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Abstract

We attacked the problem of solving crossword puzzles
by computer: given a set of clues and a crossword
grid, try to maximize the number of words correctly
filled in. In our system, "expert modules" special-
ize in solving specific types of clues, drawing on ideas
from information retrieval, database search, and ma-
chine learning. Each expert module generates a (pos-
sibly empty) candidate list for each clue, and the lists
are merged together and placed into the grid by a cen-
tralized solver. We used a probabilistic representation
throughout the system as a common interchange lan-
guage between subsystems and to drive the search for
an optimal solution. PROVERB, the complete system,
averages 95.3% words correct and 98.1% letters correct
in under 15 minutes per puzzle on a sample of 370 puz-
zles taken from the New York Times and several other
puzzle sources. This corresponds to missing roughly 3
words or 4 letters on a daily 15 x 15 puzzle, making
PROVERB a better-than-average cruciverbalist (cross-
word solver),

Introduction

Proverbs 022:021 That I might make thee know the
certainty o.f the words o] truth...

Crossword puzzles are attempted daily by millions
of people, and require of the solver both an extensive
knowledge of language, history and popular culture,
and a search over possible answers to find a set that
fits in the grid. This dual task, of answering natu-
ral language questions requiring shallow, broad knowl-
edge, and of searching for an optimal set of answers
for the grid, makes these puzzles an interesting chal-
lenge for artificial intelligence. In this paper, we de-
scribe PROVERB, the first broad-coverage computer sys-
tem for solving crossword puzzles1. While PROVERB’S
performance is well below that of human champions,
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1Crossword Maestro is a commercial solver for British-
style crosswords published by Genius 2000 Software. It is
intended as a solving aid, and while it appears quite good at
thesanrus-type clues, in informal tests it did poorly at grid
filling (under 5% words correct).

it exceeds that of casual human solvers, averaging over
95% words correct over a test set of 370 puzzles.

We will first describe the problem and some of the
insights we gained from studying a large database of
crossword puzzles; these motivated our design choices.
We will then discuss our underlying probabilistic model
and the architecture of PROVERB, including how an-
swers to clues are suggested by expert modules, and
how PROVERB searches for an optimal fit of these pos-
sible answers into the grid. Finally, we will present the
system’s performance on a test suite of daily crossword
puzzles and on 1998 tournament puzzles.

The Crossword Solving Problem

The solution to a crossword puzzle is a set of interlock-
ing words (targets) written across and down a square
grid. The solver is presented with an empty grid and a
set of clues; each clue suggests its corresponding target.
Some clue-target pairs are relatively direct: -~Florida
fruit [6]: orange~-2, while others are more oblique and
based on word play: -~Where to get a date [4]: palm~-.
Clues are between one and a dozen or so words long,
averaging about 2.5 words per clue.

To solve a crossword puzzle by computer, we assume
that we have both the grid and the clues in machine
readable form, ignoring the special formatting and un-
usual marks that sometimes appear in crosswords. The
crossword solving problem is the task of returning a grid
of letters, given the numbered clues and a labeled grid.

In this work, we focus on American-style crosswords,
as opposed to British-style or cryptic crosswords. By
convention, all targets are at least 3 letters in length
and long targets can be constructed by stringing mul-
tiple words together: -~Don’t say another word [13]:
buttonyourlip~-. Each empty square in the grid must
be part of a down target and an across target.

As this is largely a new problem domain, distinct
from crossword-puzzle creation (Ginsberg et al. 1990),
we wondered how hard crossword solving really was. To

2Target appears in fixed-width font; all examples are
taken from our crossword database (the CWDB). We will
note the target length following sample clues in this paper
to indicate a complete specification of the clue.
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Puzzles
Source CWDB Train Test
New York Times (NYT) 792 10 70
Los Angeles Times (LAT) 439 10 50
USA Today (USA) 864 10 50
Creator’s Syndicate (CS) 207 10 50
CrosSynergy Syndicate (CSS) 302 1O 50 "~
Universal Crossword (UNI) 262 10 50 ~
TV Guide (TVG) 0 10 50
Dell 969 0 0
Riddler 764 0 0
Other 543 0 0 a-
Total 5142 70 370

