
AIAA-2003-2008

Initial Application and Evaluation of a Promising New Sampling Method for
Response Surface Generation: Centroidal Voronoi Tessellation*
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ABSTRACT

A recently developed Centroidal Voronoi Tessellation
(CVT) sampling method is investigated here to assess its
suitability for use in response surface generation. CVT is
an unstructured sampling method that can generate
nearly uniform point spacing over arbitrarily shaped M-
dimensional parameter spaces. For rectangular
parameter spaces (hypercubes), CVT appears to extend
to higher dimensions more effectively and inexpensively
than “Distributed” and “Improved Distributed” Latin
Hypercube Monte Carlo methods, and CVT does not
appear to suffer from spurious correlation effects in
higher dimensions and at high sampling densities as
quasi-Monte-Carlo methods such as Halton and Sobol
sequences typically do. CVT is described briefly in this
paper and its impact on response surface accuracy in a 2-
D test problem is compared to the accuracy yielded by
Latin Hypercube Sampling (LHS) and a deterministic
structured-uniform sampling method. To accommodate
the different point patterns over the parameter space
given by the different sampling methods, Moving Least
Squares (MLS) for interpolation of arbitrarily located
data points is used. It is found that CVT performs better
than LHS in 11 of 12 test cases investigated here, and as
often as not performs better than the structured sampling
method with its deterministically uniform point
placement over the 2-D parameter space.

1.  Introduction

It is often beneficial in statistical sampling and
response surface generation to sample “uniformly” over
a parameter space.

Such uniformity, while conceptually simple and
intuitive on a qualitative level, is on a quantitative level
somewhat complicated to describe and quantify
mathematically. As elaborated in [7], quantitative
aspects of uniformity involve: 1) the equality with which
points are spaced relative to one another (are they all
nominally the same distance from their nearest
neighbors?); 2) uniformity of point density over the
entire domain of the parameter space (i.e., uniform
“coverage” of the whole domain by the set of points);
and 3) isotropy or lack thereof in the coverage pattern.
Each of these aspects of uniformity can be quantified by
one or more mathematical measures considered in [7].
Here we will not directly invoke these measures, but we
mention them to indicate a quantitative underpinning to
the notion of uniformity. Rather, for the 2-D examples in
this paper we invoke our experience that the visual-
intuitive sense of uniformity obtained by viewing a
distribution of samples in a square (2-D hypercube)
correlates very strongly with the quantitative quality
measures mentioned above. Thus, in 2-D the eye is an
excellent integrator of the different aspects of uniformity
mentioned above, and a good discriminator of uniformity
or lack thereof (or at least in judging whether one
particular layout of sample points is more “uniform” than
another).

Much effort has been applied in the literature to the
problem of achieving uniform placement of N samples
over M-dimensional hypercubes, where M and N are
both arbitrary. It is well recognized that Simple-Random
sampling (SRS) Monte Carlo does not do a particularly
good job of uniformly spreading out the sample points.
The popular Latin Hypercube Sampling (LHS) method
generally does a much better job of uniformly spreading
out the points. This is due to the greater sampling
regularity over each individual parameter dimension
before the individually generated parameter values are
randomly combined into parameter sets which define the
coordinates of the sampling points ([4]). Recent efforts to
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modify LHS to get an even more uniform distribution of
points over the paramter space have included Distributed
Hypercube Sampling (DHS, [17]) and Improved
Distributed Hypercube Sampling (IHS, [2]).

DHS improves on the uniformity of an initial LHS
distribution by enforcing sampling uniformity over two
dimensions at a time instead of just one as in LHS.
Parameter pairings are shuffled, in turn for each
parameter pair in the hypercube, to increase the overall
uniformity over the hypercube as indicated by the
particular figure of merit employed in [17]. Though the
quality metric employed can be a misleading indicator of
volumetric sampling uniformity, the method did
substantially improve uniformity of 100 samples on a 16-
D hypercube. Because the number of pairs to consider
quickly increases with the dimensionality of the
hypercube, the swapping and quality-evaluation
operations can become computationally expensive in
high dimensions. However, it was also found that the
potential for improvement is constrained more and more
as each next parameter pair is considered, so most of the
improvement occurs with manipulation of the early pairs
anyway.

