4 April     2015  12:49:39.084 PM      
 
NMS_PRB
  FORTRAN77 version
  Test the NMS library.
 
TEST01
  DCFT2D computes a 2D Fourier transform.
 
 COMPUTING...
 DCFT2D RESULTS (EX 11.8: PLOTS HAVE BEEN SKIPPED)
  MAXIMUM ERROR IS    0.1829951166D-15

 REFERENCE RESULTS FROM IBM PC/AT
  MAXIMUM ERROR IS    0.1885421720E-15
 
TEST02:
  DFZERO finds the root of a function.
 
  Initial interval: 
          0.2000000000D+01  0.3000000000D+01
  Tolerances:       
          0.1000000000D-05  0.1000000000D-05
 
  DFZERO results
  Estimate of zero     0.2094551435D+01
  Function value =    -0.5157851950D-06
 
  Reference results:
  Estimate of zero =   0.2094551435e+01
  Function value =    -0.5157851953e-06
 
TEST03:
  DGEFS factors and solves a linear system.
 
   Coefficient matrix =
      0.100000000000D+02     -0.700000000000D+01      0.000000000000D+00
     -0.300000000000D+01      0.200000000000D+01      0.600000000000D+01
      0.500000000000D+01     -0.100000000000D+01      0.500000000000D+01
   Right-hand side =
      0.700000000000D+01      0.400000000000D+01      0.600000000000D+01

   DGEFS results
   Number of accurate digits =          14
   SOLUTION =
      0.000000000000D+00     -0.100000000000D+01      0.100000000000D+01

   REFERENCE RESULTS FROM IBM PC/AT 
    NUMBER OF ACCURATE DIGITS =          14
    SOLUTION =
      0.000000000000E+00     -0.100000000000E+01      0.100000000000E+01
 
TEST04
  DUNI computes uniform random numbers.
   DUNI RESULTS 
       305      0.30500000D+03
                0.241576136599321D+00
   REFERENCE RESULTS FROM AN IBM P/C
         305      0.30500000E+03
                  0.241576136599321E+00
 
TEST05
  DCFFTI initializes a complex FFT.
  DCFFTF computes it.
  DCFFTF RESULTS FOR N =           16
 CZERO =     0.54922232D+00   0.00000000D+00
  J          OUTPUT FROM DCFFTF,         SCALED COEFFICIENTS
    1  -0.27549191D+01  -0.27755576D-16        0.34436489D+00   0.45640590D-16
    2   0.14052329D+01   0.55511151D-16        0.17565412D+00   0.49960324D-16
    3  -0.77835776D+00   0.27755576D-16        0.97294719D-01   0.32274873D-16
    4   0.40105574D+00   0.00000000D+00        0.50131968D-01   0.24556770D-16
    5  -0.22872217D+00   0.27755576D-16        0.28590271D-01   0.14036467D-16
    6   0.11996600D+00  -0.55511151D-16        0.14995750D-01   0.40794405D-17
    7  -0.84154781D-01   0.83266727D-16        0.10519348D-01  -0.13908989D-17
    8   0.61404351D-01   0.00000000D+00        0.76755439D-02   0.75196159D-17
    9  -0.84154781D-01  -0.27755576D-16        0.10519348D-01   0.15063301D-16
   10   0.11996600D+00  -0.55511151D-16        0.14995750D-01   0.11424997D-16
   11  -0.22872217D+00   0.27755576D-16        0.28590271D-01   0.13661661D-15
   12   0.40105574D+00   0.00000000D+00        0.50131968D-01   0.73670311D-16
   13  -0.77835776D+00   0.27755576D-16        0.97294719D-01  -0.19423768D-15
   14   0.14052329D+01   0.55511151D-16        0.17565412D+00   0.30808890D-15
   15  -0.27549191D+01  -0.13877788D-15        0.34436489D+00   0.18733442D-14

