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Abstract

Sparse grids are constructed as logical sums of product grids. In high dimensions, sparse grids
can be more efficient than product grids, and more rapidly converging than Monte Carlo methods, for
problems involving interpolation, integration or optimization. The standard measurement of efficiency
is the number of abscissas at which the underlying function is to be evaluated. Determining the abscissa
count for a sparse grid is not a straightforward task, particularly because the details vary depending on
the underlying 1D rules used as factors. This article develops a general counting method and formulas
for specific grid types.

1 Introduction

The sparse grid construction of Smolyak [6] produces a quadrature rule for a function of a multidimensional
argument, by constructed a weighted sum of product rules; these product rules are, in turn, formed by the
product of 1D quadrature rules selected from some family.

Common choices for these 1D rules are discussed in [2]. We are free, if we choose, to specify a different
family of rules for each dimension. We may imagine that the family is some general class of quadrature
rules, but it is important, for the Smolyak procedure, that we specify an indexing procedure, that is, a rule
that selects, for each nonnegative index i, a particular quadrature rules Qi from the family. Then, having
specified the indexing procedure, there are several properties of the quadrature sequence that we may wish
to understand as functions of the index i:

• the order (number of points);

• the exactness (exact integration for polynomials up to some degree);

• the nestedness (reuse of points);

When a sparse grid is constructed using the Smolyak procedure, a set of multidimensional product rules
is generated from the 1D rules, and the sparse grid is the logical sum of these rules. Depending on the
underlying 1D rules, it often happens that a given multidimensional abscissa may be generated more than
once, as it is part of several product rules.

As far as the logical sparse grid is concerned, repeated abscissas do not cause any problems. Integrals
can still be approximated correctly, for instance. However, since the number of abscissas is a measure of the
efficiency of the rule, it can be very advantageous to identify repeated abscissas, so that they are replaced
by a single copy. In the case when an integral is to be approximated, the corresponding weights are simply
summed and associated with the single representative.
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In the following discussion, it will be assumed that this reduction of multiple abscissas is to take place
before the count is made. Determining how many such multiple abscissas have been generated can be a
considerable task in the counting process.

2 Terminology

For clarity, we recall some items of terminology here.
A quadrature rule, defined on an interval [a, b], is called a closed rule if the endpoints a and b are included

as abscissas in the rule. A quadrature rule which includes neither a or b is called an open rule. Although
we will not encounter them in this discussion, a rule which includes just one of the endpoints is known as a
half-open rule. Originally, the distinction was made because open rules (such as those in the Gauss-Legendre
family) could be used to avoid endpoint singularities in the integrand. Now the distinction is of some interest
because the pattern of growth in a family of quadrature rules depends in part on whether the rules are open
or closed.

The midpoint rule is obviously an open rule. However, for various reasons it is useful to include it as the
first element of several sequences that are otherwise closed, such as the Newton Cotes Closed family and the
Clenshaw Curtis family. This minor contravention of the definition will cause no trouble, and in general,
every 1D family used for sparse grids must start with a one-point rule, which is nearly always taken as the
midpoint rule.

A family of quadrature rules or “family of rules” or simply “family” is an indexed set of quadrature rules
Qk. It is a matter of taste whether to start the index k at 0 or 1, but for this discussion, the first index will
always be 0. The order of a quadrature rule is the number of abscissas it uses; the midpoint rule has order 1.
We can indicate this value by o(k). The exactness of a quadrature rule is the highest value e such that the
rule can compute exactly the integral of every monomial from x0 to xe, and we may indicate this value by
e(k). By linearity of integration and quadrature, a rule of exactness e can integrate exactly any polynomial
of degree e or less. It is assumed that the rules in a given family increase (or at least, don’t decrease!) in
order and exactness as the index k increases.

A family of quadrature rules is fully nested if, for every index k, all the abscissas in rule k are included as
abscissas in rule k + 1. A family is non-nested if, for every k, no abscissa in rule k is included in rule k + 1;
it is typically the case that no abscissa in rule k is included in any subsequent rule. Actually, this is a fairly
strong condition; we really only mean that abscissas are almost never repeated, and not repeated in a way
that is regular enough to take advantage of. Finally, a family is weakly nested if, for every index k, a small
but nonzero subset of the abscissas of rule k are included in rule k + 1. For our purposes, this behavior will
actually mean that exactly one abscissa value is included in all the rules, as typified by the value 0.0 in the
Gauss Legendre Linear Growth family.

Smolyak’s sparse grid construction rule allows for many variations. The integration region must be a
product region, but the factors in each dimension may be different. Correspondingly, a different quadrature
family could be associated with each dimension, and each dimension could be assigned a different importance
using a weighting function. But thoughout this discussion, we will assume the simplest version of the Smolyak
procedure, in which the integration region is an M -dimensional product of a single 1D region, and one
quadrature family is used to produce factors in every dimension, and all dimensions are treated equally.

3 Closed Fully Nested Family, Exponential Growth “CFN E”

We begin by considering families of 1D quadrature rules which are closed and fully nested. Two particular
instances are Newton Cotes Closed (NCC) quadrature rules, and Clenshaw Curtis (CC) quadrature rules,
both of which estimate integrals I(f) by specifying n points x and weights w to make an estimate Q(f) of
the following form:

I(f) =
∫ +1

−1

f(x)dx ≈ Q(f) =
n∑

i=1

wif(xi)
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As it happens, the NCC rules, which use equally spaced points, are numerically unstable, and so this
section will focus on CC rules, which are a standard tool for reliable integral estimates.