Table 1: The crossword database (CWDB) was drawn
from a number of machine-readable sources. The TV
Guide puzzles were added after finalizing the CWDB.

gain some insight into the problem, we studied a large
corpus of existing puzzles. We collected 5142 cross-
word puzzles from a variety of sources, summarized in
Table 1. Several are online versions of daily print news-
paper puzzles (The New York Times, The Los Angeles
Times, The USA Today, TV Guide), from online sites
featuring puzzles (Dell, Riddler) or from syndicates
specifically producing for the online medium (Creator’s
Syndicate, CrosSynergy Syndicate). These puzzles con-
stitute a crossword database (the CWDB) of around
350,000 clue-target pairs (over 250,000 unique), which
served as a potent knowledge source for this project.

Novelty

Human solvers improve with experience, in part be-
cause particular clues and targets tend to recur. For
example, many human solvers will recognize -~Great
Lake [4]: erie,- to be a common clue-target pair in
many puzzles3. The CWDB corresponds to the number
of puzzles that would be encountered over a fourteen-
year period, at a rate of one puzzle a day.

What percentage of targets and clues in a new puzzle
presented to our system will be in the CWDB--how
novel are crossword puzzles? In Figure 1, we graph the
probability of novel targets, clues, clue-target pairs, and
clue words as we increase the size of the CWDB.

After randomizing, we looked at subsets of the
CWDB ranging from 5,000 clues to almost 350,000. For
each subset, we calculated the percentage of the item
(target, clue, clue-target, clue word) that are unique.
This is an estimate for the likelihood of the next item
being novel. Given the complete CWDB (344,921 clues)
and a new puzzle, we would expect to have seen 91%
of targets, 50% of clues, and 34% of clue-target pairs.
We would also expect to have seen 96% of the words
appearing in the clues. The CWDB contains a tremen-
dous amount of useful domain-specific information.

3The five most common targets in the CWDB are era,
ore, area, erie and ale. The target erie appears in over
7% of puzzles.
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Figure 1: Clue and target novelty decreases with the
size of the CWDB.

Mon Tue Wed Thu Fri Sat
~puz 89 92 90 91 91 87
#clues 77.3 77.2 76.7 74.7 70.0 70.2
3 16.5 18.2 17.5 18.6 17.3 16.3
4-5 64.6 61.1 62.5 54.7 44.2 40.2
6-10 15.8 17.7 16.9 23.1 35.2 41.7
11-15 3.1 2.9 3.2 3.7 3.3 1.9
Blank 8.4 8.0 6.4 6.4 5.2 4.8
Blank & " " 3.1 3.1 2.7 2.2 2.0 1.7
Single Word 15.6 14.9 16.0 17.2 16.9 20.6
(Year) 1.4 1.6 1.9 2.1 2.5 2.7
Final ’?’ 0.8 1.2 2.5 3.2 3.5 2.6
X, in a way 0.0 0.1 0.2 0.4 0.6 0.8

Table 2: NYT clue statistics vary by day of week.

The New York Times Crossword Puzzle

The New York Times (NYT) crossword is considered
by many to be the premiere daily puzzle. NYT editors
attempt to make the puzzles increase in difficulty from
easy on Monday to very difficult on Saturday and Sun-
day. We hoped that studying the Monday-to-Saturday
trends in the puzzles might provide insight into what
makes a puzzle hard for humans.

In Table 2, we show how the distributions of clue
types change day by day. For example, note that
some "easier" clues, such as fill-in-the-blank clues -<Mai
__ [3]: tail-) get less and less common as the week
goes on. In addition, clues with a trailing question
mark (-~T.V. Series? [15]: sonyrcamagaovox~-), which
is often a sign of a themed or pun clue, get more com-
mon. The distribution of target lengths also varies, with
words in the 6 to 10 letter range becoming much more
common from Monday to Saturday. Sunday is not in-
cluded in the table as its larger (up to 23 × 23 versus
15 x 15 for the other days) makes it difficult to compare.



