
Parallel MATLAB:
Single Program Multiple Data

John Burkardt (FSU) & Gene Cliff (AOE/ICAM)
1:30pm - 3:30pm, Thursday, 02 June 2011

Mathematics Commons Room
..........

vt 2011 spmd.pdf
..........

FSU: Florida State University
AOE: Department of Aerospace and Ocean Engineering
ICAM: Interdisciplinary Center for Applied Mathematics

1 / 68



MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

2 / 68



SPMD: is not PARFOR

Lecture #1: PARFOR - 31 May

The parfor command, described in a previous lecture, is easy to
use, but it only lets us do parallelism in terms of loops. The only
choice we make is whether a loop is to run in parallel.

We can’t determine how the loop iterations are divided up;

we can’t be sure which worker runs which iteration;

we can’t examine the work of any individual worker.

Using parfor, the individual workers are anonymous, and all the
memory is shared (or copied and returned).

3 / 68



SPMD: is Single Program, Multiple Data

Lecture #2: SPMD - 2 June

The SPMD command (today’s lecture) is like a very simplified
version of MPI. There is one client process, supervising workers
who cooperate on a single program. Each worker (sometimes also
called a “lab”) has an identifier, knows how many workers there
are total, and can determine its behavior based on that ID.

each worker runs on a separate core (ideally);

each worker uses separate workspace;

a common program is used;

workers meet at synchronization points;

the client program can examine or modify data on any worker;

any two workers can communicate directly via messages.

4 / 68



SPMD: Getting Workers

An spmd program needs workers to cooperate on the program.

So on a desktop, we issue an interactive matlabpool request:

matlabpool open local 4
results = myfunc ( args );

or use batch to run in the background on your desktop:

job = batch ( ’myscript’, ’Configuration’, ’local’, ...
’matlabpool’, 4 )

or send the batch command to the Ithaca cluster:

job = batch ( ’myscript’, ’Configuration’, ...
’ithaca_2009b’, ’matlabpool’, 7 )

5 / 68



SPMD: The SPMD Environment

MATLAB sets up one special worker called the client.

MATLAB sets up the requested number of workers, each with a
copy of the program. Each worker “knows” it’s a worker, and has
access to two special functions:

numlabs(), the number of workers;

labindex(), a unique identifier between 1 and numlabs().

The empty parentheses are usually dropped, but remember, these
are functions, not variables!

If the client calls these functions, they both return the value 1!
That’s because when the client is running, the workers are not.
The client could determine the number of workers available by

n = matlabpool ( ’size’ )

6 / 68



SPMD: The SPMD Command

The client and the workers share a single program in which some
commands are delimited within blocks opening with spmd and
closing with end.

The client executes commands up to the first spmd block, when it
pauses. The workers execute the code in the block. Once they
finish, the client resumes execution.

The client and each worker have separate workspaces, but it is
possible for them to communicate and trade information.

The value of variables defined in the “client program” can be
referenced by the workers, but not changed.

Variables defined by the workers can be referenced or changed by
the client, but a special syntax is used to do this.

7 / 68



SPMD: How SPMD Workspaces Are Handled

Client Worker 1 Worker 2
a b e | c d f | c d f
-------------------------------

a = 3; 3 - - | - - - | - - -
b = 4; 3 4 - | - - - | - - -
spmd | |
c = labindex(); 3 4 - | 1 - - | 2 - -
d = c + a; 3 4 - | 1 4 - | 2 5 -

end | |
e = a + d{1}; 3 4 7 | 1 4 - | 2 5 -
c{2} = 5; 3 4 7 | 1 4 - | 5 6 -
spmd | |
f = c * b; 3 4 7 | 1 4 4 | 5 6 20

end

8 / 68



SPMD: When is Workspace Preserved?

A program can contain several spmd blocks. When execution of
one block is completed, the workers pause, but they do not
disappear and their workspace remains intact. A variable set in one
spmd block will still have that value if another spmd block is
encountered.

You can imagine the client and workers simply alternate execution.

In MATLAB, variables defined in a function “disappear” once the
function is exited. The same thing is true, in the same way, for a
MATLAB program that calls a function containing spmd blocks.
While inside the function, worker data is preserved from one block
to another, but when the function is completed, the worker data
defined there disappears, just as the regular MATLAB data does.

9 / 68



MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

10 / 68



QUAD: The Trapezoid Rule

Area of one trapezoid = average height * base.