  DCFFTF RESULTS FOR N =           17
 CZERO =     0.54916123D+00   0.00000000D+00
  J          OUTPUT FROM DCFFTF,         SCALED COEFFICIENTS
    1  -0.29260638D+01   0.00000000D+00        0.34424280D+00   0.42156192D-16
    2   0.14919178D+01   0.00000000D+00        0.17551974D+00   0.42988517D-16
    3  -0.82441729D+00   0.00000000D+00        0.96990270D-01   0.35632470D-16
    4   0.42197531D+00   0.00000000D+00        0.49644154D-01   0.24317818D-16
    5  -0.23457290D+00   0.00000000D+00        0.27596811D-01   0.16897615D-16
    6   0.11248160D+00   0.00000000D+00        0.13233130D-01   0.97232249D-17
    7  -0.60345454D-01   0.00000000D+00        0.70994651D-02   0.60858351D-17
    8   0.12012646D-01   0.00000000D+00        0.14132525D-02   0.13845424D-17
    9   0.12012646D-01   0.00000000D+00       -0.14132525D-02  -0.15576102D-17
   10  -0.60345454D-01   0.00000000D+00       -0.70994651D-02  -0.86940501D-17
   11   0.11248160D+00   0.00000000D+00       -0.13233130D-01  -0.64839434D-16
   12  -0.23457290D+00   0.00000000D+00       -0.27596811D-01  -0.40554277D-16
   13   0.42197531D+00   0.00000000D+00       -0.49644154D-01   0.97338554D-16
   14  -0.82441729D+00   0.00000000D+00       -0.96990270D-01  -0.16628486D-15
   15   0.14919178D+01   0.00000000D+00       -0.17551974D+00  -0.94598525D-15
   16  -0.29260638D+01   0.00000000D+00       -0.34424280D+00  -0.67449908D-15

 REFERENCE RESULTS (PARTIAL) FROM IBM PC/AT
  DCFFTF RESULTS FOR N =           17
  CZERO =  (0.54916124E+00, 0.00000000E+00)
     .  
     .  
   10  -0.60345452E-01  -0.37837322E-16 
   11   0.11248162E+00  -0.47424091E-16 
   12  -0.23457294E+00   0.73973161E-16 
   13   0.42197537E+00  -0.25268310E-17 
   14  -0.82441735E+00  -0.14952867E-16 
   15   0.14919178E+01   0.31242621E-16 
   16  -0.29260639E+01  -0.69144627E-16 
 
TEST06
  DRNOR computes normal random numbers.
 RUNNING 10,000 NORMALS INTO 32 BINS...
 HISTOGRAM FOR DRNOR: NUMBER IN BIN 1,...,32
    (-INFINITY,-3],(-3,-2.8],...,(2.8,3],(3,INFINITY)
  (VALUES ARE SLIGHTLY COMPUTER DEPENDENT)
      16      14      21      32      46      96     135     198     292
     334     454     549     611     665     743     801     785     751
     747     634     503     421     351     274     184     124      90
      53      35      19      13       9

 REFERENCE RESULTS FROM IBM PC/AT 
      16      14      21      32      46      96     135      198     292
     334     454     549     611     665     743     801      785     751
     747     634     503     421     351     274     184      124      90
      53      35      19      13       9
 
DPCHEZ_TEST
  DPCHEZ sets up piecewise cubic Hermite splines.
 
