DETAILS OF ITERATIVE TEMPLATES TEST:

    Univ. of Tennessee and Oak Ridge National Laboratory
    October 1, 1993
    Details of these algorithms are described in "Templates
    for the Solution of Linear Systems: Building Blocks for
    Iterative Methods", Barrett, Berry, Chan, Demmel, Donato,
    Dongarra, Eijkhout, Pozo, Romine, and van der Vorst,
    SIAM Publications, 1993.
    (ftp netlib2.cs.utk.edu; cd linalg; get templates.ps).


MACHINE PRECISION = 5.96E-08
CONVERGENCE TEST TOLERANCE = 1.00E-07


  For a detailed description of the following information,
  see the end of this file.

 ======================================================
            CONVERGENCE  NORMALIZED  NUM
   METHOD    CRITERION    RESIDUAL   ITER  INFO  FLAG
 ======================================================

  see the end of this file.
Order  36 SPD 2-d Poisson matrix (no preconditioning)

  CG        5.56E-08    1.66E-02       6
  Chebyshev 8.79E-08    3.73E-02      97
  SOR       8.66E-08    1.45E-02      72
  BiCG      5.56E-08    1.66E-02       6
  CGS       2.16E-05    1.22E+00     122
  BiCGSTAB  1.42E-08    1.86E-02       6
  GMRESm    2.15E-08    8.01E+07       1            X
  QMR       9.93E-08    2.07E-02       6
  Jacobi    9.21E-08    2.90E-02     136
 -------------------------------------------------------
Order  36 SPD 2-d Poisson matrix (Jacobi preconditioning)

  CG        5.56E-08    1.66E-02       6
  Chebyshev 1.20E-06    1.16E-01     144      1
  SOR       8.66E-08    1.45E-02      72
  BiCG      5.56E-08    1.66E-02       6
  CGS       2.16E-05    1.22E+00     122
  BiCGSTAB  1.42E-08    1.86E-02       6
  GMRESm    9.12E-09    3.79E+05       1            X
  QMR       9.93E-08    2.07E-02       6
 -------------------------------------------------------
Order   21 SPD Wathen matrix (no preconditioning)

  CG        8.47E-08    6.64E-03      23
  Chebyshev 1.52E-02    2.32E+02      84      1
  SOR       9.65E-08    4.15E-03      56
  BiCG      8.47E-08    6.64E-03      23
  CGS       1.79E-08    3.17E-01      48
  BiCGSTAB  4.07E-08    1.16E-02      21
  GMRESm    1.37E-08    2.95E+07       1            X
  QMR       2.99E-07    4.98E-03      84      1
 -------------------------------------------------------
Order   21 SPD Wathen matrix (Jacobi preconditioning)

  CG        4.36E-08    5.81E-03      15
  Chebyshev 5.58E-01    5.28E+03      84      1
  SOR       9.65E-08    4.15E-03      56
  BiCG      4.36E-08    5.81E-03      15
  CGS       3.73E+10    7.76E+04      84      1
  BiCGSTAB  1.14E-08    3.95E+04      51            X
  GMRESm    8.16E-08    9.33E+03       1            X
  QMR       1.06E-07    9.96E-03      84      1
 -------------------------------------------------------
Order  27 SPD 3-d Poisson matrix (no preconditioning)

  CG        1.16E-08    8.94E-03       4
  Chebyshev 7.01E-08    2.68E-02      30
  SOR       9.87E-08    1.79E-02      12
  BiCG      1.16E-08    8.94E-03       4
  CGS       5.67E-09    1.79E-02       4
  BiCGSTAB  6.69E-10    1.12E-02       4
  GMRESm    1.50E-08    4.50E+07       1            X
  QMR       4.08E-08    1.79E-02       4
  Jacobi    6.94E-08    1.12E-02      47
 -------------------------------------------------------
Order  27 SPD 3-d Poisson matrix (Jacobi preconditioning)