11 / 68



QUAD: The Trapezoid Rule

To estimate the area under a curve using one trapezoid, we write∫ b

a
f (x) dx ≈ (

1

2
f (a) +

1

2
f (b)) ∗ (b − a)

We can improve this estimate by using n − 1 trapezoids defined by
equally spaced points x1 through xn:∫ b

a
f (x) dx ≈ (

1

2
f (x1) + f (x2) + ... + f (xn−1) +

1

2
f (xn)) ∗ b − a

n − 1

If we have several workers available, then each one can get a part
of the interval to work on, and compute a trapezoid estimate
there. By adding the estimates, we get an approximate to the
integral of the function over the whole interval.

12 / 68



QUAD: Use the ID to assign work

To simplify things, we’ll assume our original interval is [0,1], and
we’ll let each worker define a and b to mean the ends of its
subinterval. If we have 4 workers, then worker number 3 will be
assigned [1

2 , 3
4 ].

To start our program, each worker figures out its interval:

fprintf ( 1, ’ Set up the integration limits:\n’ );

spmd
a = ( labindex - 1 ) / numlabs;
b = labindex / numlabs;

end

13 / 68



QUAD: One Name Must Reference Several Values

Each worker is a program with its own workspace. It can “see” the
variables on the client, but it usually doesn’t know or care what is
going on on the other workers.

Each worker defines a and b but stores different values there.

The client can “see” the workspace of all the workers. Since there
are multiple values using the same name, the client must specify
the index of the worker whose value it is interested in. Thus a{1}
is how the client refers to the variable a on worker 1. The client
can read or write this value.

MATLAB’s name for this kind of variable, indexed using curly
brackets, is a composite variable. It is very similar to a cell array.

The workers can “see” the client’s variables and inherits a copy of
their values, but cannot change the client’s data.

14 / 68



QUAD: Dealing with Composite Variables

So in QUAD, each worker could print a and b:

spmd
a = ( labindex - 1 ) / numlabs;
b = labindex / numlabs;
fprintf ( 1, ’ A = %f, B = %f\n’, a, b );

end

———— or the client could print them all ————

spmd
a = ( labindex - 1 ) / numlabs;
b = labindex / numlabs;

end
for i = 1 : 4 <-- "numlabs" wouldn’t work here!
fprintf ( 1, ’ A = %f, B = %f\n’, a{i}, b{i} );

end

15 / 68



QUAD: The Solution in 4 Parts

Each worker can now carry out its trapezoid computation:

spmd
x = linspace ( a, b, n );
fx = f ( x ); (Assume f can handle vector input.)
quad_part = ( b - a ) / ( n - 1 ) *

* ( 0.5 * fx(1) + sum(fx(2:n-1)) + 0.5 * fx(n) );
fprintf ( 1, ’ Partial approx %f\n’, quad_part );

end

with result:

2 Partial approx 0.874676
4 Partial approx 0.567588
1 Partial approx 0.979915
3 Partial approx 0.719414

16 / 68



QUAD: Combining Partial Results

We really want one answer, the sum of all these approximations.

One way to do this is to gather the answers back on the client, and
sum them:

quad = sum ( quad_part{1:4} );
fprintf ( 1, ’ Approximation %f\n’, quad );

with result:

Approximation 3.14159265

17 / 68



QUAD: Source Code for QUAD FUN

f u n c t i o n v a l u e = quad fun ( n )

f p r i n t f ( 1 , ’ Compute l i m i t s \n ’ ) ;
spmd

a = ( l a b i n d e x − 1 ) / numlabs ;
b = l a b i n d e x / numlabs ;
f p r i n t f ( 1 , ’ Lab %d works on [%f ,% f ] .\ n ’ , l a b i nd e x , a , b ) ;

end

f p r i n t f ( 1 , ’ Each l a b e s t ima t e s pa r t o f the i n t e g r a l .\n ’ ) ;

spmd
x = l i n s p a c e ( a , b , n ) ;
f x = f ( x ) ;
quad pa r t = ( b − a ) ∗ ( f x (1 ) + 2 ∗ sum ( f x ( 2 : n−1) ) + f x ( n ) ) . . .

/ 2 . 0 / ( n − 1 ) ;
f p r i n t f ( 1 , ’ Approx %f\n ’ , quad pa r t ) ;

end

quad = sum ( quad pa r t {:} ) ;
f p r i n t f ( 1 , ’ Approx imat ion = %f\n ’ , quad )

r e t u r n
end

18 / 68



MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

19 / 68



DISTRIBUTED: Conjugate Gradient Setup

It is possible to use what amounts to SPMD programming
without explicitly using the spmd statement. That’s because many
MATLAB functions and operators are capable of carrying out
algorithms that involve the cooperation of multiple workers with
separate workspaces.