Categories of Clues

In the common syntactic categories shown in Table 2,
such as fill-in-the-blank and quoted phrases, clue struc-
ture leads to simple ways to answer those clues. For
example, given the clue -< .... miss [5]: hitor~-, a
scan through text sources could look for all 9-letter
phrases that match on word boundaries and known let-
ters. With the clue -<Map abbr. [3]: rte~-, a list of
likely abbreviations could be returned.

In addition, a number of non-syntactic, expert cat-
egories stand out, such as synonyms (-<Covered [5]:
awash~), kind-of (-<Kind of duck or letter [4]: dead~),
movies (-<1954 mutant ants film [4]: them:,-), geogra-
phy (-<Frankfurt’s river [4]: oder~-), music (-<’Upside
down’ singer [4]: ross:,-) and literature (-<Carroll char-
acter [5]: alice,-).

There are also clues that do not fit simple pat-
terns, but might be solved by existing information re-
trieval techniques (-<Nebraska tribesman [4]: otoe~).
The many different sources of information that can
be brought to bear to solve clues led us to create a
two-stage architecture for the solver: one consisting of
a collection of general and special-purpose candidate-
generation modules, and one that combines the results
from these modules to generate a solution to the puz-
zle. This decentralized architecture allowed a relatively
large group of contributors (approximately ten people)
to create modules using techniques ranging from generic
word lists to highly specific modules, from string match-
ing to general-purpose information retrieval. The next
section describes PROVERB’S modular design.

Architecture

Figure 2 illustrates the components of PROVERB. Given
a puzzle, the Coordinator separates the clues from the
grid and sends a copy of the clue list (with target
lengths) to each Expert Module. The expert modules
generate probability-weighted candidate lists, in isola-
tion from the grid constraints. Expert modules are free
to return anything from no candidates for any clue to or
10,000 for every one. The collection of candidate lists is
then reweighted by the Merger to compensate for differ-
ences in module weighting, and combined into a single
list of candidates for each clue. Finally, the Solver takes
these weighted lists and searches for the best solution
it can find that also satisfies the grid constraints.

The Implicit Distribution Modules are used by the
solver, and are described in a later section.

The Probabilistic Model

To unify the candidate-generation modules, it is im-
portant to first understand our underlying assumptions
about the crossword-puzzle problem. First, we imagine
that crossword puzzles are created by repeatedly choos-
ing words for the slots according to a particular cre-
ator’s distribution (ignore clues and crossing constraints
for now). After choosing the words, if the crossing con-
straints are satisfied, then the creator keeps the puzzle.

Puzzle Expert Modules

,I Coordinator ~x, ~/~ Merger

\ c2oto
"N ///Letter D’~ Implicit

Solution ~ Modules

l"
Solver ~

Figure 2: PROVERB consists of a set of independent
communicating programs.

Otherwise, the creator draws again. Normalizing to
account for all the illegal puzzles generated gives us a
probability distribution over legal puzzles.

Now, suppose that for each slot in a puzzle, we had a
probability distribution over possible words for the slot
given the clue. Then, we could try to solve one of a
number of probabilistic optimization problems to pro-
duce the "best" fill of the grid. In our work, we define
"best" as the puzzle with the maximum expected num-
ber of targets in common with the creator’s solution:
the maximum expected overlap (Shazeer, Littman, 
Keim 1999). We will discuss this optimization more in
a following section, but for now it is important only to
see that we would like to think of candidate generation
as establishing probability distributions over possible
solutions.

We will next discuss how individual modules can cre-
ate approximations to these distributions, how they are
combined into a unified distributions.

Candidate Generation

The first step is to have each module generate candi-
dates for each clue, given the target length. Each mod-
ule returns a confidence score (how sure it is that the
answer lies in its list), and a weighted list of possible an-
swers. For example, given the clue -<Farrow of ’Peyton
Place’ [3]: mia~-, the movie module returns:

1.0:0.909091 mia, 0.010101 tom, 0.010101 kip, .--
¯ .., 0.010101 ben, 0.010101 peg, 0.010101 ray.

The module returns a 1.0 confidence in its list, and gives
higher weight to the person on the show with the given
last name and lower weight to other cast members.

