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INTRO: Need to Estimate Multidimensional Integrals

My introduction to sparse grids began with the classic example based
on the nested points of the 1D exponential Clenshaw-Curtis rule (CCE),
using 1, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025 points.

I could see multidimensional quadrature errors decrease for smooth
integrands.

I tested the exactness of the rule and saw that level ` could integrate
polynomials of total degree 2` + 1 exactly.

Novak & Ritter showed that to get this exactness, it was sufficient that
the 1D rules have exactness 1, 3, 5, 7, 9, 11, 13, 15...

The 1D CCE rules are exponential; the exactness requirement is linear.

Mustn’t this have some disadvantage?

If so, is there a remedy?
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CC: Sparse Grids in 1D

Once we have specified a index list of 1D quadrature rules or “factors”,
Smolyak allows us to generate a sparse grid in any dimension.

If we set up the Smolyak machinery, and ask it to generate a “sparse
grid” in 1D, then we get back the original 1D quadrature rules.

It is common to expect a sparse grid of level ` to have an exactness that
grows linearly with the level:

p = 2` + 1 (Novak & Ritter)

Now suppose we generate a 1D Clenshaw-Curtis “sparse grid”...

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n = points 1 3 5 9 17 33 65 129 257 513 1025 ...
p = exactness 1 3 5 9 17 33 65 129 257 513 1025 ...
p(necessary) 1 3 5 7 9 11 13 15 17 19 21 ...

In 1D, order and exactness grow exponentially:

n =2` + 1, 1 ≤ `

p =2` + 1 = n

6 / 25



CC: Nesting

Paradoxically, we use exponential growth in an attempt to reduce
point counts (in high dimensions).

The points of a sparse grid are the logical sum of the points of a
collection of product grids that satisfy a constraint on their definition.

If all these product rules are defined using a 1D nested family, then when
we gather together the logical sum of the product grids, the total number
of points can be greatly reduced.

Compare in 2D the nested CCE versus the non-nested GLE
(Gauss-Legendre exponential) sparse grids.

` = level 0 1 2 3 4 5 6 7 8 9 ...
n (CCE) 1 5 13 29 65 145 321 705 1537 3329 ...
n (GLE) 1 5 22 75 224 613 1578 3887 9268 21561 ...
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CC: Nested CCE family / Nonnested GLE family

The CCE family is completely nested;

in the GLE family, only the 0.0 value is repeated.

The benefits of nesting become critical as dimension increases.
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CC: Nesting in 2D Sparse Grids

Nesting keeps the Clenshaw Curtis sparse grid efficient (65 points). The
Gauss-Legendre sparse grid has 224 distinct points.
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CC: Keep Nesting, Incomplete Chebyshev?

A nested family of Chebyshev rules seems to require jumping twice as
far each time we increase the level. We can explore a modification we
might call the Clenshaw Curtis Incomplete (CCI) family, which uses the
Chebyshev family as a guide, but only adds two points with each level
increase.

level order commment
0 1 CCE rule 0
1 3 CCE rule 1
2 5 CCE rule 2
3 7 incomplete CCE rule 3
4 9 CCE rule 3
5 11 incomplete CCE rule 4
6 13 incomplete CCE rule 4
7 15 incomplete CCE rule 4
8 17 CCE rule 4

For incomplete rules, we have to (pre)-compute the weights from basic
principles; we need to monitor possible negative weights.
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CC: Can We Abandon Nesting?

An alternative (CCL) to the exponentially growing version of the CC
rule would be to use a Clenshaw-Curtis family of odd orders and linear
growth, n = 1, 3, 5, 7, 9, ..., which will exactly meet the Novak & Ritter
exactness requirement.

This family is not nested. So our tradeoff is that our sparse grids will be
combining product rules of lower order, but with more distinct points.

What is the effect in 2D?

` = level 0 1 2 3 4 5 6 7 8 9 ...
n (CCE) 1 5 13 29 65 145 321 705 1537 3329 ...
n (CCL) 1 5 13 29 57 105 177 281 425 611 ...

The CCL rule doesn’t show an advantage until the underlying factors
begin to differ, after which we see a big reduction.

Does this 2D result carry over to higher dimensions?

11 / 25



CC: Keep Nesting, Slow Exponentiation

Yet another alternative (CCS) retains the exponentially growing factor
family, but uses the lowest such rule satisfying the exactness requirement.

In other words, we start with the CCE factor family
n = 1, 3, 5, 9, 17, 33..., but repeat rules where possible.