In general, a rule with order n will have exactness e = n − 1, because there are n degrees of freedom
in the quadrature weights w, and n distinct monomials to integrate. However, because of symmetry, a CC
rule of odd order n has degree of exactness e = n, that is, it can integrate exactly the n + 1 monomials
1, x, x2, . . . , xn. (In fact, it can integrate exactly any monomial of odd degree, but the fact that it can
integrate xn+2 is not useful because it can’t handle xn+1, and the lowest degree monomial that we can’t
handle is that one that determines the error behavior.

To construct a quadrature family, we need to select a sequence of CC rules. It is common to choose the
rules in such a way that the sequence of rules is nested, that is, that the abscissas of each rule are included
in the next. The standard way of doing this starts with a 1 point rule with abscissa 0.0, then moves to the
3 point rule with abscissas -1, 0 and 0. The next rule inserts one new abscissa between each existing pair,
resulting in a rule of order 5. Continuing this pattern produces a family of Clenshaw Curtis rules with the
following order vector:

order 1d = {1, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, . . .}.

The order of the rules is exponential, essentially doubling with each increase in the index. Therefore, we
denote this particular family as the CC E family, that is, Clenshaw Curtis with exponential growth. A
corresponding family of NCC rules could be generated, which would be designated NCC E, and the generic
designation for families with this behavior is CFN E, that is, closed and fully nested, with exponential
growth.

The orders have been chosen so that the resulting family is fully nested. If we let the index be l, and
count from 0, then with the exception of the initial rule, the order of the rule of index l is o(l) = 2l + 1. This
kind of growth is known as exponential, and means that by level 10 we are using about 1,000 points. Since
the orders are odd, the exactness of each rule in the family is equal to its order: e(l) = 2l + 1.

As a companion to the order vector, we may also derive a vector new 1d which counts the number of
points which do not appear in the rule of level l − 1, but do appear in the rule of level l. It is easy to see
that for the CFN E family, this vector is:

new 1d = {1, 2, 2, 4, 8, 16, 32, 64, 128, 256, 512, . . .},

so that with the exception of the first two indices, the number of new points added to compute the rule of
index l is 2l−1.

Now we are ready to try to count the points in a sparse grid formed using a CFN E family. The formula
for the point count takes advantage of the nestedness of the CFN E family. To construct a sparse grid in
dimension M and level L, Smolyak’s formula tells us to combine product rules whose product levels lie in
the limited range between max(0, L−M + 1) and L. When the underlying family is nested, and we are only
interested in what points are included in the sparse grid, we can think of the sparse grid as being formed
from the entire range of product rule levels, 0 to L. The advantage to thinking this way is that we can now
logically assign each point in the final grid a time of “first appearance” in the grid. We do this by ordering
the product rules by their product rule level (that is, the sum of the levels of the 1d rules used to form the
product rule). For each point in the grid, there is a minimum product rule level at which it appears, and
for that level it appears in exactly one product grid. This means that one way to count all the points in the
CFN E sparse grid is to count only the first appearances of points in the component product grids.

But this turns out to be easy. Any component product rule is defined by its level vector, level 1d, which
in turn gives us a decomposition of that product grid into its 1D factors. The number of points that make
their first appearance in this grid is simply

new(level 1d) =
M∏
i=1

new 1d(level 1d(i))
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and therefore the number of points in the sparse grid is

order(L, M) =
L∑

l=0

∑
|level 1d|=l

M∏
i=1

new 1d(level 1d(i))

which is the sum, over all product rule levels l from 0 to L, of the sum over all product grids of level exactly
l, of the number of points which first appear in that product grid.

For a 2D grid, the result can easily be worked out by performing what amounts to a convolution on the
new 1d vector. For instance, the order of the CFN E sparse grid rule of level 3, dimension 2 is

order(3, 2) = 1 ∗ 1
+ (2 ∗ 1 + 1 ∗ 2)
+ (2 ∗ 1 + 2 ∗ 2 + 1 ∗ 2)
+ (4 ∗ 1 + 2 ∗ 2 + 2 ∗ 2 + 1 ∗ 4)
= 29

For 2D, the procedure can also be visualized in a tabular array. Here we compute the number of points
in a 2D CFN E sparse grid of level 5.

L New
5 16 16
4 8 8 16
3 4 4 8 8
2 2 2 4 4 8
1 2 2 4 4 8 16
0 1 1 2 2 4 8 16

New 1 2 2 4 8 16
L 0 1 2 3 4 5

This table shows the number of points that have their “first appearance” in each of the product rules
that is used to build the sparse grid. Totalling the values inside the box produces 145, the number of points
in the sparse grid.