Note that most of the modules will not be able to
generate actual probability distributions for the targets,
and will need to make approximations. The merging
step discussed next will attempt to account for the er-
ror in these estimates by testing on training data, and
adjusting scaling parameters to compensate. It is im-
portant for modules to be consistent, and to give more



likely candidates more weight. Also, the better con-
trol a module exerts over the overall confidence score
when uncertain, the more the merger will "trust" the
module’s predictions.

In all, we built 30 different modules, many of which
are described briefly below. To get some sense of the
contribution of the major modules, Table 3 summarizes
performance on 70 training puzzles, containing 5374
clues. These puzzles were drawn from the same sources
as the test puzzles, ten from each. For each module, we
list several measures of performance: the percentage of
clues that the module guessed at (Guess), the percent-
age of the time the target was in the module’s candi-
date list (Acc), the average length of the returned lists
(Len), and the percentage of clues the module "won"-
it had the correct answer weighted higher than all other
modules (Best). This final statistic is an important
measure of the module’s contribution to the system.
For example, the WordList-Big module generates over
100,000 words for some clues, so it often has the target
in its list (97% of the time). However, since it gener-
ates so many, the individual weight given to the target
is usually lower than that assigned by other modules,
and, thus, it is the best predictor only 0.1% of the time.

We conducted a series of "ablation" tests in which
we removed each module one at a time, rerunning the
70 training puzzles with the other n - 1 modules. No
one module’s removal changed the overall percentage
of words correct by more than 1%, which implies that
there is considerable overlap in the coverage of the mod-
ules. We also tried removing all modules that relied in
any way on the CWDB, which reduced the average per-
centage words correct from 94.8% to 27.1%. On the
other hand, using only the modules that exclusively
used the CWDB yielded a reduction to only 87.6%
words correct. Obviously, in the current system, the
CWDB plays a significant role in the generation of use-
ful candidate lists.

Another way of looking at the contribution of the
modules is to consider the probability assigned to each
target given the clues. Ideally, we would like all targets
to have probability 1. In general, we want to maximize
the product of the probabilities assigned to the targets,
since this quantity is directly related to what the solver
will be maximizing. In Figure 3, the top line repre-
sents the probability assigned by the Bigram module
(described later). This probability is low for all targets,
but very low for the hard targets. As we add groups
of modules, the effect on the probabilities assigned to
targets can be seen as a lowering of the curve, which
corresponds to assigning more and more probability to
the target. Note the large increase due to the Exact
Match module. Finally, notice that there is a segment
that the modules do very poorly on--the targets that
only Bigram returns. We will later describe extensions
to the system that help with this range.

Word List Modules

WordList, WordList-Big ignore their clues and re-

Performance by set of Expert Modules

le-20
Bigram Model --
+ Word Lists ........

+ Exact Matches .........
le-15 + Transformations --

+ Syntactic Modules .... /
I + Database Modules ....... /

le-10 I + Information Retrieval ---

le-05 [

~_
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Figure 3: The cumulative probability assigned as mod-
ule groups are added shows that different module types
vary in contribution. Lines are sorted independently.

turn all words of the correct length from several dic-
tionaries. WordList contains a list of 655,000 terms
from sources including online texts, encyclopedias
and dictionaries. WordList-Big contains everything
in WordList, as well as many constructed ’terms’,
produced by combining related entries in databases.
This includes combining first and last names, as well
as merging adjacent words from clues in the CWDB.
WordList-Big contains over 2.1 million terms.

WordList-CWDB contains the 58,000 unique targets
in the CWDB, and returns all targets of the appro-
priate length, regardless of the clue. It weights them
with estimates of their "prior" probabilities as targets
of arbitrary clues.

CWDB-Specific Modules

Exact Match returns all targets of the correct length
associated with this clue in the CWDB. Confidence is
based on a Bayesian calculation involving the number
of exact matches of correct and incorrect lengths.