The user might only see the “client” copy of MATLAB; special
commands or options distribute the data to the available workers,
who then cooperate to carry out the computation.

Again, this is “really” SPMD programming, except that the
MathWorks staff had to write the spmd blocks, hidden inside
MATLAB’s functions.

20 / 68



DISTRIBUTED: The Client Can Distribute

If the client process has a 300x400 array called a, and there are
4 SPMD workers, then the simple command

ad = distributed ( a );

distributes the elements of a by columns:

Worker 1 Worker 2 Worker 3 Worker 4
Col: 1:100 | 101:200 | 201:300 | 301:400 ]
Row
1 [ a b c d | e f g h | i j k l | m n o p ]
2 [ A B C D | E F G H | I J K L | M N O P ]

... [ * * * * | * * * * | * * * * | * * * * ]
300 [ 1 2 3 4 | 5 6 7 8 | 9 0 1 2 | 3 4 5 6 ]

By default, the last dimension is used for distribution.

21 / 68



DISTRIBUTED: Workers Can Get Their Part

Once the client has distributed the matrix by the command

ad = distributed ( a );

then each worker can make a local variable containing its part:

spmd
al = getLocalPart ( ad );
[ ml, nl ] = size ( al );

end

On worker 3, [ ml, nl ] = ( 300, 100 ), and al is

[ i j k l ]
[ I J K L ]
[ * * * * ]
[ 9 0 1 2 ]

Notice that local and global column indices will differ!
22 / 68



DISTRIBUTED: The Client Can Collect Results

The client can access any worker’s local part by using curly
brackets. Thus it could copy what’s on worker 3 by

worker3_array = al{3};

However, it’s likely that the client simply wants to collect all the
parts and put them back into one normal MATLAB array. If the
local arrays are simply column-sections of a 2D array:

a2 = [ al{:} ]

Suppose we had a 3D array whose third dimension was 3, and we
had distributed it as 3 2D arrays. To collect it back:

a2 = al{1};
a2(:,:,2) = al{2};
a2(:,:,3) = al{3};

23 / 68



DISTRIBUTED: Methods to Gather Data

Instead of having an array created on the client and distributed
to the workers, it is possible to have a distributed array constructed
by having each worker build its piece. The result is still a
distributed array, but when building it, we say we are building a
codistributed array.

Codistributing the creation of an array has several advantages:

1 The array might be too large to build entirely on one core (or
processor);

2 The array is built faster in parallel;

3 You skip the communication cost of distributing it.

24 / 68



DISTRIBUTED: Accessing Distributed Arrays

The command al = getLocalPart ( ad ) makes a local copy of
the part of the distributed array residing on each worker. Although
the workers could reference the distributed array directly, the local
part has some uses:

references to a local array are faster;

the worker may only need to operate on the local part; then
it’s easier to write al than to specify ad indexed by the
appropriate subranges.

The client can copy a distributed array into a “normal” array
stored entirely in its memory space by the command

a = gather ( ad );

or the client can access and concatenate local parts.

25 / 68



DISTRIBUTED: Conjugate Gradient Setup

Because many MATLAB operators and functions can automatically
detect and deal with distributed data, it is possible to write
programs that carry out sophisticated algorithms in which the
computation never explicitly worries about where the data is!

The only tricky part is distributing the data initially, or gathering
the results at the end.

Let us look at a conjugate gradient code which has been modified
to deal with distributed data.

Before this code is executed, we assume the user has requested
some number of workers, using the interactive matlabpool or
indirect batch command.

26 / 68



DISTRIBUTED: Conjugate Gradient Setup

% Sc r i p t to i n voke con j uga t e g r a d i e n t s o l u t i o n
% f o r s p a r s e d i s t r i b u t e d ( or not ) a r r a y
%

N = 1000 ;
nnz = 5000 ;
r c = 1/10 ; % r e c i p r o c a l c o n d i t i o n number

A = sprandsym (N, nnz/Nˆ2 , rc , 1 ) ; % symmetr ic , p o s i t i v e d e f i n i t e
A = d i s t r i b u t e d (A ) ;%A = d i s t r i b u t e d . sprandsym ( ) i s not a v a i l a b l e

b = sum (A, 2 ) ;