For the general case, the count is easy to program, as long as we have some procedure for generating all
possible level vectors that have a given level. Here is the body of a C++ function that computes order, the
order of a sparse grid. It is to be understood that the function comp next produces, one at a time, the
level vectors level 1d that sum to l.

new_1d = new int[level+1];
new_1d[0] = 1;
new_1d[1] = 2;
j = 1;
for ( l = 2; l <= level; l++ )
{
j = j * 2;
new_1d[l] = j;

}
level_1d = new int[m];
order = 0;
for ( l = 0; l <= level; l++ )
{
more = false;

4



for ( ; ;)
{
comp_next ( l, m, level_1d, &more );
v = 1;
for ( dim = 0; dim < m; dim++ )
{
v = v * new_1d[level_1d[dim]];

}
order = order + v;
if ( !more )
{
break;

}
}

}

Novak and Ritter [5] computed and displayed the point counts for sparse grid rules based on the standard
Clenshaw Curtis family, for levels 1 through 8, and dimensions 5, 10, 15, 20 and 25. Here, we present results
for dimensions 1 through 10 and levels 0 through 10. Where they overlap, the tables agree with Novak and
Ritter.

DIM: 1 2 3 4 5
CFN E LEVEL

0 1 1 1 1 1
1 3 5 7 9 11
2 5 13 25 41 61
3 9 29 69 137 241
4 17 65 177 401 801
5 33 145 441 1,105 2,433
6 65 321 1,073 2,929 6,993
7 129 705 2,561 7,537 19,313
8 257 1,537 6,017 18,945 51,713
9 513 3,329 13,953 46,721 135,073

10 1,025 7,169 32,001 113,409 345,665
DIM: 6 7 8 9 10

CFN E LEVEL
0 1 1 1 1 1
1 13 15 17 19 21
2 85 113 145 181 221
3 389 589 849 1,177 1,581
4 1,457 2,465 3,937 6,001 8,801
5 4,865 9,017 15,713 26,017 41,265
6 15,121 30,241 56,737 100,897 171,425
7 44,689 95,441 190,881 361,249 652,065
8 127,105 287,745 609,025 1,218,049 2,320,385
9 350,657 836,769 1,863,937 3,918,273 7,836,545

10 943,553 2,362,881 5,515,265 12,133,761 25,370,753
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4 Open Fully Nested Family, Exponential Growth “OFN E”

We now consider the effect of switching from closed to open quadrature rules, while preserving full nesting
and exponential growth. The resulting quadrature families will be designated as having generic type OFN E.

There are three interesting rules that can be used to generate families of this type: the Newton Cotes
Open (NCO), the Fejer Type 2 family (F2), and the Gauss Patterson (GP).

The NCO family is numerically unstable, so we will not be employing it for sparse grid construction.
The F2 and GP families are logically quite similar, except that the GP family has superior exactness. If we
have reason to specify the particular rule being use, we can indicate that an exponential growth rate is being
employed by using the designation such as “F2 E”, “GP E”, or “NCO E”,

An open fully nested family with exponential growth can be created by selecting successively the rules
of orders

order 1d = {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, . . .}.
If we let the index be l, and count from 0, then the order of the rule of index l is o(l) = 2l+1 − 1. By level
10 we are using about 2,000 points. Because the order is always odd, the exactness of an NCO E or F2 E
rule is equal to the order; the exactness of a GP E rule follows a more complicated formula.

Since these rules are fully nested, it is easy to construct the vector listing the number of new abscissas
that appear at each element of the family. This list begins:

new 1d = {1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .},

and in general, the new order for level l is 2l.
For a 2D grid, we can again perform a convolution on the new 1d vector to count the points. The order

of the OFN E sparse grid rule of level 3, dimension 2 is

order(3, 2) = 1 ∗ 1
+ (2 ∗ 1 + 1 ∗ 2)
+ (4 ∗ 1 + 2 ∗ 2 + 1 ∗ 4)
+ (8 ∗ 1 + 4 ∗ 2 + 2 ∗ 4 + 1 ∗ 8)
= 1 ∗ 1 + 2 ∗ 2 + 3 ∗ 4 + 4 ∗ 8
= 49

This suggests that for 2D, the order formula can be summarized as

order(l, 2) =
l∑

i=0

(i + 1) 2i

and that for general dimensions m, we have

order(l,m) =
l∑

i=0

(
i + m− 1

m− 1

)
2i

We can also form a tabular array, as for example the following, which handles a 2D OFN E sparse grid
of level 5:

L New
5 32 32
4 16 16 32
3 8 8 16 32
2 4 4 8 16 32
1 2 2 4 8 16 32
0 1 1 2 4 8 16 32

New 1 2 4 8 16 32
L 0 1 2 3 4 5
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This table shows the number of points that have their “first appearance” in each of the product rules
that is used to build an OFN sparse grid in dimension 2 of level 5, with a total of 321.

Here, we present point counts for OFN E sparse grids of dimensions 1 through 10 and levels 0 through
10.