An improvement to DHS was made in [2]. IHS
initially conceived of the hypercube volume as a whole
in trying to manipulate point locations to achieve a
uniform point distribution over the parameter space. For
a given number N of sample points and dimensionality M
of the hypercube, each point’s “equal share” of the
hypervolume could be approximated as a hypersphere,
and from this an approximate optimal point-to-point
distance (hypersphere diameter) could be calculated. A
global repositioning scheme would then perturb initial
point locations to simultaneously drive all point-to-point
distances up or down toward the target optimal value.
However, it was found that the operation count for the
procedure grew very quickly with N and M, and that “the
search space becomes unsearchably large even for small
bin numbers [N] and modest dimensionality [M].” A
fallback to application of the scheme to hypercube
subspaces of affordably reduced dimension was
implemented with good success in achieving better
uniformity of 100 sample points in a 7-D hypercube than
either SRS or LHS (though again, the measure of
uniformity used was potentially misleading).
Extrapolative comparisons against DHS results
suggested that IHS was indeed an improvement on DHS.

A number of potential whole-hypercube-volume
approaches are reviewed and some new ones are
presented in [8], along with some quantitative metrics
related to visual/sensory point uniformity in 2-D. Many
of these appear to work very well in 2-D, but it is said that
some of the methods may not be applicable or may not

perform well in more than two dimensions, and some
clearly will not scale up to high dimensions affordably.
Others are seemingly more promising for high
dimensions, but have not yet been investigated enough.

Recently, an efficient whole-domain approach,
“Centroidal Voronoi Tessellation” (CVT), has been
developed ([12]) for implementing the principles of
Centroidal Voronoi diagrams ([5],[18]) which subdivide
arbitrarily shaped domains in arbitary-dimensional space
into arbitrary numbers of nearly uniform subvolumes.
The CVT methodology and several applications are
discussed in [5]. A recent application at Sandia National
Laboratories involved uniform unstructured node
placement throughout irregular 2-D and 3-D geometries
([3]) for “meshless” or “particle” type computational
mechanics methods (e.g., [1]). However, the CVT
methodology is easily and inexpensively extensible to
higher dimensions, especially for hypercube volumes.
Since this is the case, it is natural to ask whether CVT can
be applied for: A) statistical sampling over arbitrary-
dimensional spaces of random variables; and B) whether
it can serve as a method for generating favorable point
distributions for more accurate response surfaces than
other unstructured sampling schemes like LHS can
produce.

Improved response surface generation can
significantly impact many areas of high-dimensional
modeling approximation found in optimization and
uncertainty quantification. In this paper we take a first
step toward assessing the potential of CVT for improved
response-surface generation (item B above), and also
mention some preliminary findings regarding statistical
sampling performance (item A above) which are
documented elsewhere ([23]).

Finally in this introduction we mention the so-called
“Quasi- Monte Carlo” (QMC) quasi- or sub- random
low-discrepency sequence methods (see e.g. [19]) that
can often achieve reasonably uniform sample placement
in hypercubes. The strength of these sequence methods
(Halton, Hammersley, Sobol, etc.), is that they can
produce fairly uniform point distributions even though
samples are added one at a time to the parameter space.
The one-at-a-time incremental sampling of QMC (and
SRS) enables these methods to have better efficiency
prospects than CVT and LHS-type methods in the area of
error estimation and control. Not only this, the results
achieved are often quite good. For resolving the mean
and standard deviation of response measures,
Hammersley sequences were found in [11] to converge
to within 1% of exact results 3 to 100 faster times faster
than LHS over a large range of test problems. For
resolving response probabilities, Halton and
-2-
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Hammersley were found in [20] to perform roughly the
same as LHS on balance over several test problems.

However, when the hyperspace dimension becomes
moderate to large and/or the sampling density becomes
high, some (perhaps all?) sequences suffer from spurious
correlation of the samples. This is shown for Halton
sequences in 16-D (ref. [17]) and 40-D (ref. [20]).
Sometimes a modification can be found to suppress or
delay the onset of spurious correlation, as a fix from the
literature implemented in [20] shows for Halton
sequences.