Compare the CCE, CCL and CCS 1D factor families:

` = level 0 1 2 3 4 5 6 7 8 9 ...
p (required) 1 3 5 7 9 11 13 15 17 19 ...
n (CCE) 1 3 5 9 17 33 65 125 257 513 ...
n (CCL) 1 3 5 7 9 11 13 15 17 19 ...
n (CCS) 1 3 5 9 9 17 17 17 17 33 ...

The CCS factor family grows faster than CCL, and does so in exponential
“jumps” but makes those jumps far less often than the CCE family, and
inherits the advantages of nestedness.
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CC: Compare CCE, CCL, CCS

If we build a 2D sparse grid from the CCS rule, what happens?

Does the 2D sparse grid inherit the “stutter” of the 1D factors?

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (CCE) 1 5 13 29 65 145 321 705 1537 3329 ...
n (CCL) 1 5 13 29 57 105 177 281 425 611 ...
n (CCS) 1 5 13 29 49 81 129 161 225 257 ...

and for 6D:

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (CCE) 1 13 85 389 1,457 4,865 15,121 44,689 127,105 350,657 ...
n (CCL) 1 13 85 389 1,433 4,533 12,961 33,817 82,153 188,039 ...
n (CCS) 1 13 85 389 1,409 4,289 11,473 27,697 61,345 126,401 ...

And for 10D:

` = level 0 1 2 3 4 5 6 7 ...

n (CCE) 1 21 221 1,581 8,801 41,265 171,425 652,065 ...
n (CCL) 1 21 221 1,581 8,761 40,425 162,385 584,665 ...
n (CCS) 1 21 221 1,581 8,721 39,665 155,105 536,705 ...

As d increases, the CCL and CCS advantages are delayed and decreased.
(In high dimensions, very low order rules predominate.)
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GL: GLE Factor Family

Try a Gauss-Legendre Exponential family (GLE), orders 1, 3, 7, 15, ...

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n = points 1 3 7 15 31 63 127 255 511 1023 2047 ...
p = exactness 1 5 13 29 61 125 253 509 1021 2045 4093 ...
p(necessary) 1 3 5 7 9 11 13 15 17 19 21 ...

GLE is an open family, CCE is closed.

The GLE order growth is exponential, and double that of CCE.

n(GLE)(`) =2`+1 − 1

p(GLE)(`) =2 · (2`+1 − 1)− 1 = 2 · n(GLE)(`)− 1

Exactness is 4 times that of CCE, fantastically above Novak & Ritter.
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GL: GLL Factor Family

The GL family is unsuitable for nesting; exponential growth is
misguided.

Linear growth (GLL) rule uses lowest order rule satisfying Novak & Ritter.
GLL rules have orders 1, 2, 3, 4, ... because 1D rules are more exact.

Now that we got the growth rate under control, consider a tiny bit of
nesting, defining the GLO rule, to uses the lowest odd order rule
satisfying Novak & Ritter.

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n(GLE) 1 3 7 15 31 63 127 255 511 1023 2047 ...
p(necessary) 1 3 5 7 9 11 13 15 17 19 21 ...

n(GLL) 1 2 3 4 5 6 7 8 9 10 11 ...
p(GLL) 1 3 5 7 9 11 13 15 17 19 21 ...

n(GLO) 1 3 3 5 5 7 7 9 9 11 11 ...
p(GLO) 1 3 5 9 9 13 13 17 17 21 21 ...

n(GLL)(`) =2` + 1

n(GLO)(`) =2 · b` + 1

2
c+ 1

Will the GLO tradeoff improve the GLL option?
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GL: Point Counts for GLE/GLL/GLO

2D:

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (GLE) 1 5 21 73 221 609 1,573 3,881 9,261 21,553 49,205 ...
n (GLL) 1 5 13 29 53 89 137 201 281 381 501 ...
n (GLO) 1 5 9 17 29 41 65 81 121 141 201 ...

10D:

` = level 0 1 2 3 4 5 6 7 ...

n (GLE) 1 21 261 2,441 18,881 126,925 764,365 4,208,385 21,493,065 ...
n (GLL) 1 21 221 1,581 8,761 40,405 162,025 581,385 1,904,465 ...
n (GLO) 1 21 201 1,201 5,281 19,165 61,285 177,525 474,885 ...