DIM: 1 2 3 4 5
OFN E LEVEL

0 1 1 1 1 1
1 3 5 7 9 11
2 7 17 31 49 71
3 15 49 111 209 351
4 31 129 351 769 1,471
5 63 321 1,023 2,561 5,503
6 127 769 2,815 7,937 18,943
7 255 1,793 7,423 23,297 61,183
8 511 4,097 18,943 65,537 187,903
9 1,023 9,217 47,103 178,177 553,983

10 2,047 20,481 114,687 471,041 1,579,007
DIM: 6 7 8 9 10

OFN E LEVEL
0 1 1 1 1 1
1 13 15 17 19 21
2 97 127 161 199 241
3 545 799 1,121 1,519 2,001
4 2,561 4,159 6,401 9,439 13,441
5 10,625 18,943 31,745 50,623 77,505
6 40,193 78,079 141,569 242,815 397,825
7 141,569 297,727 580,865 1,066,495 1,862,145
8 471,041 1,066,495 2,228,225 4,361,215 8,085,505
9 1,496,065 3,629,055 8,085,505 16,807,935 32,978,945

10 4,571,137 11,829,247 28,000,257 61,616,127 127,574,017

5 Open Non-Nested Family, Linear Growth, “ONN L2”

The next case we turn to involves families created from open quadrature rules in which there is no nesting
at all (or at least, none with a pattern regular enough that we can take advantage of it), and a linear growth
rule, increasing by 2 each time, is used.

The most familiar example of a quadrature rule with no nesting is the Gauss Laguerre rule (“LG”), and
its variant the Generalized Gauss Laguerre rule (“GLG”). Other examples include the Gauss Jacobi rule
(“GJ”), and, in general, rules formed by the Golub Welsch procedure (“GW”).

The families we are interested in will use a linear growth rule for the order. Thus we might designate
this class of families by the name “ONN L2”, or, if we wish to indicate the particular rule being used, then
by “LG L2”, “GLG L2”, “GJ L2” or “GW L2”.

Sparse grids made from these rules will get no reduction in the abscissa count because of nesting. It
turns out that this makes it relatively easy to compute the point count. Any family in this class will have
the 1D order vector

order 1d = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, . . .}.

Because there is no nesting, the new 1d vector would be identical to the order 1d vector. Since each
multidimensional point in each product grid is now guaranteed to be unique, the point count is very simple:
we add together the orders of all the constituent product grids.
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For a 2D grid of level L, we can again perform a sort of convolution on the order 1d vector to count the
points, but we have to remember that in 2D we only consider product rules that lie on the diagonal L and
diagonal L− 1. The order of the ONN L2 sparse grid rule of level 3, dimension 2 can be determined by:

order(3, 2) =
+ (5 ∗ 1 + 3 ∗ 3 + 1 ∗ 5) (diagonal 2)
+ (7 ∗ 1 + 5 ∗ 3 + 3 ∗ 5 + 1 ∗ 7) (diagonal 3)
= 63

We can also form a tabular array, as this example for a 2D level 5 ONN L2 sparse grid:

L Order
5 11 11
4 9 9 27
3 7 21 35
2 5 25 35
1 3 21 27
0 1 9 11

Order 1 3 5 7 9 11
L 0 1 2 3 4 5

Counting the points in a 2D ONN L2 sparse grid of level 5.

This table shows the number of points used in each of the product grids that form an ONN L2 sparse
grid in dimension 2 of level 5, with a total of 231.

Here, we present point counts for ONN L2 sparse grids, dimensions 1 through 10 and levels 0 through
10.

DIM: 1 2 3 4 5
ONN L2 LEVEL

0 1 1 1 1 1
1 3 7 10 13 16
2 5 25 52 87 131
3 7 63 189 403 736
4 9 129 543 1,461 3,206
5 11 231 1,320 4,433 11,583
6 13 377 2,834 11,739 36,218
7 15 575 5,531 27,911 100,893
8 17 833 10,013 60,809 255,663
9 19 1,159 17,062 123,253 598,538

10 21 1,561 27,664 235,135 1,310,165
DIM: 6 7 8 9 10

ONN L LEVEL
0 1 1 1 1 1
1 19 22 25 28 31
2 184 246 317 397 486
3 1,216 1,870 2,725 3,808 5,146
4 6,190 10,900 17,903 27,847 41,461
5 25,954 52,074 96,055 165,844 271,467
6 93,535 212,738 439,019 838,915 1,506,232
7 298,357 765,313 1,760,035 3,711,040 7,290,952
8 860,455 2,476,883 6,323,269 14,666,470 31,453,182
9 2,279,829 7,329,934 20,693,565 52,638,759 122,920,642

10 5,618,754 20,087,574 62,483,217 173,788,146 440,815,035
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6 Open Non-Nested Family, Exponential Growth, “ONN E”

If an exponential growth rule is used with an Open Non-Nested Family, we get sparse grids of type “ONN E”.
The change in the growth rule means that the order vector will be

order 1d = {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, . . .}.

A tabular array for a 2D level 5 ONN E sparse grid looks like this:

L Order
5 63 63
4 31 31 93
3 15 45 105
2 7 49 105
1 3 45 93
0 1 31 63

Order 1 3 7 15 31 63
L 0 1 2 3 4 5

Counting the points in a 2D ONN E sparse grid of level 5.

This table shows the number of points used in each of the product grids that form an ONN E sparse grid
in dimension 2 of level 5, with a total of 723.