 -0.1000000000D+01    0.3846153846D-01    0.0000000000D+00   -0.3828750435D-02
 -0.9900000000D+00    0.3918095023D-01   -0.3089175003D-04   -0.2387672443D-02
 -0.9800000000D+00    0.3993548517D-01   -0.4852122901D-04   -0.1176935510D-02
 -0.9700000000D+00    0.4072366516D-01   -0.5521138358D-04   -0.2004830510D-03
 -0.9600000000D+00    0.4154401207D-01   -0.5332570402D-04    0.5375172514D-03
 -0.9500000000D+00    0.4239504776D-01   -0.4527053969D-04    0.1032658723D-02
 -0.9400000000D+00    0.4327529412D-01   -0.3349756706D-04    0.1280279888D-02
 -0.9300000000D+00    0.4418327300D-01   -0.2050642163D-04    0.1275447480D-02
 -0.9200000000D+00    0.4511750628D-01   -0.8847506049D-05    0.1012938179D-02
 -0.9100000000D+00    0.4607651584D-01   -0.1124987686D-05    0.4872189665D-03
 -0.9000000000D+00    0.4705882353D-01    0.0000000000D+00   -0.3075740100D-03
 -0.8900000000D+00    0.4806886029D-01   -0.2285000919D-05   -0.1520108851D-03
 -0.8800000000D+00    0.4911281046D-01   -0.3103098476D-05   -0.1532546803D-04
 -0.8700000000D+00    0.5019182598D-01   -0.2677721452D-05    0.9548217271D-04
 -0.8600000000D+00    0.5130705882D-01   -0.1304439682D-05    0.1729789674D-03
 -0.8500000000D+00    0.5245966095D-01    0.6445542698D-06    0.2092681223D-03
 -0.8400000000D+00    0.5365078431D-01    0.2715644198D-05    0.1959559629D-03
 -0.8300000000D+00    0.5488158088D-01    0.4368644735D-05    0.1241161329D-03
 -0.8200000000D+00    0.5615320261D-01    0.4971283666D-05   -0.1574907890D-04
 -0.8100000000D+00    0.5746680147D-01    0.3793282110D-05   -0.2337505349D-03
 -0.8000000000D+00    0.5882352941D-01    0.0000000000D+00   -0.5406574394D-03
 -0.7900000000D+00    0.6022789822D-01   -0.3994568046D-05   -0.2627181018D-03
 -0.7800000000D+00    0.6168495023D-01   -0.5364385616D-05   -0.1781306579D-04
 -0.7700000000D+00    0.6319663326D-01   -0.4504359216D-05    0.1810037206D-03
 -0.7600000000D+00    0.6476489510D-01   -0.1944278155D-05    0.3197988901D-03
 -0.7500000000D+00    0.6639168355D-01    0.1642059763D-05    0.3836924553D-03
 -0.7400000000D+00    0.6807894642D-01    0.5427022757D-05    0.3567849746D-03
 -0.7300000000D+00    0.6982863151D-01    0.8418561030D-05    0.2220785866D-03
 -0.7200000000D+00    0.7164268662D-01    0.9448800181D-05   -0.3860862763D-04
 -0.7100000000D+00    0.7352305956D-01    0.7161742444D-05   -0.4447355431D-03
 -0.7000000000D+00    0.7547169811D-01    0.0000000000D+00   -0.1017138789D-02
 -0.6900000000D+00    0.7749693628D-01   -0.7423337617D-05   -0.4764416915D-03
 -0.6800000000D+00    0.7960808659D-01   -0.9747802489D-05   -0.1492972557D-05
 -0.6700000000D+00    0.8180856466D-01   -0.7757698069D-05    0.3820430068D-03
 -0.6600000000D+00    0.8410178610D-01   -0.2503223043D-05    0.6466272837D-03
 -0.6500000000D+00    0.8649116652D-01    0.4680033966D-05    0.7626944863D-03
 -0.6400000000D+00    0.8898012155D-01    0.1215001784D-04    0.6984880993D-03
 -0.6300000000D+00    0.9157206679D-01    0.1793541405D-04    0.4198817521D-03
 -0.6200000000D+00    0.9427041787D-01    0.1971099422D-04   -0.1098145809D-03
 -0.6100000000D+00    0.9707859040D-01    0.1477094327D-04   -0.9300646297D-03
 -0.6000000000D+00    0.1000000000D+00    0.0000000000D+00   -0.2083333333D-02
 -0.5900000000D+00    0.1030514128D+00   -0.1480729370D-04   -0.9005248009D-03
 -0.5800000000D+00    0.1062513833D+00   -0.1854233717D-04    0.1226047806D-03
 -0.5700000000D+00    0.1096060100D+00   -0.1306376044D-04    0.9330287360D-03
 -0.5600000000D+00    0.1131213912D+00   -0.7807447501D-06    0.1473609986D-02
 -0.5500000000D+00    0.1168036254D+00    0.1530422847D-04    0.1682768074D-02
 -0.5400000000D+00    0.1206588109D+00    0.3154917820D-04    0.1494121946D-02
 -0.5300000000D+00    0.1246930462D+00    0.4362272832D-04    0.8361078649D-03
 -0.5200000000D+00    0.1289124296D+00    0.4645026580D-04   -0.3684277566D-03
 -0.5100000000D+00    0.1333230596D+00    0.3415590290D-04   -0.2202660292D-02
 -0.5000000000D+00    0.1379310345D+00    0.0000000000D+00   -0.4756242568D-02
