elements. On the other hand, using CG methods everywhere would greatly reduce the overhead because then, e.g., the
total number of degrees of freedom would be the same as the total number of nodes in the grid. CG discretizations,
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even in elements containing the discontinuity curve, would incur greater errors, but the O(h2) convergence rates
would be preserved.

Extending our methodology to three-dimensional problems featuring solutions that are discontinuous across
surfaces is conceptually straightforward, but does raise serious implementation difficulties. It is true that the growth
in the additional degrees of freedom is still linear in 1/h because the growth in the number of nodes is of O(1/h3)

in unrefined regions and is of O(1/h2) for the thin flat elements in the vicinity of the discontinuity. However, the
development of quadrature rules in three dimension analogous to those discussed in Section 4 for two dimensions is
a daunting task. Instead, one would surely want to use localized kernels that are smooth in Rn but vanish outside of
balls of radius δ so that quadrature rules on whole elements can be used instead of the cumbersome rules for regions
defined by the intersection of a ball with a tetrahedron or hexahedron.

Extension of our methodology to problems for which discontinuities in the solution evolve in time also poses
implementation difficulties. For one thing, our abruptly refined meshes would have to also evolve in time so that the
thin elements follow the discontinuity. Fortunately, one would not have to start from scratch at each time step, but
instead locally adjust the mesh from the previous time step.

The models as well the time-independent case investigated in the paper provide a rather simple setting within
computational mechanics and in particular, pose little difficulty with regard to adaptive mesh refinement. However,
this would not be the case for more complex constitutive models involving, e.g., model transfer such as determining
state variables at newly-created material evaluation points. This is another interesting direction for future work.
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