Here, we present point counts for ONN E sparse grids, dimensions 1 through 10 and levels 0 through 10.
DIM: 1 2 3 4 5

ONN E LEVEL
0 1 1 1 1 1
1 3 7 10 13 16
2 7 29 58 95 141
3 15 95 255 515 906
4 31 273 945 2,309 4,746
5 63 723 3,120 9,065 21,503
6 127 1,813 9,484 32,259 87,358
7 255 4,375 27,109 106,455 325,943
8 511 10,265 73,915 330,985 1,135,893
9 1,023 23,579 194,190 980,797 3,743,358

10 2,047 53,277 495,198 2,793,943 11,775,507
DIM: 6 7 8 9 10

ONN E LEVEL
0 1 1 1 1 1
1 19 22 25 28 31
2 196 260 333 415 506
3 1,456 2,192 3,141 4,330 5,786
4 8,722 14,778 23,535 35,695 52,041
5 44,758 84,708 149,031 247,456 392,007
6 204,203 428,772 828,795 1,499,773 2,571,712
7 849,161 1,966,079 4154,403 8,158,810 15,089,932
8 3,275,735 8,316,605 1,9122,245 40,599,130 80,725,502
9 11,876,081 32,894,998 8,1953,165 187,432,959 399,429,602

10 40,869,038 122,928,088 33,0545,025 811,645,950 1,848,483,779
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7 Open Weakly Nested Family, Linear Growth, “OWN L”

We now turn to the case of Open Weakly Nested families. The typical example here is the family formed
from the Gauss Legendre rule (“GL”). The Gauss Hermite (“GH”) and Generalized Gauss Hermite (“GGH”)
rules also exhibit this behavior.

We will use a strict linear growth rule, so that the rule of index l will have order o(l) = l+1 and exactness
e(l) = 2l + 1 (because we are assuming the underlying rules are derived from the usual Gauss procedure).
We designate this class by “OWN L”. We see that the abscissa 0.0 is common to the odd rules, and that no
other value is repeated.

We have an order 1d vector of

order 1d = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, . . .}.

Since the value 0.0 comes and goes every other rule, we don’t want to keep track of the “new” values, but
rather the zero and nonzero ones:

zero 1d ={1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, . . .}
nonz 1d ={0, 2, 2, 4, 4, 6, 6, 8, 8, 10, 10, . . .}.

Counting the abscissas of an OWN L family is more difficult than for the fully nested and non-nested
cases. I have not worked out a general algorithm for counting these points. You can make a start at one
by noticing that you can first count all the points which have no zero component, by using the procecure
for counting the points in an ONN L sparse grid of the same level and dimension, but using the nonz 1d
vector as though it were the order 1d vector.

But then you have to work out how many points contain one or more zero components, and, especially in
higher dimensions, this seems to be a difficult thing to handle. Since we can do this for the OWN L2 case,
the problem with the OWN L case seems to arise from the fact that the zero value only appears in the 1D
rules of even level.

8 Open Weakly Nested Family, Double Linear Growth, “OWN L2”

There is a simple variation of the OWN L family, in which two points are added with each increase in the
level index. We refer to this family as having the type OWN L2. Again, we assume the usual examples come
from the Gauss Legendre rule (“GL”), Gauss Hermite (“GH”) and Generalized Gauss Hermite (“GGH”)
rules.

In this case, because every rule has odd order, the abscissa 0.0 is common to every rule.
The linear growth rule has the form o(l) = 2 l + 1. This gives us an order 1d vector of

order 1d = {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, . . .}.

In turn, the vector of “new” (that is, in this case, nonzero!) points is

new 1d = {0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, . . .}.

Counting the abscissas of an OWN L2 family is more difficult than for the fully nested and non-nested
cases. The algorithm that was discovered begins by counting the points in which no 0.0 occurs. This is the
same as counting the number of points in an ONN L sparse grid of the same level and dimension, but with a
modified order 1d vector. The modifications involve setting the first entry to zero, and setting subsequent
entries to the corresponding entries of the original new 1d.

For 2D, this first step can be visualized in a tabular array, here for a level 4, dimension 2 OWN L2 sparse
grid, where “Order” now is actually counting the number of points in each 1D rule that are not equal to 0.0:
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L Order
4 8 0
3 6 0 12
2 4 8 16
1 2 8 12
0 0 0 0

Order 0 2 4 6 8
L 0 1 2 3 4

This clearly shows that the number of points with no 0.0 is 56.
The next step is to compute the number of points with exactly one occurrence of 0.0. We essentially have

to collapse one dimension of the above table, and assign a single ”Order” value of 1 (for the single value of
0.0). One version of the collapsed table looks like this:

L Order
4 8 8
3 6 6
2 4 4
1 2 2
0 0 0

Order 1
L 0

and of course we could also have collapsed the table horizontally. Since each table yields a total of 20
points with exactly one 0.0, the total is 40.

Finally, to compute the number of points with exactly two 0.0’s, we collapse the table yet again, giving
the collapsed dimension an ”Order” of 1, to get:

L Order
0 1 1

Order 1
L 0

So our total is 56+40+1 which correctly produces the result 97.
To generalize this to higher dimensions and levels, we have to think as follows. First, we compute the

completely nonzero points, which can be thought of as counting an ONN L grid with the modified version
of order 1d. Recall that the standard sparse grid computation includes product grids with levels from
L−M + 1 to L.