 -0.4900000000D+00    0.1427742464D+00   -0.3189423123D-04   -0.1698785596D-02
 -0.4800000000D+00    0.1478933175D+00   -0.3567660365D-04    0.8481385628D-03
 -0.4700000000D+00    0.1532984408D+00   -0.1700568700D-04    0.2772512107D-02
 -0.4600000000D+00    0.1589998098D+00    0.1729782661D-04    0.3953842492D-02
 -0.4500000000D+00    0.1650076174D+00    0.5916381149D-04    0.4262651367D-02
 -0.4400000000D+00    0.1713320571D+00    0.9918036258D-04    0.3559981404D-02
 -0.4300000000D+00    0.1779833219D+00    0.1264966825D-03    0.1696939573D-02
 -0.4200000000D+00    0.1849716052D+00    0.1287216829D-03   -0.1485698602D-02
 -0.4100000000D+00    0.1923071002D+00    0.9181906351D-04   -0.6157791661D-02
 -0.4000000000D+00    0.2000000000D+00    0.0000000000D+00   -0.1250000000D-01
 -0.3900000000D+00    0.2081515311D+00   -0.7335180841D-04   -0.2523778436D-02
 -0.3800000000D+00    0.2168618540D+00   -0.5788565292D-04    0.5229086715D-02
 -0.3700000000D+00    0.2261395636D+00    0.2311363773D-04    0.1054676961D-01
 -0.3600000000D+00    0.2359932544D+00    0.1441978341D-03    0.1320864009D-01
 -0.3500000000D+00    0.2464315212D+00    0.2776750493D-03    0.1298693294D-01
 -0.3400000000D+00    0.2574629586D+00    0.3935498395D-03    0.9649181924D-02
 -0.3300000000D+00    0.2690961612D+00    0.4594923373D-03    0.2961631695D-02
 -0.3200000000D+00    0.2813397239D+00    0.4408474614D-03   -0.7306110738D-02
 -0.3100000000D+00    0.2942022411D+00    0.3006981412D-03   -0.2137486626D-01
 -0.3000000000D+00    0.3076923077D+00    0.0000000000D+00   -0.3944773176D-01
 -0.2900000000D+00    0.3221509800D+00   -0.1697290760D-03    0.3432250653D-02
 -0.2800000000D+00    0.3378648915D+00    0.2705368090D-04    0.3383677637D-01
 -0.2700000000D+00    0.3547610022D+00    0.4651651950D-03    0.5169157409D-01
 -0.2600000000D+00    0.3727662722D+00    0.1019060293D-02    0.5700243168D-01
 -0.2500000000D+00    0.3918076615D+00    0.1563759050D-02    0.4988143937D-01
 -0.2400000000D+00    0.4118121302D+00    0.1976064604D-02    0.3057896583D-01
 -0.2300000000D+00    0.4327066383D+00    0.2136132393D-02   -0.4779252360D-03
 -0.2200000000D+00    0.4544181460D+00    0.1929458174D-02   -0.4264006333D-01
 -0.2100000000D+00    0.4768736132D+00    0.1249356329D-02   -0.9498351925D-01
 -0.2000000000D+00    0.5000000000D+00    0.0000000000D+00   -0.1562500000D+00
 -0.1900000000D+00    0.5252243750D+00   -0.3998037122D-03    0.6389511615D-01
 -0.1800000000D+00    0.5535200000D+00    0.1033812155D-02    0.2108311102D+00
 -0.1700000000D+00    0.5841331250D+00    0.3581601052D-02    0.2872218884D+00
 -0.1600000000D+00    0.6163100000D+00    0.6553902439D-02    0.2963300119D+00
 -0.1500000000D+00    0.6492968750D+00    0.9296875000D-02    0.2420625000D+00
 -0.1400000000D+00    0.6823400000D+00    0.1119906040D-01    0.1289888744D+00
 -0.1300000000D+00    0.7146856250D+00    0.1169792728D-01   -0.3768357040D-01
 -0.1200000000D+00    0.7455800000D+00    0.1028588235D-01   -0.2521946367D+00
 -0.1100000000D+00    0.7742693750D+00    0.6515056382D-02   -0.5083943157D+00
 -0.1000000000D+00    0.8000000000D+00    0.0000000000D+00   -0.8000000000D+00
 -0.9000000000D-01    0.8250400000D+00   -0.6560831601D-02   -0.5200197440D+00
 -0.8000000000D-01    0.8515200000D+00   -0.1054896552D-01   -0.2846516052D+00
 -0.7000000000D-01    0.8784800000D+00   -0.1238859688D-01   -0.8976399919D-01
 -0.6000000000D-01    0.9049600000D+00   -0.1247119266D-01    0.6696002020D-01
 -0.5000000000D-01    0.9300000000D+00   -0.1117647059D-01    0.1854671280D+00
 -0.4000000000D-01    0.9526400000D+00   -0.8898461538D-02    0.2628875740D+00
 -0.3000000000D-01    0.9719200000D+00   -0.6075110024D-02    0.2932883472D+00
 -0.2000000000D-01    0.9868800000D+00   -0.3219009901D-02    0.2677039506D+00
 -0.1000000000D-01    0.9965600000D+00   -0.9462344140D-03    0.1744906562D+00
  0.0000000000D+00    0.1000000000D+01    0.0000000000D+00    0.0000000000D+00
  Integral from 0 to 1 =   0.274679262702D+00    IERR =     0