Transformations learns a set of textual transforma-
tions which, when applied to clue-target pairs in
the CWDB, generates other known clue-target pairs.
When faced with a new clue, it applies all applica-
ble transformations and returns the results, weighted
based on the previous precision/recall of these trans-
formations. Transformations include word substitu-
tion, removing one phrase from the beginning or end
of a clue and adding another phrase to the beginning
or end of the clue, depluraiizing a word in the clue and
pluralizing the associated target, and others. The fol-
lowing is a list of several non-trivial examples from
the tens of thousands of transformations learned:

nice X ++ X in france X starter +¢ prefix with X
X for short ~ X abbr X city ¢-r X capital

Information Retrieval Modules
Crossword clues present an interesting challenge to



Module Guess Acc Len Best
Bigram 100.0 100.0 0.1
WordList-Big 100.0 97.2 ~ 10~ 1.0
WordList 100.0 92.6 ~ 104 1.7
WordList-CWDB 100.0 92.3 ~ 103 2.8
ExactMatch 40.3 91.4 1.3 35.9
Transformation 32.7 79.8 1.5 8.4
KindOf
Blanks-Books
Blanks-Geo
Blanks-Movies
Blanks-Music
Blanks-Quotes
Movies
Writers
Compass
Geography
Myth
Music
WordNet
WordNetSyns
RogetSyns
MobySyns
Encyclopedia
LSI-Ency
LSI-CWDB
PartialMatch
Dijkstral
Dijkstra2
Dijkstra3
Dijkstra4

3.7 62.9 44.7 0.8
2.8 35.5 43.8 0.1
1.8 28.1 60.3 0.1
6.0 71.2 35.8 3.2
3.4 40.4 39.9 0.4
3.9 45.8 49.6 0.1
6.3 66.4 19.0 2.2
0.1 100.0 1.2 0.1
0.4 63.6 5.9 0.0
1.8 25.3 322.0 0.0
0.1 75.0 61.0 0.0
0.9 11.8 49.3 0.0

42.8 22.6 30.0 0.9
11.9 44.0 3.4 0.9
9.7 42.9 8.9 0.4

12.0 81.6 496.0 0.4
97.9 32.2 262.0 1.3
94.7 43.8 995.0 1.0
99.1 77.6 990.0 1.2
92.6 71.0 493.0 8.1
99.7 84.8 620.0 4.6
99.7 82.2 996.0 8.7
99.5 80.4 285.0 13.3
99.5 80.8 994.0 0.1

Table 3: Performance on 70 puzzles (5374 clues) shows
differences in the number of targets returned (Len) and
contribution to the overall lists (Best). Also measured
but not shown are the implicit modules.

traditional information retrieval (IR) techniques. While
queries of similar length to clues have been studied, the
"documents" to be returned are quite different (words
or short sequences of words). In addition, the queries
themselves are often purposely phrased to be ambigu-
ous, and never share words with the "documents" to be
returned. Despite these differences, it seemed natural
to try a variety of IR techniques.

Encyclopedia searches an online encyclopedia. For
each query term, the module computes a distribution
of terms "close" to the query term in the text. A term
is counted 10 - k times in this distribution for every
time it appears at a distance of k < 10 words away
from the query term. A term is also counted once if
it appears in an article for which the query term is
in the title, or vice versa. Terms are assigned scores
proportional to their frequencies in the "close" distri-
bution, divided by their frequency in the corpus. The
distribution of scores is normalized to 1. If a query
contains multiple terms, the score distributions are
combined linearly according to the log inverse fre-
quency of the query terms in the corpus with very
common terms such as "as" and "and" ignored.

Partial Match uses the standard vector space
model (Salton & McGill 1983), defined by a vector
space with one dimension for every word in the
dictionary. A clue is represented as a vector in
this space. For each word w a clue contains, it
gets a component in dimension w of magnitude
- log(frequency(w)).
For a clue c, the module find all clues in the CWDB
that share words with e. The target of each such
clue is given a weight based on the dot product of
the clue with c. The assigned weight is geometrically
interpolated between 1/size(dictionary) and 1 based
on this dot product.

LSI, or latent semantic indexing, is an extension of the
vector space model that uses singular value decompo-
sition to identify correlations between words. LSI has
been successfully applied to the related problem of
synonym selection on a standardized test (Landauer
& Dumais 1997). LSI modules were trained on the
CWDB (all clues with the same target were treated
as a document) and on an online encyclopedia.