[ x , e norm ] = cg emc ( A, b ) ;

f p r i n t f ( 1 , ’ E r r o r r e s i d u a l : %8.4 e \n ’ , e norm ) ;

np = 8 ;
f p r i n t f ( 1 , ’ F i r s t few x v a l u e s : \n ’ ) ;
f p r i n t f ( 1 , ’ x ( %02 i ) = %8.4e \n ’ , [ 1 : np ; ga th e r ( x ( 1 : np ) ) ’ ] ) ;

sprandsym sets up a sparse random symmetric array A.
distributed ‘casts’ A to a distributed array on the workers

27 / 68



DISTRIBUTED: Conjugate Gradient Iteration

f u n c t i o n [ x , resnrm ] = cg emc ( A, b , x0 , t o l , i tmax )
% Conjugate g r a d i e n t i t e r a t i o n f o r A x = b ,
% with symmetr ic , p o s i t i v e−d e f i n i t e A
% ( from G i l l , Murray and Wright , p 147

% Po s s i b l y s upp l y m i s s i n g i npu t pa ramete r s ( ( omi t ted )

% i n i t i a l i z a t i o n
p = ze ro s ( s i z e ( x0 ) ) ;
beta = 0 ;
r = A∗x0 − b ;
rknrm= r ’∗ r ;
x = x0 ;
i t e r = 0 ;

% CG loop
wh i l e 1

p = beta∗p − r ;
tmp = A∗p ;
a lpha = rknrm /(p ’∗ tmp ) ;
x = x + a lpha∗p ;
r = r + a lpha∗tmp ;
rkpnrm= r ’∗ r ;
beta = rkpnrm/ rknrm ;
rknrm = rkpnrm ;
i t e r = i t e r + 1 ;
resnrm= norm (A∗x − b ) ;
i f i t e r >= itmax | | resnrm <= t o l

break
end

end % wh i l e 1 > 0

end % fun c t i o n

This conjugate gradient iteration code is the same, whether A is
an ordinary MATLAB array of doubles, or codistributed.

28 / 68



DISTRIBUTED: Comment

In the conjugate gradient example, we have emphasized how
trivial it is to extend a MATLAB algorithm to a distributed
memory problem. Essentially, all you have to do is invoke
distributed(); the operational commands don’t change.

There are two comments worth making, in the interest of honesty:

Not all MATLAB operators have been extended to work with
distributed memory. In particular, (the last time we asked),
the backslash or “linear solve” operator x=A\b can’t be used
yet for sparse distributed arrays.

Getting “real” data (as opposed to matrices full of random
numbers) properly distributed across multiple processors
involves more choices and more thought than is suggested by
the example we have shown!

29 / 68



DISTRIBUTED: 1D Finite Difference Heat

In the next example, we demonstrate a mixed approach wherein
the stiffness matrix (K) is initially constructed as a
codistributed array on the workers. Each worker then modifies its
localPart, and also assembles the local contribution to the
forcing term (F). The local forcing arrays are then used to build a
codistributed array.

30 / 68



DISTRIBUTED: 1D Finite Difference Heat code

%Sc r i p t to i n voke c o d i s t r i b u t e d s o l v e f o r 1D heat equn by f i n i t e d i f f e r e n c e

N = 100 ;

spmd
K = −2∗c o d i s t r i b u t e d . eye ( N ) ; % d i a g on a l p a r t
l ocP = ge tLo c a lPa r t ( c o d i s t r i b u t e d . co l on (1 , N) ) ;

% Loop ove r columns e n t e r i n g u n i t y above / below the d i a g on a l e n t r y
% Note tha t columns 1 and N a re e x c e p t i o n s

f o r j j=locP ( 1 ) : locP ( end )
i f j j ˜= 1 ; K( j j −1, j j ) = 1 ; end % above the d i a g on a l
i f j j ˜= N; K( j j +1, j j ) = 1 ; end % below the d i a g ona l

end
l o cF = (10∗ l a b i n d e x ( ) )∗ ones ( s i z e ( locP ’ ) ) /Nˆ2 ;% funky rh s
c o d i s t = c o d i s t r i b u t o r 1 d (1 , c o d i s t r i b u t o r 1 d . u n s e t P a r t i t i o n , [N, 1 ] ) ;
F = c o d i s t r i b u t e d . b u i l d ( locF , c o d i s t ) ; % d i s t r i b u t e the a r r a y ( s )

end

T = K\F ; % mld i v i d e i s d e f i n e d f o r d i s t r i b u t e d a r r a y s

p l o t ( ( 1 :N)/N, T, ’ ro ’ )

31 / 68



DISTRIBUTED: 2D Finite Element Heat Model

Finally, we consider an example that combines SPMD and
distributed data to solve a steady state heat equations in 2D, using
the finite element method.