15D:

` = level 0 1 2 3 4 5 6 7 ...

n (GLE) 1 31 541 6,911 71,621 635,687 4,995,357 35,537,007 ...
n (GLL) 1 31 511 5,921 53,921 409,727 2,695,967 15,751,937 ...
n (GLO) 1 31 451 4,151 27,671 145,697 644,937 2,506,137 ...

GLO outperforms GLL rule, and does do by using bigger rules!

This suggests the powerful benefit of multidimensional nesting.
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GP: The Gauss-Patterson Factor Family

Nesting and the doubled exactness of Gaussian rules are two techniques
that have a significant influence on the properties of sparse grids.

This suggests looking at a Gauss-Patterson (GP) factor family.

The GP family begins with the 1 and 3 point GL rules. Thereafter, given
a rule with n points, the next rule fixes those points, and adds n + 1 new
points, enforcing nesting. A Gauss procedure squeezes out the best
accuracy possible, given the constraint that the old points must not be
moved.

The result is a nested family with the same exponential growth as GLE
and somewhat reduced exactness,
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GP: GPE Factor Family

Here is the exactness table for the GPE 1D factor family:

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n = points 1 3 7 15 31 63 127 255 511 1023 2047 ...
p = exactness 1 5 11 23 47 95 191 383 767 1535 3071 ...
p(necessary) 1 3 5 7 9 11 13 15 17 19 21 ...

The number of points is the same as for GLE, while the exactness is
reduced:

n(GPE)(`) =2`+1 − 1

p(GPE)(`) =1.5 · (2`+1 − 1) + 0.5 = 1.5 · n(GPE)(`) + 0.5
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GP: GLE versus GPE

The GLE family is not nested, but the GPE family is, and retains much of
the exactness of Gauss rules.

Here is a quick comparison of GLE and GPE in 2D:

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n (GLE) 1 5 21 73 221 609 1,573 3,881 9,261 21,553 49,205 ...
n (GPE) 1 5 17 49 129 321 769 1,793 4,097 9,217 20,481 ...
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GP: The GSP Version of GPE

Let’s go ahead and define a GPS family which only selects the next 1D
factor when the Novak & Ritter exactness constraint requires it.

Here are sample point counts comparing GPE and GPS for 2D:

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n (GPE) 1 5 17 49 129 321 769 1,793 4,097 9,217 20,481 ...
n (GPS) 1 5 9 17 33 33 65 97 97 161 161 ...

and for 6D:

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (GPE) 1 13 97 545 2,561 10,625 40,193 141,569 4,710,417 14,960,657 ...
n (GPS) 1 13 73 257 737 1,889 4,161 8,481 16,929 30,689 ...

and for 10D:

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (GPE) 1 21 241 2,001 13,441 77,505 397,825 1,862,145 8,085,505 32,978,945 ...
n (GPS) 1 21 201 1,201 5,281 19,105 60,225 169,185 434,145 1,041,185 ...
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CON: Compare the Champions

In summary, we have “improved” versions of CCE, GLE and GPE. How
do they stack up against each other?

2D:

` = level 0 1 2 3 4 5 6 7 8 9 10 ...

n (CCS) 1 5 13 29 49 81 129 161 225 257 385 ...
n (GLO) 1 5 9 17 29 41 65 81 121 141 201 ...
n (GPS) 1 5 9 17 33 33 65 97 97 161 161 ...

10D:

` = level 0 1 2 3 4 5 6 7 8 9 ...

n (CCS) 1 21 221 1,581 8,721 39,665 155,105 536,705 1,677,665 4,810,625 ...
n (GLO) 1 21 201 1,201 5,281 19,165 61,285 177,525 474,885 1,192,425 ...
n (GPS) 1 21 201 1,201 5,281 19,105 60,225 169,185 434,145 1,041,185 ...
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CON: Remarks

The classic Clenshaw-Curtis sparse grid achieves nestedness at the cost
of exponential growth.

In low dimensions and moderate levels, this results in a noticeable and
unneccessary excess number of function evaluations.

Nesting, Gauss-rules, and slow-growth procedures control point
growth, and “buy” you extra levels of sparse grids.

For slow growth procedures on [−1,+1] or (−∞,+∞), with a symmetric
weight function, the Ritter & Novak exactness constraint is your guide.

The Gauss-Patterson (GPS) sparse grid is one example using all the ideas
of nesting, (semi)-Gauss rules, and slow growth.

Software implementations appear in nwspgr (Heiss & Winschel),
smolpack (Petras), and tasmanian (Stoyanov).
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