Dijkstra Modules derive from the intuition that re-
lated words co-occur with one another or co-occur
with similar words, suggesting a measure of related-
ness based on graph distance. From a set of text
databases, the module builds a weighted directed
graph on the set of all terms. Each database d and
pair of terms (t, u) that co-occur in the same docu-
ment produce an edge from t to u with weight

-log (# documents in d containing t and u~

For a one-word clue t, the modules assign a term u a
score of - log(fraction of documents containing t) 
weight(minimum weight path t ~ u).
The module finds the highest scoring terms with a
shortest-path search. Multi-word clues are scored by
summing the results for their individual terms. The
four Dijkstra modules use variants of this technique.
An encyclopedia index, two thesauri, a database of
wordforms and the CWDB were used as databases.
Littman, Keim, & Shazeer (1999) provide examples.

Database Modules

Movie uses the Internet Movie Database
(www. imdb. corn), an online resource with a wealth
of information about all manner of movies and T.V.
shows. This module looks for a number of patterns
in the clue (e.g. quoted titles as in -<’Alice’ star
Linda [5]: lavin~-, or Boolean operations on names
as in --~Cary or Lee [5]: grant>-), and formulates
queries to a local copy of the database.

Music, Literary, Geography use simple pattern
matching of the clue (looking for keywords "city",
"author" , "band" and others as in -<Iowa city [4]:
ames>-) to formulate a query to a topical database.
The literary database is culled from both online and



encyclopedia resources. The geography database
is from the Getty Information Institute, with
additional data supplied from online lists.

Synonyms are found by four distinct modules, based
on three different thesauri. Using the Word-
Net (Miller et al. 1990) database, one module
looks for root forms of words in the clue, and then
finds a variety of related words (e.g. -~Stroller [6]:
gocart~-). In addition, a type of relevance feedback
is used to generate lists of synonyms of synonyms. Fi-
nally, if necessary, the forms of the related words are
coverted back to the form of the original clue word
(number, tense, etc.): --(Contrives [7]: devises~-.

Syntactic Modules

Fill-in-the-Blanks constitute over 5% of clues in the
CWDB. These modules find string patterns in mu-
sic, geography, movies, literary and quotes databases:
-~’Time .... My Side’ (Stones hit) [4]: ison~-.

KindOf clues are similar to fill-in-the-blank clues
in that they involve pattern matching over short
phrases. We identified over 50 cues that indicate a
clue of this type, for example, "starter for" (-~Staxter
for saxon [5]: anglo~-), and "suffix with" (-~Suffix
with switch or sock [4]: eroo~-).

Merging Candidate Lists

After each expert module has generated a weighted can-
didate list, PROVERB must somehow merge these into a
unified candidate list with a common weighting scheme
for the solver. This problem is similar to the problem
facing meta-crawler search engines in that separately
weighted return lists must be combined in a sensible
way. The crossword domain has the advantage of ready
access to precise and abundant training data.

For a given clue, each expert module m returns a
weighted set of candidates and a numerical level of con-
fidence that the correct target is in this set. For each ex-
pert module m, the merger uses three real parameters:
scale(m), length-scale(m) and spread(m). Each 
date is reweighted by raising its weight to the power
spread(m), then normalizing the sum to 1. The con-
fidence level is multiplied by the product of scale(m)
and length-scale(m)targetlength. To compute a combined
probability distribution over candidates, the merger fin-
early combines the modified candidate sets of all the
modules weighted by their modified confidence levels,
and normalizes the sum to 1.

The scale, length-scale and spread parameters give
the merger control over how the information returned
by an expert module is incorporated into the final can-
didate list. Parameters are set using hill-climbing.

The objective function for optimization is the aver-
age log probability assigned to correct targets. This
corresponds to maximizing the average log probability
assigned by the solver to the correct puzzle fill-in, since
in our model the probability of a puzzle solution is pro-
portional to the product of the prior probabilities on

the answers in each of the slots. The optimal value
achieved on the 70 puzzle training set was log(~-~).