  Reference results:
 -0.3000000000D-01    0.9719200000D+00   -0.6075110024D-02    0.2932883472D+00
 -0.2000000000D-01    0.9868800000D+00   -0.3219009901D-02    0.2677039506D+00
 -0.1000000000D-01    0.9965600000D+00   -0.9462344140D-03    0.1744906562D+00
  0.0000000000D+00    0.1000000000D+01    0.0000000000D+00    0.0000000000D+00
  Integral from 0 to 1 =   0.274679262702D+00    IERR =     0
 
TEST08
  DFMIN minimizes a function.
 
 DFMIN RESULTS
   XSTAR =  0.8164961769D+00

 REFERENCE RESULTS FROM IBM PC/AT
   XSTAR =  0.8164961769E+00
 
TEST09
  DNSQE solves a system of nonlinear equations.
 
 INITIAL GUESS
      0.200000000000D+01  0.300000000000D+01

   DNSQE RESULTS
 ESTIMATE OF SOLUTION 
      0.199999999997D+01  0.100000000001D+01
 VALUES OF NONLINEAR FUNCTIONS
     -0.415918410823D-10 -0.940891808909D-10

 REFERENCE RESULTS FROM IBM PC/AT
  ESTIMATE OF SOLUTION 
      0.199999999997E+01  0.100000000001E+01
  VALUES OF NONLINEAR FUNCTIONS
     -0.415920631269E-10 -0.940900690694E-10
 
TEST10
  DQRLS solves a least squares problem.
 
  COEFFICIENT MATRIX
     0.10000000D+01   0.10000000D+01   0.10000000D+01
     0.10000000D+01   0.20000000D+01   0.40000000D+01
     0.10000000D+01   0.30000000D+01   0.90000000D+01
     0.10000000D+01   0.40000000D+01   0.16000000D+02
     0.10000000D+01   0.50000000D+01   0.25000000D+02
  RIGHT-HAND SIDE
    0.1000000D+01  0.2300000D+01  0.4600000D+01  0.3100000D+01  0.1200000D+01
  RANK OF MATRIX =           3
  PARAMETERS
    -0.30200000D+01   0.44914286D+01  -0.72857141D+00
  RESIDUALS
    0.2571429D+00 -0.7485714D+00  0.7028571D+00 -0.1885714D+00 -0.2285714D-01

 REFERENCE RESULTS FROM IBM PC/AT
  RANK OF MATRIX =           3
  PARAMETERS
    -0.30200000E+01   0.44914286E+01  -0.72857143E+00
  RESIDUALS
    0.2571429E+00 -0.7485714E+00  0.7028571E+00 -0.1885714E+00    -0.2285714E-01
 
TEST11
  DFZERO solves a nonlinear equation.
 
  INITIAL INTERVAL: 
          0.2000000000D+01  0.3000000000D+01
  TOLERANCES:       
          0.1000000000D-05  0.1000000000D-05

   DFZERO RESULTS
  ESTIMATE OF ZERO     0.2094551435D+01
   FUNCTION VALUE =   -0.5157851950D-06

   REFERENCE RESULTS FROM IBM PC/AT
    ESTIMATE OF ZERO =   0.2094551435E+01
      FUNCTION VALUE =  -0.5157851953E-06
 
TEST12
  UNCMND performs nonlinear least squares data fitting.
 
  0.10000000D+01   0.10000000D+01   0.00000000D+00
  0.10000000D+01   0.10000000D+01   0.00000000D+00
  0.10000000D+01   0.10000000D+01   0.00000000D+00
 -0.42633851D+03  -0.13471030D+04   0.22360680D+01
 -0.20136545D+03  -0.63739199D+03   0.22360680D+01
 -0.82667722D+02  -0.26294230D+03   0.22360680D+01
 -0.35029177D+02  -0.11265941D+03   0.22360680D+01
 -0.14521886D+02  -0.47966104D+02   0.22360680D+01
 -0.57189483D+01  -0.20195924D+02   0.22360680D+01
 -0.57189481D+01  -0.20195924D+02   0.22360680D+01
 -0.57189483D+01  -0.20195924D+02  -0.51437895D+02
 -0.52716742D+01  -0.20203044D+02  -0.51437895D+02
 -0.52716740D+01  -0.20203044D+02  -0.51437895D+02
 -0.52716742D+01  -0.20203044D+02  -0.50543348D+02
  0.20000013D+02  -0.20605341D+02  -0.50543348D+02
  0.20000013D+02  -0.20605341D+02  -0.50543348D+02
  0.20000013D+02  -0.20605340D+02   0.25884657D-04
  