  CG        8.26E-08    1.12E-02       4
  Chebyshev 8.94E-08    1.01E-01      51
  SOR       9.87E-08    1.79E-02      12
  BiCG      8.26E-08    1.12E-02       4
  CGS       1.87E-08    1.79E-02       4
  BiCGSTAB  4.67E-10    2.01E-02       4
  GMRESm    2.65E-08    5.25E+04       1            X
  QMR       1.42E-07    2.01E-02     108      1
 -------------------------------------------------------
Order   36 PDE4 nonsymmetric matrix (no preconditioning)

  BiCG      5.31E-08    3.36E-02      48
  CGS       5.49E-01    1.86E+03     144      1
  BiCGSTAB  3.05E+00    2.56E+04     103    -10
  GMRESm    7.36E-09    1.42E+05       1            X
  QMR       7.59E-06    4.11E-02     144      1
 -------------------------------------------------------
Order   36 PDE4 nonsymmetric matrix (Jacobi preconditioning)

  BiCG      5.31E-08    3.36E-02      48
  CGS       5.49E-01    1.86E+03     144      1
  BiCGSTAB  3.05E+00    2.56E+04     103    -10
  GMRESm    3.89E-08    8.80E+04       1            X
  QMR       7.59E-06    4.11E-02     144      1
 -------------------------------------------------------

 ======
 LEGEND:
 ======

    ==================
    SYSTEM DESCRIPTION
    ==================

    SPD matrices:

       WATH: "Wathen Matrix": consistent mass matrix
       F2SH: 2-d Poisson problem
       F3SH: 3-d Poisson problem

       PDE1: u_xx+u_yy+au_x+(a_x/2)u
             for a = 20exp[3.5(x**2+y**2 )]

    Nonsymmetric matrices:

       PDE2: u_xx+u_yy+u_zz+1000u_x
       PDE3  u_xx+u_yy+u_zz-10**5x**2(u_x+u_y+u_z )
       PDE4: u_xx+u_yy+u_zz+1000exp(xyz)(u_x+u_y-u_z)

    =====================
    CONVERGENCE CRITERION
    =====================

    Convergence criteria: residual as reported by the
    algorithm: ||AX - B|| / ||B||. Note that NaN may signify
    divergence of the residual to the point of numerical overflow.

    ===================
    NORMALIZED RESIDUAL
    ===================

    Normalized Residual: ||AX - B|| / (||A||||X||*N*TOL).
    This is an apostiori check of the iterated solution.

    ====
    INFO
    ====

    If this column is blank, then the algorithm claims to have
    found the solution to tolerance (i.e. INFO = 0).
    This should be verified by checking the normalizedresidual.

    Otherwise:

       = 1: Convergence not achieved given the maximum number of iterations.

       Input parameter errors:

       = -1: matrix dimension N < 0
       = -2: LDW < N
       = -3: Maximum number of iterations <= 0.
       = -4: For SOR: OMEGA not in interval (0,2)
             For GMRES: LDW2 < 2*RESTRT
       = -5: incorrect index request by uper level.
       = -6: incorrect job code from upper level.

       <= -10: Algorithm was terminated due to breakdown.
               See algorithm documentation for details.

    ====
    FLAG
    ====

       X: Algorithm has reported convergence, but
          approximate solution fails scaled
          residual check.

    =====
    NOTES
    =====

    GMRES: For the symmetric test matrices, the restart parameter is
    set to N. This should, theoretically, result in no restarting. For
    nonsymmetric testing the restart parameter is set to N / 2.

    Stationary methods:

    - Since the residual norm ||b-Ax|| is not available as part of
      the algorithm, the convergence criteria is different from the
      nonstationary methods. Here we use

         || X - X1 || / || X ||.

      That is, we compare the current approximated solution with the
      approximation from the previous step.

    - Since Jacobi and SOR do not use preconditioning,
      Jacobi is only iterated once per system, and SOR loops over
      different values for OMEGA (the first time through OMEGA = 1,
      i.e. the algorithm defaults to Gauss-Siedel). This explains the 
      different residual norms for SOR with the same matrix.