In comparison, initial investigation in [7] indicates
that for 2-D, 7-D, and 20-D test cases examined so far,
CVT provides greater sampling uniformity than Halton,
Hammersley, Sobol, SRS, LHS, DHS, and IHS
according to a meaningful subset of nonflawed
quantitative quality measures. Additionally, no
degradation of sampling uniformity is detected at higher
dimensions (i.e., for the 20-D case).

Lastly, it is believed that correlation structure for
correlated variables can be introduced into CVT
sampling by the rank correlation procedure [10]
employed in [9] for SRS and LHS and in [11] for
Hammersley QMC.

2.  A CVT Sampling Method for Generating
Nearly Uniform Point Placement in a Hypercube

2.1 Introduction to CVT and an Implementation
using Probabilistic Construction Methods

Given a set of N points {zi} (i=1,...,N) in an M-
dimensional hypercube, the Voronoi region or Voronoi
cell Vj (j=1,...,N) corresponding to zj is defined to be all
points in the hypercube that are closer to zj than to any of
the other zi’s. The set {Vi} (i=1,...,N) is called a Voronoi
tessellation or Voronoi diagram of the hypercube, the set
{zi} (i=1,...,N) being the generating points or generators.

For each Voronoi region Vi, we can define its center
of mass or mass centroid by

for i=1,...,N.

A centroidal Voronoi tessellation (CVT) is a special
Voronoi tessellation with the property that

zi = for i = 1,...,N, (1)

i.e., each generating point zi is itself the mass centroid of
the corresponding Voronoi region Vi. General Voronoi
tessellations do not satisfy the CVT property (1).

The special nature of centroidal Voronoi tesselations
(CVTs) require their construction, i.e., given a hypercube
in M dimensions and a positive integer N, determine N
points zi (i=1,...,N), such that (1) is satisfied. In the past,
CVT’s were constructed either by deterministic methods
typified by Lloyd’s iteration [15], or probabilistic
methods typified by MacQueen’s random algorithm [16].
It is important to note with regard to the latter that
although CVTs are deterministic they can be converged
to through probabilistic sampling methods like
MacQueen’s method.

Although attractive due to its simplicity, the
convergence of MacQueen’s method is extremely slow.
Therefore, the study of various accelerations of
MacQueen’s method, as well as its generalization and
parallelization, are active areas of research. In [12], new
superior probabilistic CVT construction algorithms were
introduced, implemented, and tested. These algorithms
can be viewed as generalizations of both the simple
MacQueen random and Lloyd deterministic algorithms.
The key to the efficiency of the new methods is that many
points are sampled before each averaging step is
performed. It is very important to point out that the
probabilistic algorithms do not require, at any stage, the
explicit construction of Voronoi diagrams nor the
determination of the centers of mass of the Voronoi cells.
Moreover, the new algorithms are highly amenable to
fully scalable parallelization, as was demonstrated in
[12]. The methods presented in [12] constitute the most
efficient methodology for constructing CVT’s and, as a
result, in many applications they render the CVT concept
superior or at least competitive with other approaches.

The CVT concept and the algorithms just mentioned
for their construction can be generalized in many ways
(see [5] for details). For example, instead of the
hypercube, general regions in M-dimensional space can
be treated, and points can be distributed non-uniformly
according to a prescribed density function as will be
shown later.

2.2 Examples and Discussion of SRS, LHS, CVT,
Halton, & Hammersley Point Placements in 2-D

Figure 1 compares three SRS and three correspond-
ing CVT pointsets for 100 samples in 2D unit hypercube.
The three SRS pointsets were generated with the Monte
Carlo sampling software [9] for different initial seeds
(Seed1 = 123456789, Seed2 = 192837465, Seed3 =
987654321) and uncorrelated Uniform marginal density
functions for the two input dimensions P1 and P2. The
three corresponding CVT pointsets were generated by
using the three SRS sets as initial conditions (point loca-
tions) to begin the CVT iterations. The three CVT sets
are all relatively similar –visually and quantitatively (see
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[7] for quantitative comparisons)– even though starting
from three very different initial conditions given by the
noticably different SRS pointsets. In all cases the CVT
set is much more uniform (visually and quantitatively)
than its associated SRS set.