Grid Filling

After realizing how much repetition occurs in cross-
words, and therefore how well the CWDB covers the
domain, one might wonder whether this coverage is
enough to constrain solutions to such an extent that
there is little left for the grid-filling algorithm to do.
We did not find this to be the case. Simplistic grid
filling yielded only mediocre results. As a measure of
the task left to the grid-filling algorithm, on the first
iteration of solving, using just the weighted candidate
lists from the modules, only 40.9% of targets are in the
top of the candidate list for their slot. However, the
grid-filling algorithm is able to raise this to 89.4%.4

The algorithm employed by PROVERB (Shazeer,
Littman, & Keim 1999) models grid filling as an opti-
mization problem: find the best way of choosing a can-
didate for each clue, while respecting the constraints
of the grid. We can define "best" in several different
ways; we attempted to maximize the expected overlap
with the creator’s solution. Other definitions of "best"
include maximizing the probability of getting the entire
puzzle correct, or maximizing expected letter overlap.
The decision to use expected word overlap is motivated
by the scoring system used in human tournaments (see
below). Finding the optimal solution to this problem is
a belief net inference problem; we use a type of "turbo
decoding" (Shazeer, Littman, & Keim 1999) to approx-
imate the solutions quickly.

Implicit Distribution Modules

Our probability measure assigns probability zero to a
target that is suggested by no module and probability
zero to all solutions containing that target. Therefore,
we need to assign non-zero probability to all letter se-
quences. Clearly, there are too many to list explicitly
(1021 for a 15-letter clue). We augmented the solver
to reason with probability distributions over candidate
lists that are implicitly represented. These Implicit Dis-
tribution Modules (Figure 2) generate additional candi-
dates once the solver can give them more information
about letter probability distributions over the slot.

The most important of these is a letter Bigram mod-
ule, which "generates" all possible letter sequences of a
given length by returning a letter bigram distribution
over all possible strings, learned from the CWDB. The
bigram probabilities are used throughout the solution
process, so this module is integrated into the solver.

Note in Figure 3 there are some clues for which only
Bigram returns the target. In a pretest run on 70 puz-
zles, the clue-target with the lowest probability was
-.(Honolulu wear [14]: hawaiianmuumuu~-. This target
never occurs in the CWDB, although both muumuu and
hawaiian occur multiple times, and it gets a particu-
laxly low probability because of the many unlikely letter

4On average, over the 70 NYT puzzles in the test suite.



pairs in the target. Once the grid-filling process is un-
derway, estimates of probability distributions for each
letter in these longer targets are available, and this can
limit the search for candidates.

To address long, multiword targets, we created free-
standing implicit distribution modules. Each implicit
distribution module takes a letter probability distribu-
tion for each letter of the slot (computed within the
solver), and returns weighted candidate lists. These
lists are then added to the previous candidate lists, and
the grid-filling algorithm continues. This process of get-
ting new candidates can happen several times during
the solution process.

Tetragram suggests candidates based on a letter
tetragram model, built from the WordList-Big. We
hoped this would provide a better model for word
boundaries than the bigram model mentioned above,
since this list contains many multiword terms.

Segmenter calculates the n -- 10 most probable word
sequences with respect to both the letter probabili-
ties and word probabilities from several sources using
dynamic programming. The base word probabilities
are unigram word probabilities from the CWDB. In
addition, the Dijkstra module (described above) sug-
gests the best 1000 words (with weights) given the
current clue. These weights and the unigram prob-
abilities are then combined for a new distribution of
word probabilities.
For example, consider the clue -<Tall footwear
for rappers? [11]: hiphopboots~--. Given a letter
distribution and a combined word distribution, the
segmenter returned the following: tiptopboots,
hiphoproots, hiphopbooks, hiphoptoot s,
hiphopboot s, hiphoproof s, riptaproots,
hippopboots, hiptaproots, hiptapboots. Note
that the reweighting done by the Dijkstra module by
examining the clue raises the probahilites of related
words like boots.

Results

To evaluate PROVERB’S performance, we ran it on a
large collection of daily puzzles, and on a set of recent
tournament puzzles.