 WARNING IN...
 UNCMND WARNING -- INFO = 1: PROBABLY CONVERGED, GRADIENT SMALL
 UNCMND FOR NONLINEAR LEAST SQUARES RESULTS
  ERROR CODE =           1
 F(X*) =  0.91000000D+02
  X* =
       0.200000126255D+02
      -0.206053410471D+02

 REFERENCE RESULTS (PARTIAL-LAST 8 LINES) FROM IBM PC/AT
 -0.52716742E+01  -0.20203044E+02  -0.57189483E+01
  0.20000000E+02  -0.20605341E+02  -0.52716742E+01
  0.20000001E+02  -0.20605341E+02  -0.52716742E+01
  0.20000000E+02  -0.20605340E+02  -0.52716742E+01
 UNCMND WARNING -- INFO = 1: PROBABLY CONVERGED, GRADIENT SMALL
 UNCMND FOR NONLINEAR LEAST SQUARES RESULTS
  ERROR CODE =           1
  F(X*) =  0.91000000E+02
  X* = 
      0.200000001134E+02
     -0.206053408470E+02
 
TEST13
  DQK15 estimates an integral.
 
  DQK15 ESTIMATE OF ERF(1)
  2.0/SQRT(PI)*RESULT
     0.842700792950D+00     0.828974787422D-14

 REFERENCE RESULTS COMPUTED ON IBM PC/AT 
     0.842700792950E+00     0.828974787422E-14
 
TEST14
  DSVDC computes the singular value decomposition.
 
 SINGULAR VALUES ARE: 
    0.10594723D+08
    0.64774566D+02
    0.34620247D-03
 COEFFICIENTS (ASSUMING DATA GOOD TO 6 DIGITS) ARE:
   -0.16714353D-02
   -0.16169731D+01
    0.87095700D-03

 FOR YEAR  1900 POP ESTM, MEAS, AND RESIDUAL ARE
  0.71904237D+02  0.75994575D+02  0.40903377D+01
 FOR YEAR  1910 POP ESTM, MEAS, AND RESIDUAL ARE
  0.88917968D+02  0.91972266D+02  0.30542978D+01
 FOR YEAR  1920 POP ESTM, MEAS, AND RESIDUAL ARE
  0.10610589D+03  0.10571062D+03 -0.39527035D+00
 FOR YEAR  1930 POP ESTM, MEAS, AND RESIDUAL ARE
  0.12346800D+03  0.12277505D+03 -0.69295796D+00
 FOR YEAR  1940 POP ESTM, MEAS, AND RESIDUAL ARE
  0.14100431D+03  0.13166927D+03 -0.93350340D+01
 FOR YEAR  1950 POP ESTM, MEAS, AND RESIDUAL ARE
  0.15871481D+03  0.15069736D+03 -0.80174444D+01
 FOR YEAR  1960 POP ESTM, MEAS, AND RESIDUAL ARE
  0.17659949D+03  0.17932317D+03  0.27236818D+01
 FOR YEAR  1970 POP ESTM, MEAS, AND RESIDUAL ARE
  0.19465837D+03  0.20323530D+03  0.85769256D+01
 FOR YEAR  1980 POP ESTMATE IS   0.21289144D+03
 SQUARE ROOT OF RESIDUAL SUM OF SQUARES IS:   0.16096596D+02

 REFERENCE RESULTS (PARTIAL) FROM IBM PC/AT
 SINGULAR VALUES ARE: 
    0.10594723E+08
    0.64774566E+02
    0.34620247E-03
 COEFFICIENTS (ASSUMING DATA GOOD TO 6 DIGITS) ARE:
   -0.16714353E-02
   -0.16169731E+01
    0.87095700E-03
       .  
       .  
       .  
 FOR YEAR  1980 POP ESTMATE IS    0.21289144E+03
 SQUARE ROOT OF RESIDUAL SUM OF SQUARES IS:    0.16096596E+02
 
TEST15
  DQ1DA estimates the integral of a function.
 