Figure 2 shows an analogous comparison between
three LHS sets and three corresponding CVT sets. The
LRS pointsets were generated with the software [9] for
the same three initial seeds (Seed1, Seed2, Seed3). The
corresponding CVT pointsets were generated from LHS
initial conditions. The three CVT sets are much more
uniform (visually and quantitatively) than the associated
LHS sets. The LHS sets do not appear to be significantly
more uniform that the SRS sets in Figure 1, but
quantitatively they are somewhat more uniform. The
CVT sets from the different LHS and the SRS initial
conditions are of relatively similar uniformity.

Figures 3 and 4 respectively show CVT sets
corresponding to Halton and Hammersley initial
pointsets. The Halton pointset is noticably and
quantitatively more uniform than any of the LHS sets, the
Hammersley set is noticably and quantitatively more
uniform than the Halton set, and the CVT sets are
noticably and quantitatively more uniform than the
Hammersley set.

Hence, the figures show that CVT places samples
much more uniformly in the 2D hypercube than SRS and
LHS, and even more uniformly than the low-discrepancy
Halton and Hammersley QMC sequences. This is true
regardless of the initial conditions (sample sets) that
CVT starts from. The performance of these various sam-
plesets for integration and statistical sampling of func-
tion response is discussed in [23]. Preliminary indica-
tions are that CVT performs best overall.

Figure 5 compares three SRS and three
corresponding CVT sets for 100 samples Normally
distributed over a 2D unit hypercube. The SRS pointsets
were generated with the software [9] from the
aforementioned initial seeds and a prescribed 2-D joint-
Normal probability density function of uncorrelated
Normal marginal distributions in P1 and P2 (means=0.5,
standard deviations =1/6). Figure 6 shows analogous
LHS pointsets with their coresponding CVT sets. It is
immediately clear in both figures that CVT gives the
pointsets with the least clustering and most regular
weighted coverage of the space according to the
prescribed JPDF, independent of the starting initial
conditions (pointset). LHS appears to give the next best
regularity in weighted coverage, with SRS looking the
least regular. The performance of the samplesets in these
figures for resolving several different statistical metrics
of function response (mean, variance, response

probability) is discussed in [23]. Preliminary indications
are that CVT does not perform as well as SRS or LHS.

3.  Examination of CVT as a Point-Placement
Technique for Response Surface Generation

The properties of CVT would seem to make it a
good candidate for uniformly sampling a function over
some (hypercubic or irregular) parameter space for the
purpose of building a response surface approximation to
that function over the space. Here we put this hypothesis
to an initial test.

3.1 Importance of Seeking a Uniform Sampling
Distribution over a Response-Surface Parameter
Space, and the Suitability of CVT for this

In general, for reasonably arbitrary functions for
which no information is known a priori regarding the
functional variation over the parameter space (therefore,
adaptive point-spacing over the domain cannot be
intelligently applied), it stands to reason that uniformity
of the (at least initial set of) sampling points over the
space is desirable. Thus, some regions of the space will
not go unsampled or under-sampled relative to other
more densely sampled regions where the value of each
sample would typically be marginalized somewhat.
Especially for smooth continuous functions over the
space, such marginalization increases with redundancy
in the sampling, which accompanies any point
“clustering” or “clumping” introduced by the sampling
method.

Examples of point clustering and clumping, with
corresponding relative under-sampling in other regions,
is shown in Figures 1-4 to be most pronounced for SRS,
then LHS, then Halton, then Hammersley, and finally
CVT. Certainly, CVT yields the most uniform placement
of samples. In fact, in all CVT pointsets there are no
instances of discernable variation in sampling density
over the parameter space.

3.2 Interpolation for Unstructured Sampling of a
Parameter Space, and the Moving Least Squares
Method

Given a set of sampling points over a parameter
space, the quality of the response surface approximation
(RSA) also depends on the particular method used to fit
and interpolate the data.

Fitting and interpolating data from unstructured
sampling in even a simple hypercubic arbitrary-
dimensional parameter space is a complex topic ([6]).
Three popular scalable fitting/interpolation methods that
the authors have some initial experience with are Kriging
-4-
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([22] and [14]); Moving Least Squares ([14]); and Radial
Basis Function methods ([13]). Though our experience is
very limited, of these, MLS appears to present a good
balance of response surface accuracy, smoothness,
robustness, and ease of use. Therefore, we use MLS in
this paper to generate response surfaces from our 2-D
data sets. The particular implementation of MLS we use
is described in [14]. Here we use quadratic polynomial
interpolant basis functions, which requires at least
(M+1)(M+2)/2 (i.e. 6 for 2-D) sample points within a
given evaluation point’s local radius of influence.