Each worker is assigned a subset of the finite element nodes. That
worker is then responsible for constructing the columns of the
(sparse) finite element matrix associated with those nodes.

Although the matrix is assembled in a distributed fashion, it has to
be gathered back into a standard array before the linear system
can be solved, because sparse linear systems can’t be solved as a
distributed array (yet).

This example is available as in the fem 2D heat folder.

32 / 68



DISTRIBUTED: The Grid

33 / 68



DISTRIBUTED: Finite Element System matrix

The discretized heat equation results in a linear system of the form

K z = F + b

where K is the stiffness matrix, z is the unknown finite element
coefficients, F contains source terms and b accounts for boundary
conditions.

In the parallel implementation, the system matrix K and the
vectors F and b are distributed arrays. The default distribution of
K by columns essentially associates each SPMD worker with a
group of finite element nodes.

34 / 68



DISTRIBUTED: Finite Element System Matrix

To assemble the matrix, each worker loops over all elements. If
element E contains any node associated with the worker, the
worker computes the entire local stiffness matrix Ki ,j . Columns of
K associated with worker nodes are added to the local part of Ki ,j .
The rest are discarded (which is OK, because they will also be
computed and saved by the worker responsible for those nodes ).

When element 5 is handled, the “blue”, “red” and “black”
processors each compute K . But blue only updates column 11 of
K, red columns 16 and 17, and black columns 21, 22, and 23.

At the cost of some redundant computation, we avoid a lot of
communication.

35 / 68



Assemble Codistributed Arrays - code fragment

spmd
%
% Set up c o d i s t r i b u t e d s t r u c t u r e
%
% Column p o i n t e r s and such f o r c o d i s t r i b u t e d a r r a y s .
%

Vc = c o d i s t r i b u t e d . co l on (1 , n e qu a t i o n s ) ;
lP = ge tLo c a lPa r t (Vc ) ;
lP 1= lP ( 1 ) ; lP end = lP ( end ) ; %f i r s t and l a s t columns o f K on t h i s l a b
c o d i s t V c = g e t C o d i s t r i b u t o r (Vc ) ; dPM = co d i s t V c . P a r t i t i o n ;

. . .
% spa r s e a r r a y s on each l a b
%

K lab = spa r s e ( n equa t i on s , dPM( l a b i n d e x ) ) ;
. . .

% Bu i l d the f i n i t e e l ement ma t r i c e s − Begin l oop ove r e l ement s
%

f o r n e l =1: n e l emen t s
n o d e s l o c a l = e conn ( n e l , : ) ;% which nodes a r e i n t h i s e l ement

% sub s e t o f nodes / columns on t h i s l a b
l a b n o d e s l o c a l = e x t r a c t ( n o d e s l o c a l , lP 1 , lP end ) ;

. . . i f empty do noth ing , e l s e accumulate K lab , e t c end
end % n e l

%
% Assemble the ’ lab ’ p a r t s i n a c o d i s t r i b u t e d format .
% syn tax f o r v e r s i o n R2009b

c o d i s t m a t r i x = c o d i s t r i b u t o r 1 d ( 2 , dPM, [ n equa t i on s , n e qu a t i o n s ] ) ;
K = c o d i s t r i b u t e d . b u i l d ( K lab , c o d i s t m a t r i x ) ;

end % spmd

36 / 68



DISTRIBUTED: The Results

37 / 68



MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

38 / 68



IMAGE: Image Processing in Parallel

Here is a mysterious SPMD program to be run with 3 workers:

x = imread ( ’ b a l l o o n s . t i f ’ ) ;

y = imno i s e ( x , ’ s a l t & pepper ’ , 0 .30 ) ;

yd = d i s t r i b u t e d ( y ) ;

spmd
y l = ge tLo c a lPa r t ( yd ) ;
y l = med f i l t 2 ( y l , [ 3 , 3 ] ) ;

end

z ( 1 : 4 80 , 1 : 6 4 0 , 1 ) = y l {1} ;
z ( 1 : 4 8 0 , 1 : 6 4 0 , 2 ) = y l {2} ;
z ( 1 : 4 8 0 , 1 : 6 4 0 , 3 ) = y l {3} ;

f i g u r e ;
subp l o t ( 1 , 3 , 1 ) ; imshow ( x ) ; t i t l e ( ’X ’ ) ;
subp l o t ( 1 , 3 , 2 ) ; imshow ( y ) ; t i t l e ( ’Y ’ ) ;
subp l o t ( 1 , 3 , 3 ) ; imshow ( z ) ; t i t l e ( ’Z ’ ) ;

Without comments, what can you guess about this program?