          INTERVAL: 
     0.0000000000D+00     0.1000000000D+01

          DQ1DA RESULTS: 
     0.1000000000D-02     0.4747297202D+14     0.7039814216D+03      30      2

 REFERENCE RESULTS ON IBM PC/AT (CALLED DUNI)
     0.0000000000E+00     0.1000000000E+01    0.1000000000E-02     0.4140675161E-01     0.4286574121E-11      30      0
 
TEST16
  DEZFTF computes the discrete Fourier transform.
 
 DEZFTF RESULTS FOR N=  16 AZERO =   0.2746111618D+00
     J          DFTA(J)              DFTB(J) 
     1     0.3443648927D+00     0.5258087722D-16
     2     0.1756541175D+00     0.4302285055D-16
     3     0.9729471745D-01     0.3921494624D-16
     4     0.5013196495D-01     0.2455758016D-16
     5     0.2859026735D-01     0.1403704274D-16
     6     0.1499574989D-01     0.1101869826D-16
     7     0.1051935326D-01     0.1248719156D-16
     8     0.3837775107D-02     0.3759935201D-17
 FOR BREVITY 101 EVALUATION POINTS OMITTED
 DEZFTF RESULTS FOR N=  17 AZERO =   0.2745806197D+00
     J          DFTA(J)              DFTB(J) 
     1     0.3442428079D+00     0.5640338357D-16
     2     0.1755197395D+00     0.4392499559D-16
     3     0.9699027603D-01     0.2465250741D-16
     4     0.4964416088D-01     0.2240208486D-16
     5     0.2759681609D-01     0.2284432765D-16
     6     0.1323313221D-01     0.1219863720D-16
     7     0.7099464912D-02     0.4859291579D-17
     8     0.1413251200D-02    -0.2868188100D-18
 FOR BREVITY 101 EVALUATION POINTS OMITTED

 REFERENCE RESULTS FROM IBM PC/AT
  DEZFTF RESULTS FOR N=  17    AZERO =    0.274581
     J         DFTA(J)              DFTB(J) 
     1     0.3442428079E+00     0.5030951647E-16
     2     0.1755197395E+00     0.4668315002E-16
     3     0.9699027603E-01     0.3740740688E-16
     4     0.4964416088E-01     0.2403131256E-16
     5     0.2759681609E-01     0.8202373493E-17
     6     0.1323313221E-01     0.4148226049E-17
     7     0.7099464912E-02     0.1053997863E-16
     8     0.1413251200E-02     0.5512226224E-17
 
TEST17
  DDRIV2 solves a differential equation.
 
 DDRIV2 RESULTS
    0.0000000000D+00    0.1000000000D+02    0.0000000000D+00   1
    0.0000000000D+00    0.1000000000D+02    0.0000000000D+00   1
    0.1000000000D+00    0.9875337924D+01   -0.2202703389D+01   2
    0.2000000000D+00    0.9599056278D+01   -0.3192450224D+01   2
    0.3000000000D+00    0.9254641447D+01   -0.3637131580D+01   2
    0.4000000000D+00    0.8879610289D+01   -0.3836882310D+01   2
    0.5000000000D+00    0.8490836939D+01   -0.3926695510D+01   2
    0.6000000000D+00    0.8095882554D+01   -0.3967060431D+01   2
    0.7000000000D+00    0.7698148310D+01   -0.3985186477D+01   2
    0.8000000000D+00    0.7299167537D+01   -0.3993340297D+01   2
    0.9000000000D+00    0.6899624932D+01   -0.3996999455D+01   2
    0.1000000000D+01    0.6499829883D+01   -0.3998639062D+01   2
    0.1100000000D+01    0.6099923075D+01   -0.3999384598D+01   2
    0.1200000000D+01    0.5699965170D+01   -0.3999721360D+01   2
    0.1300000000D+01    0.5299983966D+01   -0.3999871727D+01   2
    0.1400000000D+01    0.4899992319D+01   -0.3999938551D+01   2
    0.1500000000D+01    0.4499996483D+01   -0.3999971863D+01   2
    0.1600000000D+01    0.4099998617D+01   -0.3999988932D+01   2
    0.1700000000D+01    0.3699999509D+01   -0.3999996074D+01   2
    0.1800000000D+01    0.3299999784D+01   -0.3999998273D+01   2
    0.1900000000D+01    0.2899999727D+01   -0.3999997820D+01   2
    0.2000000000D+01    0.2499999743D+01   -0.3999997946D+01   2
    0.2100000000D+01    0.2099999659D+01   -0.3999997273D+01   2
    0.2200000000D+01    0.1699999736D+01   -0.3999997890D+01   2
    0.2300000000D+01    0.1299999774D+01   -0.3999998190D+01   2
    0.2400000000D+01    0.8999998607D+00   -0.3999998886D+01   2
    0.2500000000D+01    0.4999999247D+00   -0.3999999398D+01   2
    0.2600000000D+01    0.9999996863D-01   -0.3999999749D+01   2
    0.2624999995D+01    0.0000000000D+00   -0.3999999828D+01   5
   <-- Y=0 AT T=   0.2624999995D+01