3.3 Response-Surface Sampling Efficiency in 2-D

2-D Test Function and Metric of Fitting Quality

Figure 7 shows an analytic multimodal surface
defined by the equation

on the domain

where , .

Note that this function is not separable in the two input
parameters p1 and p2 and therefore does not give unfair
advantage to rectangular structured sampling schemes
which might align samples along the parameter
directions.

This is the “target” or “exact” function to be
approximated by MLS response surfaces based on
various pointsets as described in the following. A simple
measure of quality of approximation over the parameter
space can be calculated as:

approx. spatially avgd. |error| =

where exact and predicted values in the summation come
from respective evaluation of the exact function and the
particular response surface approximation at 441 equally
spaced points on a 21x21 square grid overlaid on the
domain. This measure is an expedient approximation to
the global average integrated absolute error over the
domain, which would require a much more involved
calculation. The value of the current metric can depend
strongly on the grid used if it underresolves the
functions. However, as Figure 7 shows, a 21x21 plotting
grid is sufficiently dense to achieve adequate
representation of the target function.

Sampling Placement with CVT, LHS, and PLS

Figure 8 shows pointsets of 9, 13, 25, and 41
samples deterministically spaced in a 2-D hypercube
according to a particular notion of maximum or ideal
uniformity. These will serve as a benchmark against
which the sampling performance of CVT and LHS point
sets will be compared for accurate response surface
approximation (RSA) generation.

The point placements in Figure 8 come from a
structured-sampling “incremental experimental design”
scheme called Progressive Lattice Sampling (PLS, [21]).
PLS prescribes fixed numbers and locations of sample
points for various levels of coverage of the parameter
space. The number of points at each PLS level in the
design is fixed by the particular level L and the
dimension M of the space. The required number of
sample points quickly grows with increasing PLS Level
and/or space dimension. Thus, it is desirable to seek an
unstructured sampling method such as CVT that has full
freedom in the number of sampling points that can be
applied, but which will still effectively maximize
uniformity of coverage over the parameter space. In 2-D
we can benchmark the effective sampling uniformity of
CVT against the “asymptotic” structured uniformity of
the 2-D PLS sets, to see how well CVT does against a
standard of “ideal” uniformity. Comparisons will also be
made to LHS, which is perhaps the most popular general
unstructured sampling method for response surface
generation in optimization and uncertainty analysis.

Figures 9 - 12 show three LHS and three
corresponding CVT pointsets of 9, 13, 25, and 41
samples. It is immediately apparent that the point
arrangements of the CVT sets are in many cases quite
similar to the structured uniform arrangements of the
PLS sets for the same number of samples. A systematic
difference in point placement does exist, however, due to
the fact that the PLS samples extend to and lie on the
boundaries of the 2-D domain, whereas the CVT samples
exist within a concentric square subdomain of the full 2-
D hypercube.

Regarding this difference, it was considered in [21]
that it may indeed be preferable in the general case to
place the PLS samples in a smaller concentric subdomain
of the full hypercube1 in order to associate the sample
points with more centrally surrounding hypercube
subvolumes of more nearly equal size. This principle
arises from non-adaptive numerical quadrature where, in

response(p1,p2)= 0.8r 0.35 2.4π r

2
------- 

 sin+ 1.5 1.3θ( )sin[ ]

0 p1 p2 1≤,≤

r p1( )2
p2( )2

+= θ p2
p1
------ 

 atan=

exacti predictedi–
i 1=

441

∑
441

--------------------------------------------------------

1 This was not done, however, because the optimal size of a
concentric sub-hypercube was not obvious, and would pre-
sumably change for each new PLS level as the total number
of samples changes.
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the general case when integrating an unknown function,
the expectation is that optimal quadrature accuracy will
coincide with a sampling of the parameter space that
allows the domain to be subdivided so that the quadrature
points lie at the centers of equal-volume compactly
surrounding integration regions. Thus, the principle that
governs optimal point coverage in quadrature is a direct
complement to the Centroidal Voronoi diagraming
principle that governs subdivision of the space into equal
Centroidal Voronoi regions or subvolumes and locates
CVT points at the centers of those regions. Therefore,
there is precedent to expect that the CVT sampling in
Figures 9 - 12 may outperform the corresponding PLS
samplings in Figure 8. In fact, it is conjectured (though
this has not yet been checked) that, by most meaningful
quantitative measures of uniformity over the hypercube,
the CVT sets will actually turn out to be more uniform
than the initial ideals of uniformity in Figure 8.