39 / 68



IMAGE: Image → Noisy Image → Filtered Image

This filtering operation uses a 3x3 pixel neighborhood.
We could blend all the noise away with a larger neighborhood.

40 / 68



IMAGE: Image → Noisy Image → Filtered Image

% Read a c o l o r image , s t o r e d as 480 x640x3 a r r a y .
%

x = imread ( ’ b a l l o o n s . t i f ’ ) ;
%
% Create an image Y by add ing ” s a l t and pepper ” n o i s e to X .
%

y = imno i s e ( x , ’ s a l t & pepper ’ , 0 .30 ) ;
%
% Make YD, a d i s t r i b u t e d v e r s i o n o f Y .
%

yd = d i s t r i b u t e d ( y ) ;
%
% Each worker works on i t s ” l o c a l p a r t ” , YL .
%

spmd
y l = ge tLo c a lPa r t ( yd ) ;
y l = med f i l t 2 ( y l , [ 3 , 3 ] ) ;

end
%
% The c l i e n t r e t r i e v e s the data from each worker .
%

z ( 1 : 4 80 , 1 : 6 4 0 , 1 ) = y l {1} ;
z ( 1 : 4 8 0 , 1 : 6 4 0 , 2 ) = y l {2} ;
z ( 1 : 4 8 0 , 1 : 6 4 0 , 3 ) = y l {3} ;

%
% Di s p l a y the o r i g i n a l , no i s y , and f i l t e r e d v e r s i o n s .
%

f i g u r e ;
subp l o t ( 1 , 3 , 1 ) ; imshow ( x ) ; t i t l e ( ’ O r i g i n a l image ’ ) ;
subp l o t ( 1 , 3 , 2 ) ; imshow ( y ) ; t i t l e ( ’ No i sy Image ’ ) ;
subp l o t ( 1 , 3 , 3 ) ; imshow ( z ) ; t i t l e ( ’ Median F i l t e r e d Image ’ ) ;

41 / 68



MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

42 / 68



CONTRAST: Image → Contrast Enhancement → Image2

%
% Get 4 SPMD worke r s
%

mat labpoo l open 4
%
% Read an image
%

x = imageread ( ’ s u r f s u p . t i f ’ ) ;
%
% Since the image i s b l a c k and white , i t w i l l be d i s t r i b u t e d by columns
%

xd = d i s t r i b u t e d ( x ) ;
%
% Each worker enhances the c o n t r a s t on i t s p o r t i o n o f the p i c t u r e
%

spmd
x l = ge tLo c a lPa r t ( xd ) ;
x l = n l f i l t e r ( x l , [ 3 , 3 ] , @ad j u s tCon t r a s t ) ;
x l = u i n t 8 ( x l ) ;

end
%
% Concatenate the s ubma t r i c e s to as semb le the whole image
%

xf spmd = [ x l {:} ] ;

mat l abpoo l c l o s e

43 / 68



CONTRAST: Image → Contrast Enhancement → Image2

When a filtering operation is done on the client, we get picture 2.
The same operation, divided among 4 workers, gives us picture 3.
What went wrong?

44 / 68



CONTRAST: Image → Contrast Enhancement → Image2

Each pixel has had its contrast enhanced. That is, we compute
the average over a 3x3 neighborhood, and then increase the
difference between the center pixel and this average. Doing this for
each pixel sharpens the contrast.

+-----+-----+-----+
| P11 | P12 | P13 |
+-----+-----+-----+
| P21 | P22 | P23 |
+-----+-----+-----+
| P31 | P32 | P33 |
+-----+-----+-----+

P22 <- C * P22 + ( 1 - C ) * Average

45 / 68



CONTRAST: Image → Contrast Enhancement → Image2

When the image is divided by columns among the workers,
artificial internal boundaries are created. The algorithm turns any
pixel lying along the boundary to white. (The same thing
happened on the client, but we didn’t notice!)

Worker 1 Worker 2
+-----+-----+-----+ +-----+-----+-----+ +----
| P11 | P12 | P13 | | P14 | P15 | P16 | | P17
+-----+-----+-----+ +-----+-----+-----+ +----
| P21 | P22 | P23 | | P24 | P25 | P26 | | P27
+-----+-----+-----+ +-----+-----+-----+ +----
| P31 | P32 | P33 | | P34 | P35 | P36 | | P37
+-----+-----+-----+ +-----+-----+-----+ +----
| P41 | P42 | P43 | | P44 | P45 | P46 | | P47
+-----+-----+-----+ +-----+-----+-----+ +----

Dividing up the data has created undesirable artifacts!
46 / 68



CONTRAST: Image → Contrast Enhancement → Image2

The result is spurious lines on the processed image.