Now we have to count points with N = 1, 2, . . . M zeroes in them. We do this by counting the number of
points in a sparse grid of dimension M −N , but now we allow the level to range from 0 to L, that is. Once
we’ve counted the number of such points in one example sparse grid of dimension M −N , we must multiply
the number of points by

(
M
N

)
, to account for the fact that there are this many ways to choose where the 0.0’s

occur.
Here is a MATLAB routine which carries out this calculation. Again, we assume that comp next returns

on each call a new composition of the input value level.

if ( level_max < 0 )
point_num = 0;
return

end

if ( level_max == 0 )
point_num = 1;
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return
end

new_1d = zeros ( level_max+1, 1 );
new_1d(1) = 0;
for l = 1 : level_max
new_1d(l+1) = 2 * l;

end

point_num = 0;

for dim_num2 = dim_num : -1 : 0

if ( dim_num2 == dim_num )
level_min = max ( 0, level_max - dim_num + 1 );

else
level_min = 0;

end

if ( dim_num2 == 0 )
point_num2 = 1;

else
level_1d = zeros ( dim_num2, 1 );
point_num2 = 0;
for level = level_min : level_max
more = 0;
h = 0;
t = 0;
while ( 1 )
[ level_1d, more, h, t ] = comp_next ( level, dim_num2, level_1d, ...
more, h, t );

point_num2 = point_num2 + prod ( new_1d(level_1d(1:dim_num2)+1) );
if ( ~more )
break

end
end

end
end

point_num = point_num + i4_choose ( dim_num, dim_num2 ) * point_num2;

end

Here is a table of the point counts for an OWN L2 sparse grid, for dimensions 1 through 10 and levels 0
through 10.
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DIM: 1 2 3 4 5
OWN L2 LEVEL

0 1 1 1 1 1
1 3 5 7 9 11
2 5 17 31 49 71
3 7 45 105 201 341
4 9 97 297 681 1,341
5 11 181 735 2,001 4,543
6 13 305 1,631 5,257 13,683
7 15 477 3,305 12,609 37,433
8 17 705 6,209 28,017 94,473
9 19 997 10,951 58,297 222,563

10 21 1,361 18,319 114,561 493,935
DIM: 6 7 8 9 10

OWN L2 LEVEL
0 1 1 1 1 1
1 13 15 17 19 21
2 97 127 161 199 241
3 533 785 1,105 1,501 1,981
4 2,381 3,921 6,097 9,061 12,981
5 9,113 16,703 28,577 46,303 71,785
6 30,869 62,735 117,713 207,355 347,005
7 94,601 212,481 436,033 833,017 1,501,545
8 266,489 659,585 1,476,673 3,053,065 5,916,505
9 698,373 1,899,663 4,629,457 10,338,603 21,503,085

10 1,718,697 5,124,927 13,566,753 32,667,567 72,810,297

9 Open Weakly Nested Family, Exponential Growth, “OWN E”

If we choose exponential growth instead of linear growth for our Open Weakly Nested family, we get the
“OWN E” class. The analysis is almost identical as for the OWN L case.

The exponential growth rule has the form o(l) = 2l+1 − 1. This gives us an order 1d vector of

order 1d = {1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, . . .}.

In turn, the vector of “new” (that is, nonzero!) points is

order 1d = {0, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, . . .}.

Here is a table of the point counts for an OWN E sparse grid, for dimensions 0 through 10 and levels 0
through 10.
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DIM: 1 2 3 4 5
OWN E LEVEL

0 1 1 1 1 1
1 3 5 7 9 11
2 7 21 37 57 81
3 15 73 159 289 471
4 31 221 597 1,265 2,341
5 63 609 2,031 4,969 10,363
6 127 1,573 6,397 17,945 41,913
7 255 3,881 18,943 60,577 157,583
8 511 9,261 53,365 193,441 557,693
9 1,023 21,553 144,351 589,625 1,875,443

10 2,047 49,205 377,661 1,727,625 6,037,137
DIM: 6 7 8 9 10

OWN E LEVEL
0 1 1 1 1 1
1 13 15 17 19 21
2 109 141 177 217 261
3 713 1,023 1,409 1,879 2,441
4 3,953 6,245 9,377 13,525 18,881
5 19,397 33,559 54,673 84,931 126,925
6 86,517 163,213 287,409 479,233 764,365
7 357,153 731,951 1,388,737 2,478,511 4,208,385
8 1,382,361 3,067,669 6,253,537 11,916,685 21,493,065
9 5,065,693 12,136,743 26,516,113 53,833,083 102,935,845

10 17,709,469 45,683,389 106,723,249 230,380,089 466,201,781

10 Clenshaw Curtis Family, Slow Exponential Growth, “CC SE”

The CC SE family is the first example of the slow exponential growth families. It was developed in an
attempt to maintain the advantages of a nested rule while restraining the inherent exponential growth in
order as a function of level.

The idea was to begin with the CC E exponential growth family, indexed by k, and then to construct a
new slow exponential growth family, indexed by j, in such a way that the j-th rule had the lowest index k
for which the rule exactness was at least 2j + 1.

Since a formula for the exactness of each CC E rule is known, this procedure can easily be made automatic.
The order vector then shows occasional signs of “stuttering”:

order 1d = {1, 3, 5, 9, 9, 17, 17, 17, 17, 33, 33, . . .}.

and the vector that counts new points hence will now contain some 0’s:

new 1d = {1, 2, 2, 4, 0, 8, 0, 0, 0, 16, 0, . . .}.