MLS Response Surface Errors using PLS, CVT, LHS

Tables 1 - 4 list the RSA fitting-error indicators for
MLS interpolation of the various pointsets. (The MLS
radius of influence was the same for all 9-sample sets, all
13-sample sets, etc., but did change as the sample size
changed. The radii of influence were optimized with a 1-
D parameter study to get the lowest RSA errors with the
PLS pointsets.)

Table 1. Response Surface Spatially Averaged
Absolute Error (fit to 9 data points)

LHS CVT PLS

avg. |error| avg. |error| avg. |error|

R
E

A
LI

Z
AT

IO
N 1 0.1010 0.1152 0.1544

2 0.2019 0.1155 “

3 0.1204 0.1158 “

mean 0.14110 0.1150 0.1544

std. dev. 3x10-3 5x10-7 0

Table 2. Response Surface Spatially Averaged
Absolute Error (fit to 13 data points)

LHS CVT PLS

avg. |error| avg. |error| avg. |error|

R
E

A
LI

Z
AT

IO
N 1 0.1133 0.0646 0.0587

2 0.0856 0.0636 “

3 0.0928 0.0629 “

mean 0.09722 0.06371 0.05867

std. dev. 2x10-4 7x10-7 0

Table 3. Response Surface Spatially Averaged
Absolute Error (fit to 25 data points)

LHS CVT PLS

avg. |error| avg. |error| avg. |error|

R
E

A
LI

Z
AT

IO
N 1 0.0439 0.0246 0.0219

2 0.0404 0.0264 “

3 0.0344 0.0258 “

mean 0.03957 0.02560 0.02192

std. dev. 2x10-5 8x10-7 0

Table 4. Response Surface Spatially Averaged
Absolute Error (fit to 41 data points)

LHS CVT PLS

avg. |error| avg. |error| avg. |error|

R
E

A
LI

Z
AT

IO
N 1 0.0192 0.0134 0.0191

2 0.0215 0.0130 “

3 0.0254 0.0133 “

mean 0.02203 0.01324 0.01910

std. dev. 1x10-5 4x10-8 0
-6-
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3.4 Discussion of Response Surface Results

At every population level (9, 13, 25, 41 samples),
CVT is found to perform significantly better than LHS
on average over the three realizations (seeds), and in fact
performs significantly better than LHS in 11 of the 12
individual cases. Furthermore, the variability of CVT
results (standard deviation of the estimates) is
considerably smaller than for LHS. Thus, here CVT
shows both more precision and accuracy than LHS.

Compared to PLS, at 9 and 41 samples CVT yields
significantly better results on all three trials than the
deterministically placed uniform PLS set does. This may
be because, though more uniform than CVT, PLS goes to
the boundaries of the parameter space (see footnote 1).
The strong showing of CVT versus PLS is especially
encouraging given that the MLS influence radii used
were those that minimize PLS fitting error.

4.  Concluding Remarks

CVT appears to be a promising unstructured
sampling method for response surface generation and
perhaps other sampling purposes as well. Preliminary
investigation with the 2-D test function here revealed that
the uniform hypercube sampling properties of CVT
yielded better MLS response surface results than the
popular LHS method, and results about as good as the
idealized deterministically uniform PLS structured
sampling method.

However, much more work needs to be done before
CVT can be concluded to be typically better than LHS
for general RSA applications in high-dimensional
modeling approximation settings (such as in uncertainty
analysis and optimization).
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Figure 1: 100-point sample sets on 2-D unit hypercube for: A) Left Column– uniform JPDF SRS
Monte Carlo with three different initial seeds; and B) Right Column– corresponding
uniform JPDF CVT sets starting from SRS sets as initial conditions.