47 / 68



MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

48 / 68



CONTRAST2: Workers Need to Communicate

The spurious lines would disappear if each worker could just be
allowed to peek at the last column of data from the previous
worker, and the first column of data from the next worker.

Just as in MPI, MATLAB includes commands that allow workers
to exchange data.

The command we would like to use is labSendReceive() which
controls the simultaneous transmission of data from all the workers.

data_received = labSendReceive ( to, from, data_sent );

49 / 68



CONTRAST2: Who Do I Want to Communicate With?

spmd

xl = getLocalPart ( xd );

if ( labindex ~= 1 )
previous = labindex - 1;

else
previous = numlabs;

end

if ( labindex ~= numlabs )
next = labindex + 1;

else
next = 1;

end
50 / 68



CONTRAST2: First Column Left, Last Column Right

column = labSendReceive ( previous, next, xl(:,1) );

if ( labindex < numlabs )
xl = [ xl, column ];

end

column = labSendReceive ( next, previous, xl(:,end) );

if ( 1 < labindex )
xl = [ column, xl ];

end

51 / 68



CONTRAST2: Filter, then Discard Extra Columns

xl = nlfilter ( xl, [3,3], @enhance_contrast );

if ( labindex < numlabs )
xl = xl(:,1:end-1);

end

if ( 1 < labindex )
xl = xl(:,2:end);

end

xl = uint8 ( xl );

end

52 / 68



CONTRAST2: Image → Enhancement → Image2

Four SPMD workers operated on columns of this image.
Communication was allowed using labSendReceive.

53 / 68



MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

54 / 68



BATCH: Indirect Execution

We can run quick, local interactive jobs using the matlabpool
command to get parallel workers.

The batch command is an alternative which allows you to execute
a MATLAB script (using either parfor or spmd statements) in the
background on your desktop...or on a remote machine.

The batch command includes a matlabpool argument that allows
you to request a given number of workers.

For remote jobs, the number of cores or processors you are asking
for is the matlabpool plus one, because of the client.

Since Ithaca allocates cores in groups of 8, it makes sense to ask
for 7, or 15, or 23 or 31 workers, for instance.

55 / 68



BATCH: PRIME FUN is the function

f u n c t i o n t o t a l = p r ime fun ( n )

spmd

n l o = ( n ∗ ( l a b i n d e x − 1 ) ) / numlabs + 1 ;
nh i = ( n ∗ l a b i n d e x ) / numlabs ;
i f ( n l o == 1 )

n l o = 2 ;
end

t o t a l p a r t = 0 ;

f o r i = n l o : nh i

pr ime = 1 ;

f o r j = 2 : i − 1
i f ( mod ( i , j ) == 0 )

pr ime = 0 ;
break

end
end

t o t a l p a r t = t o t a l p a r t + pr ime ;

end

t o t a l s pmd = gp l u s ( t o t a l p a r t ) ;
end

t o t a l = to t a l s pmd {1} ;
r e t u r n

end 56 / 68



BATCH: PRIME SCRIPT runs the function

%% PRIME SCRIPT i s a s c r i p t to c a l l PRIME FUN .
%
% D i s c u s s i o n :
%
% The BATCH command runs s c r i p t s , not f u n c t i o n s . So we have to w r i t e
% t h i s s h o r t s c r i p t i f we want to work wi th BATCH!
%
% L i c e n s i n g :
%
% This code i s d i s t r i b u t e d under the GNU LGPL l i c e n s e .
%
% Mod i f i ed :
%
% 27 March 2010
%
% Author :
%
% John Burkardt
%

n = 10000 ;

f p r i n t f ( 1 , ’\n ’ ) ;
f p r i n t f ( 1 , ’PRIME SCRIPT\n ’ ) ;
f p r i n t f ( 1 , ’ Count pr ime numbers from 1 to %d\n ’ , n ) ;

t o t a l = p r ime fun ( n ) ;

57 / 68



BATCH: Using the BATCH Command

job = batch ( ’prime_script’, ...
’configuration’, ’local’, ... <-- Run it locally.
’matlabpool’, 7 ) <-- 7 workers, 1 client.

wait ( job ); <-- One way to find out when job is done.

load ( job ); <-- Load the output variables from
the job into the MATLAB workspace.

total <-- We can examine the value of TOTAL.

destroy ( job ); <-- Clean up

58 / 68



BATCH: Using the BATCH Command

The wait command pauses your MATLAB session.