The CC SE family is a closed fully nested rule, so our counting procedures that we used for the CC E
family will work here as well. For instance, we can make a tabular array for a Level 5, 2D case:

14



L New
5 8 8
4 0 0 0
3 4 4 8 8
2 2 2 4 4 8
1 2 2 4 4 8 0
0 1 1 2 2 4 0 8

New 1 2 2 4 0 8
L 0 1 2 3 4 5

Counting the points in a 2D CC SE sparse grid of level 5.

Summing up the entries within the box, we compute the number of points in a CC SE sparse grid for
dimension 2, level 5, is 81.

The code to compute the order for a CC SE sparse grid is quite similar to that for a CC E sparse grid,
and in fact, only the definition of new 1d needs to be revised:

new_1d = new int[level_max+1];
new_1d[0] = 1;
new_1d[1] = 2;
e = 3;
o = 3;
for ( l = 2; l <= level; l++ )
{
e = 2 * l + 1;
if ( o < e )
{
new_1d[l] = o - 1;
o = 2 * o - 1;

}
else
{
new_1d[l] = 0;

}
}

Again, we compute the number of points in sparse grids of levels 0 through 10, and dimensions 1 through
10. Because we are using the more economical CC S rule, however, there are some dramatic differences when
compared to the tables for the CC E sparse grid. In particular, the values in column 1 decrease drastically.

In general, since the CC SE and CC E 1D rules do not differ until level 4, we do not expect to see
differences in the CC SE table until that point. At level 4 and beyond, the difference is most noticeable for
low dimensional grids. Starting at any fixed location in the table, the relative improvement from using the
CC SE family becomes stronger if we decrease the dimension or increase the level.
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DIM: 1 2 3 4 5
CC SE LEVEL

0 1 1 1 1 1
1 3 5 7 9 11
2 5 13 25 41 61
3 9 29 69 137 241
4 9 49 153 369 761
5 17 81 297 849 2,033
6 17 129 545 1,777 4,833
7 17 161 881 3,377 10,433
8 17 225 1,361 5,953 20,753
9 33 257 1,953 9,857 38,593

10 33 385 2,721 15,361 67,425
DIM: 6 7 8 9 10

CC SE LEVEL
0 1 1 1 1 1
1 13 15 17 19 21
2 85 113 145 181 221
3 389 589 849 1,177 1,581
4 1,409 2,409 3,873 5,929 8,721
5 4,289 8,233 14,689 24,721 39,665
6 11,473 24,529 48,289 88,945 155,105
7 27,697 65,537 141,601 284,209 536,705
8 61,345 159,953 377,729 823,057 1,677,665
9 126,401 361,665 930,049 2,192,865 4,810,625

10 244,289 765,089 2,136,577 5,4363,21 12,803,073

11 Fejer Type 2 Family, Slow Exponential Growth, “F2 SE”

The development of F2 SE, the slow exponential growth version of the Fejer Type 2 family F2 E, is quite
similar to that of CC SE from the CC E family. The main difference is that Fejer Type 2 rules are open, so
their pattern of growth is slightly different.

However, the criterion for the F2 SE family is the same. When we choose the index k of an F2 E rule,
which is to be used as the j-th rule in the F2 SE family, we assume that the sparse grid exactness requirement
is that 2j + 1 ≤ e(j). So we choose the lowest value of k which satisfies the exactness requirement. For Fejer
Type 2 rules of odd order, the order and exactness are equal, and the order satisfies the rule o(k) = 2k+1−1.
Thus, for instance, our first five 5 exactness requirements are emin(0 : 4) = {1, 3, 5, 7, 9} and we can satisfy
these by using rules of order o(0 : 4) = {1, 3, 7, 7, 15}.

Since the F2 SE rules are fully nested, we can use the same approach to counting them as we did for the
F2 E rule. The only difference is that the new 1d vector is different now. In particular, we can see from
the above that the first five entries are { 1, 2, 4, 0, 8 }.

MATLAB code to do the counting follows. Note that MATLAB does not allow arrays to be indexed by
0, so whenever we index new 1d we make a point of writing the index as i + 1.

if ( level_max < 0 )
point_num = 0;
return

end

if ( level_max == 0 )
point_num = 1;
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return
end

new_1d = zeros ( level_max+1, 1 );
new_1d(0+1) = 1;
e = 1;
o = 1;
for l = 1 : level_max
e = 2 * l + 1;
if ( o < e )
new_1d(l+1) = o + 1;
o = 2 * o + 1;

else
new_1d(l+1) = 0;

end
end

level_1d = zeros ( dim_num, 1 );
point_num = 0;

for level = 0 : level_max

more = 0;
h = 0;
t = 0;
while ( 1 )
[ level_1d, more, h, t ] = comp_next ( level, dim_num, level_1d, more, h, t );
point_num = point_num + prod ( new_1d(level_1d(1:dim_num)+1) );
if ( ~more )
break

end
end

end

Here is a table of the point counts for the F2 SE family, for dimensions 1 through 10 and levels 0 through
10.
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DIM: 1 2 3 4 5
F2 SE LEVEL

0 1 1 1 1 1
1 3 5 7 9 11
2 7 17 31 49 71
3 7 33 87 177 311
4 15 65 207 513 1,071
5 15 97 399 1,217 3,023
6 15 161 751 2,625 7,503
7 15 161 1,135 4,929 16,463
8 31 257 1,759 8,705 33,183
9 31 321 2,335 13,697 60,703