SRS2 pointset (from seed 2) CVT2-SRS2 pointset (from SRS2)

SRS3 pointset (from seed 3) CVT3-SRS3 pointset (from SRS3)

SRS1 pointset (from seed 1) CVT1-SRS1 pointset (from SRS1)
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Figure 2: 100-point sample sets on 2-D unit hypercube for: A) Left Column– uniform JPDF LHS
Monte Carlo with three different initial seeds; and B) Right Column– corresponding
uniform JPDF CVT sets starting from LHS sets as initial conditions.

LHS2 pointset (from seed 2) CVT-LHS2 pointset (from LHS2)

LHS3 pointset (from seed 3) CVT-LHS3 pointset (from LHS3)

LHS1 pointset (from seed 1) CVT-LHS1 pointset (from LHS1)
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Figure 3: 100-point sample sets on 2-D unit hypercube for:
A) Left plot– Halton QMC sequence;
B) Right plot– corresponding CVT set starting from the Halton set as initial
conditions.

Figure 4: 100-point sample sets on 2-D unit hypercube for:
A) Left plot– Hammersley QMC sequence;
B) Right plot– corresponding CVT set starting from the Hammersley set as
initial conditions.
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Figure 5: 100-point sample sets on 2-D unit ypercube for: A) Left Column– Normal JPDF SRS
Monte Carlo with three different initial seeds; and B) Right Column– corresponding
Normal JPDF CVT sets starting from SRS sets as initial conditions.

SRSn2 pointset (from seed 2) CVTn2-SRSn2 pointset, from SRSn2

SRSn3 pointset (from seed 3) CVTn3-SRSn3 pointset, from SRSn3

SRSn1 pointset (from seed 1) CVTn1-SRSn1 pointset, from SRSn1
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LHSn2 pointset (from seed 2) CVTn2-LHSn2 pointset, from LHSn2

LHSn3 pointset (from seed 3) CVTn3-LHSn3 pointset, from LHSn3

LHSn1 pointset (from seed 1) CVTn1-LHSn1 pointset, from LHSn1

Figure 6: 100-point sample sets on 2-D unit ypercube for: A) Left Column– Normal JPDF LHS
Monte Carlo with three different initial seeds; and B) Right Column– corresponding
Normal JPDF CVT sets starting from LHS sets as initial conditions.
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Figure 7: 2-D model function (“exact function”) for response surface
fitting tests.

Figure 8: 2-D Progressive Lattice Sampling (PLS) Incremental Experimental Design.

LEVEL 3, 4  (+ 4 = 9) LEVEL 5  (+ 4 = 13)

LEVEL 6  (+ 12 = 25) LEVEL 7  (+ 16 = 41)

9-sample 2-D PLS design 13-sample 2-D PLS design

41-sample 2-D PLS design25-sample 2-D PLS design
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Figure 9: 9-point sample sets on 2-D unit Hcube for: A) Top Row– LHS Monte Carlo with
three different initial seeds; and B) Bottom Row– corresponding CVT sets
starting from LHS sets.

CVT-LHS9-1

LHS9-seed2 LHS9-seed3

CVT-LHS9-2 CVT-LHS9-3

LHS13-seed1

Figure 10: 13-point sample sets on 2-D unit Hcube for: A) Top Row– LHS Monte Carlo
with three different initial seeds; and B) Bottom Row– corresponding CVT sets
starting from LHS sets.

CVT-LHS13-1

LHS13-seed2 LHS13-seed3

CVT-LHS13-2 CVT-LHS13-3
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Figure 11: 25-point sample sets on 2-D unit Hcube for: A) Top Row– LHS Monte Carlo
with three different initial seeds; and B) Bottom Row– corresponding CVT sets
starting from LHS sets.

CVT-LHS25-1

LHS25-seed2 LHS25-seed3

CVT-LHS25-2 CVT-LHS25-3

LHS41-seed1

Figure 12: 41-point sample sets on 2-D unit Hcube for: A) Top Row– LHS Monte Carlo
with three different initial seeds; and B) Bottom Row– corresponding CVT sets
starting from LHS sets.

CVT-LHS41-1

LHS41-seed2 LHS41-seed3

CVT-LHS41-2 CVT-LHS41-3
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