Using batch, you can submit multiple jobs:

job1 = batch ( ... )
job2 = batch ( ... )

Using get, you can check on any job’s status:

get ( job1, ’state’ )

Using load, you can get the whole workspace, or you can examine
just a single output variable if you specify the variable name:

total = load ( job2, ’total’ )

59 / 68



BATCH: The BATCH Command

job_id = batch (
’script_to_run’, ...
’configuration’, ’local’ or ’ithaca_2009b’, ...
’FileDependencies’, ’file’ or {’file1’,’file2’}, ...
’CaptureDiary’, ’true’, ... (the default)
’CurrentDirectory’, ’/home/burkardt/matlab’, ...
’PathDependencies’, ’path’ or {’path1’,’path2’}, ...
’matlabpool’, number of workers (can be zero!) )

Note that you do not include the file extension when naming the
script to run, or the files in the FileDependencies.

60 / 68



MATLAB Parallel Computing

SPMD: Single Program, Multiple Data

QUAD Example

Distributed Arrays

IMAGE Example

CONTRAST Example

CONTRAST2: Messages

Batch Computing

Conclusion

61 / 68



CONCLUSION: Summary of Examples

The QUAD example showed a simple problem that could be done
as easily with SPMD as with PARFOR. We just needed to learn
about composite variables!

The CONJUGATE GRADIENT example showed that many
MATLAB operations work for distributed arrays, a kind of array
storage scheme associated with SPMD.

The HEAT example shows how to construct local arrays and
assemble these to distributed arrays. This enables treatment of
very large problems.

The IMAGE and CONTRAST examples showed us problems which
can be broken up into subproblems to be dealt with by SPMD
workers. We also saw that sometimes it is necessary for these
workers to communicate, using a simple message-passing system.

62 / 68



Conclusion: Desktop Experiments

Virginia Tech has a limited number of concurrent MATLAB
licenses, which include the Parallel Computing Toolbox.

This is one way you can test parallel MATLAB on your desktop
machine.

If you don’t have a multicore machine, you won’t see any speedup,
but you may still be able to run some “parallel” programs.

63 / 68



Conclusion: Ithaca Experiments

If you want to work with parallel MATLAB on Ithaca, you must
first get an account, by going to this website:

http://www.arc.vt.edu/index.php

Under the item Services & Support select User Accounts.

On the new page, under Ithaca Account Requests, select ARC
Systems Account Request Form. Fill in the information and
submit it. Although you’re asked to describe the research you want
the account for, you can say that this account is to experiment
with Ithaca to see if it is suitable for your work.

64 / 68



Conclusion: Desktop-to-Ithaca Submission

If you want to use parallel MATLAB regularly, you may want to set
up a way to submit jobs from your desktop to Ithaca, without
logging in directly.

This requires defining a configuration file on your desktop, adding
some scripts to your MATLAB directory, and setting up a secure
connection to Ithaca.

The steps for doing this are described in the document:

https://portal.arc.vt.edu/matlab/...
RemoteMatlabSubmission.pdf

We will be available to help you with this process.

65 / 68



Conclusion: VT MATLAB LISTSERV

There is a local LISTSERV for people interested in MATLAB on
the Virginia Tech campus. We try not to post messages here
unless we really consider them of importance!

Important messages include information about workshops, special
MATLAB events, and other issues affecting MATLAB users.

To subscribe to the mathworks listserver, send email to:

listserv@listserv.vt.edu.

The body of the message should simply be:

subscribe mathworks firstname lastname

66 / 68



CONCLUSION: Where is it?

MATLAB Parallel Computing Toolbox User’s Guide 4.3
www.mathworks.com/access/helpdesk/help/pdf doc/distcomp/...
distcomp.pdf

Gaurav Sharma, Jos Martin,
MATLAB: A Language for Parallel Computing,
International Journal of Parallel Programming,
Volume 37, Number 1, pages 3-36, February 2009.

http://scholar.vt.edu/.../spmd codes

quad
conjugate gradient
fd 1D heat
fem 2D heat
image
contrast and contrast2
batch prime

67 / 68



AFTERWORD: PMODE

PMODE allows interactive parallel execution of MATLAB
commands. PMODE achieves this by defining and submitting a
parallel job, and it opens a Parallel Command Window connected
to the labs running the job. The labs receive commands entered in
the Parallel Command Window, process them, and send the
command output back to the Parallel Command Window.

pmode start ’local’ 2 will initiate pmode; pmode exit will
destroy the parallel job and end the pmode session

This may be a useful way to experiment with computations on the
labs.

68 / 68