10 31 449 3,679 21,889 105,887
DIM: 6 7 8 9 10

F2 SE LEVEL
0 1 1 1 1 1
1 13 15 17 19 21
2 97 127 161 199 241
3 497 743 1,057 1,447 1,921
4 1,985 3,375 5,377 8,143 11,841
5 6,497 12,559 22,401 37,519 59,745
6 18,401 40,111 79,745 147,343 256,545
7 46,049 112,815 249,217 506,767 963,105
8 104,705 286,303 699,393 1,559,839 3,227,905
9 217,281 663,071 1,787,649 4,362,783 9,809,985

10 421,185 1,423,327 4,217,601 11,231,007 27,377,857

12 Gauss Patterson Family, Slow Exponential Growth “GP SE”

The original Gauss Patterson family shares the same structure as the F2 E family. However, GP SE and
F2 SE, the slow exponential growth versions, differ markedly because the higher exactness of the Gauss
Patterson rules allows us to meet the exactness requirements with rules of lower order. This is then reflected
in a substantially reduced point count for GP SE rules. For a more elaborate discussion of the GP SE family,
refer to [4].

Since the formula for the exactness of the Gauss Patterson rules is known, and we have already considered
the rationale for the slow exponential growth several times, we now simply present a FORTRAN code to
count the points in a GP SE sparse grid:

if ( level_max < 0 ) then
point_num = 0
return

end if

if ( level_max == 0 ) then
point_num = 1
return

end if

allocate ( order_1d(0:level_max) )
order_1d(0) = 1
do level = 1, level_max
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e = 5
o = 3
do while ( e < 2 * level + 1 )
e = 2 * e + 1
o = 2 * o + 1

end do
order_1d(level) = o

end do

allocate ( new_1d(0:level_max) )
new_1d(0) = 1
do level = 1, level_max
new_1d(level) = order_1d(level) - order_1d(level-1)

end do

allocate ( level_1d(1:dim_num) )
point_num = 0

do level = 0, level_max

more = .false.
h = 0
t = 0

do
call comp_next ( level, dim_num, level_1d, more, h, t )
point_num = point_num + product ( new_1d(level_1d(1:dim_num)) )
if ( .not. more ) then
exit

end if
end do

end do

Here we present a table of point counts for GP SE sparse grids of dimensions 1 through 10 and levels 0
through 10.
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DIM: 1 2 3 4 5
GP SE LEVEL

0 1 1 1 1 1
1 3 5 7 9 11
2 3 9 19 33 51
3 7 17 39 81 151
4 7 33 87 193 391
5 7 33 135 385 903
6 15 65 207 641 1,743
7 15 97 399 1,217 3,343
8 15 97 495 1,985 6,223
9 15 161 751 2,881 10,063

10 15 161 1,135 4,929 17,103
DIM: 6 7 8 9 10

GP SE LEVEL
0 1 1 1 1 1
1 13 15 17 19 21
2 73 99 129 163 201
3 257 407 609 871 1,201
4 737 1,303 2,177 3,463 5,281
5 1,889 3,655 6,657 11,527 19,105
6 4,161 8,975 17,921 33,679 60,225
7 8,481 19,855 43,137 87,823 169,185
8 16,929 42,031 97,153 211,087 434,145
9 30,689 83,247 206,465 477,327 1,041,185

10 53,729 154,927 411,265 1,014,159 2,347,809

Note that if we were to judge simply by how many millions of points are needed for a sparse grid of
dimension 10, level 10, then the GP SE family is by far the winner (2), followed by CC SE (12) and F2 SE
(27) with the very worst performance by the ONN E family (1,848).

13 Conclusion

We have shown how to count the number of unique abscissas for an isotropic sparse grid which is constructed
using the same quadrature family for each dimension. A previous attempt to do this computation involved
an a posteriori process, that is, we generated all the points from the Smolyak procedure, sorted them, and
identified points that were equal. The a priori procedure described here is more efficient and satisfying; it
does not need to generate the points, but rather counts them simply by virtue of certain known properties.

The point counts discussed in this document have been implemented in C++, FORTRAN90, and MAT-
LAB, and are available online. The C++ versions, for instance, may be found at [1], and the web page
includes links to the versions in other languages.

Accurate point counts are important in sparse grid computations, since they measure the efficiency of
a rule. Making point count tables, as in this document, allows one to examine the growth trends as the
underlying rules are varied, and to judge the value of techniques such as slow exponential growth. Of course,
during the actual computation of a sparse grid, point counts are necessary so that sufficient space can be
allocated for arrays. Finally, the efforts made in computing a point count can reveal patterns in the sparse
growth construction that can be exploited for greater efficiency.

An important extension of this investigation would consider anisotropic sparse grids, that is, sparse grids
which used higher order rules in certain dimensions. At least for some of the families considered here, it
seems likely that the procedures can be extended in a natural way to cover these cases.
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A more difficult case arises when we allow mixed sparse grids, that is, sparse grids for which different
quadrature families are used for the various dimensions. It is felt that the rather elaborate form of the
calculation for the OWN family may suggest the complications that could arise when trying to deal with the
effects of dimensional variation in the rule types.

A natural final point would be to consider anisotropic mixed sparse grids, in which we allow dimensional
variation in both the order and quadrature family.
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