 REFERENCE RESULTS (LAST LINE) FROM IBM PC/AT
    0.2624999995E+01   -0.5648151218E-15   -0.3999999828E+01   5  <-- Y=0 AT T=   0.2624999995E+01
 
TEST18
  Find autocorrelation in el Nino data.
 
 EX 11.6: AUTOCORRELATION (DIRECT) OUTPUT SUPRESSED
 EX 11.6: AUTOCORRELATION (COMPLEX FFT) OUTPUT SUPRESSED
 EX 11.6: AUTOCORRELATION (DBLE FFT) OUTPUT REDUCED
   0.1000000000D+01  0.6067398062D+00  0.3538571074D+00
   0.1843027185D+00 -0.1529114172D-01 -0.2198717698D+00
  -0.2962181307D+00 -0.2914580887D+00 -0.1550562043D+00
   0.3680803130D-01  0.1735588664D+00  0.2665974779D+00
   0.3049896546D+00  0.2011691615D+00  0.1780362880D-01
  -0.2103672514D+00 -0.3773868663D+00 -0.4379599788D+00
  -0.4603327597D+00 -0.4255892823D+00

 REFERENCE RESULTS (EX 11.6 PARTIAL-LAST 7 LINES) FROM IBM PC/AT
   0.1000000000E+01  0.6067398062E+00  0.3538571074E+00
   0.1843027185E+00 -0.1529114172E-01 -0.2198717698E+00
  -0.2962181307E+00 -0.2914580887E+00 -0.1550562043E+00
   0.3680803130E-01  0.1735588664E+00  0.2665974779E+00
   0.3049896546E+00  0.2011691615E+00  0.1780362880E-01
  -0.2103672514E+00 -0.3773868663E+00 -0.4379599788E+00
  -0.4603327597E+00 -0.4255892823E+00
 
TEST19
  UNCMND finds the minimum of a function.
 
 COMPUTING...
 OPTDRD    SHIFT FROM FORWARD TO CENTRAL DIFFERENCES IN ITERATION    71
  
 WARNING IN...
 UNCMND WARNING -- INFO = 1: PROBABLY CONVERGED, GRADIENT SMALL
 UNCMND RESULTS
  ERROR CODE =           1
  F(X*) =    0.100000000000D+01
  X* =
  0.1000000D+01   0.1000000D+01   0.1000000D+01   0.1000000D+01   0.1000000D+01
  0.1000000D+01   0.1000000D+01   0.1000000D+01   0.1000000D+01   0.9999999D+00

 REFERENCE RESULTS FROM IBM PC/AT
 UNCMND WARNING -- INFO = 1: PROBABLY CONVERGED, GRADIENT SMALL
 UNCMND RESULTS
  ERROR CODE =           1
  F(X*) =    0.100000000000E+01
  X* =
  0.1000000D+01   0.1000000D+01   0.1000000D+01   0.1000000D+01   0.1000000D+01
  0.1000000D+01   0.1000000D+01   0.1000000D+01   0.1000000D+01   0.9999999D+00
 
TEST20
  DQAGI estimates an integral.
 
 DQAGI RESULT, ABSERR, NEVAL, IER: 
      0.7026028726D+00    0.6401518223D-05  1005    0

 REFERENCE RESULTS FROM IBM PC/AT
    BE SURE THAT UNDERFLOWS ARE SET TO ZERO...
 DQAGI RESULT, ABSERR, NEVAL, IER: 
      0.7026028726E+00    0.6401518223E-05  1005    0
 
TEST21
  Reactor shielding problem
  Number of particles =     1000
  Slab thickness =    2.00000    
 TALLIES 
 % ABSORBED, ENERGY, SD: 0.3720D+02    0.3774710846D+00    0.5346582010D+00
 % REFLECTED, ENERGY, SD: 0.5570D+02    0.3574806938D+00    0.4750421507D+00
 % TRANSMITTED, ENERGY, SD: 0.7000D+01    0.4324209753D+00    0.5652865881D+00

 
NMS_PRB
  Normal end of execution.
 
 4 April     2015  12:49:39.123 PM