Daily Puzzles

We tested the system on puzzles from seven daily
sources, listed in Table 1 (Test). The TV Guide puz-
zles go back to 1996, but the other sources were all from
between August and December of 1998. We selected 70
puzzles, 10 from each source, as training puzzles for the
system. The reweighting process described earlier was
trained on the 5374 clues from these 70 puzzles. Addi-
tional debugging and modification of the modules was
done after evaluation on these training puzzles.

Having fixed the modules and reweighting parame-
ters, we then ran the system on the 370 puzzles in the
final pool. The system acheived an average 95.3% words

correct, 98.1% letters correct, and 46.2% puzzles com-
pletely correct (94.1%, 97.6%, and 37.6% without the
implicit distribution modules). The NYT puzzles were
the only ones that averaged under 95% words correct.
Following up on our earlier observations, we split up the
NYT puzzles and found that PROVERB averaged 95.5%
words correct on Monday through Wednesday puzzles
and 85.0% words correct on Thursday through Sunday
puzzles. As with people, the late-week NYT puzzles
were more difficult for PROVERB.

Tournament Puzzles

To better gauge the system’s performance against
humans, we tested PROVERB using puzzles from
the 1998 American Crossword Puzzle Tournament
(ACPT) (Shortz 1990). The ACPT has been held 
nually for 20 years, and was attended in 1998 by 251
people. The scoring system for the ACPT requires that
a time limit be set for each puzzle. A solver’s score is
then 10 times the number of words correct, plus a bonus
of 150 if the puzzle is completely correct. In addition,
the number of incorrect letters is subtracted from the
full minutes early the solver finishes. If this number is
positive, it is multiplied by 25 and added to the score.

There were seven puzzles in the offical contest, with
time limits ranging from 15 to 45 minutes. We used
the same version of PROVERB described in the previous
section. The results over the 1998 puzzles are shown
in Table 4. The best human solvers at the competition
finished all puzzles correctly, and the winner was deter-
mined by finishing time (the champion averaged under
seven minutes per puzzle). Thus, while not competitive
with the very best human solvers, PROVERB would have
placed 213 out of 251; its score on Puzzle 5 exceeded
that of the median human solver at the contest.

The ACPT puzzles are very challenging, and include
tricks like multiple letters or words written in a sin-
gle grid cell, and targets written in the wrong slot. In
spite of the fact that PROVERB could not produce an-
swers that bend the rules in this way, it still filled in
80% of the words correctly, on average. The implicit
distribution modules ("PRovERB(I)") helped improve
the word score on these puzzles, but brought down the
tournament score because it runs more slowly.

Conclusions

Solving crossword puzzles presents a unique artificial
intelligence challenge, demanding from a competitive
system broad world knowledge, powerful constraint sat-
isfaction, and speed. Because of the widespread appeal,
system designers have a large number of existing puz-
zles to use to test and tune their systems, and humans
with whom to compare.

A successful crossword solver requires many arti-
ficial intelligence techniques; in our work, we used
ideas from state-space search, probabilistic optimiza-
tion, constraint satisfaction, information retrieval, ma-
chine learning and natural language processing. We



Avg
Name Rank Total Time
~. Maximum 1 13140 0:59
TP (Champion) 1 12115 6:51
JJ (75%) 62 10025
MF (50%) 125 8575
MB (25%) 187 6985
~. PP.OV~RB-I (24%) 190 6880 0:59
PROVERB (15%) 213 6215 9:41
PaOVERB-I (15%) 215 6130 15:07

Table 4: PROVERB compared favorably to the 251 elite
human contestants at the 1998 championship. Lines
preceded by a ~ indicate the theoretical scores if the
solver did every puzzle in under a minute.

found probability theory a potent practical tool for or-
ganizing the system and improving performance.

The level of success we acheived would probably not
have been possible five years ago, as we depended on ex-
tremely fast computers with vast memory and disk stor-
age, and used tremendous amounts of data in machine
readable form. Perhaps the time is ripe to use these
resources to attack other problems previously deemed
too challenging for AI.
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