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Introduction - Basic Notions “Loss” Quantification

Bias and Variance Balance
Many statistical learning algorithms search for estimators or decision functions via the following

optimization problem

Minimize
{

Loss + λPenalty
}

(2.1)

Loss measures the error of fitting the data - bias or approximation error
Penalty the complexity of the learned function to avoid overfitting
λ is a regularization parameter that is to balance both effects.

Example: soft-margin SVM: the problem

minimizew,b,ξ :
1
2
‖w‖2

2 + C
N∑

j=1

ξj subject to yi (w · xi + b)︸ ︷︷ ︸
=f (xi )

≥ 1− ξi , i ≤ N, (2.2)

can be shown to provide the same solution as

minimizew,b :
N∑

i=1

[
1− yi (w · xi + b)

]
+︸ ︷︷ ︸

“hinge loss”

+ λ‖w‖2
2︸ ︷︷ ︸

penalty

(2.3)

when λ = 1
2C (where [x ]+ := max{x , 0}).
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Introduction - Basic Notions “Loss” Quantification

Explanation
Notice: i-th loss term [1− yi f (xi )]+ = [1− yi (w · xi + b)]+ 6= 0 if and only if

(w · xi + b) < 1 when yi = +1,  0 < ξi := 1− (w · xi + b)

(w · xi + b) > −1 when yi = −1,  0 < ξi := 1 + (w · xi + b)
(2.4)

and

(2.3) ⇔ minimizew,b : C
N∑

i=1

[
1− yi f (xi )

]
+︸ ︷︷ ︸

ξi

+
1
2
‖w‖2

2 subject to yi f (xi ) ≥ 1−ξi , i ≤ N.
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Risk Notions Basic Ideas

How much faith can one put on the results of learning
algorithms?
Basic principle:

Understand first what is ideally best possible - a ground truth benchmark - which depends
entirely on the underlying probabilistic model. It realizes the smallest possible
generalization error under the given probability law.

The generalization error is often referred to as Risk. The minimal risk, so to speak the
intrinsic unavoidable error, is, however not known.

Goal: design algorithms whose risk comes close to the minimal risk.

Any concrete algorithm will exceed this Risk Excess Risk. This Excess Risk measures
the quality of the algorithm. So this is what we would like to estimate.

How to actually measure this? because Risk and Excess Risk are unknown.

Idea: formulate a suitable Empirical Risk. A typical learning algorithm minimizes this
Empirical Risk Empirical Risk Minimization (ERM).

Accuracy assessment relies then on comparing the Empirical Risk and the Risk.

This comparison requires probabilistic estimates - concentration inequalities (see Lecture
III) “error estimates” are understood in a probabilistic sense!
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Risk Notions Basic Definitions and Properties

Risk Notions - Regression
Always: ZN = {(xi , yi ), . . . , (xN , yN )} ⊂ X × Y i.i.d. samples from an unknown probability
measure P with density p

Regression: Y ⊂ Rn has a continuous range, objective: estimate the regression function
fp(x) := E[y |x ] (see Lecture II, (8.3)).

What is the benchmark - an appropriate Risk notion in this case?

Risk functional: For any f ∈ L2(X , pX ), let

R[f ] :=

∫
Z

(y − f (x))2dP(x , y). (3.1)

Factorizing dP(x , y) = dP(y |x)dPX (x), and the fact that f∗ = fp := E[y |x ] is an orthogonal
projection yield

R[f ] = R[fp] + ‖f − fp‖2
L2(X ,pX ). (3.2)

Thus the risk R is minimized by the regression function fp and its minimum is R[fp].

The Excess Risk incurred by any concrete estimator f̂Y is ‖f̂Z − fp‖2
L2(X ,pX )

.

Empirical Risk:

R̂ZN [f ] :=
1
N

N∑
i=1

(f (xi )− yi )
2. (3.3)

This is a Random variable over ZN (mean square risk).
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Risk Notions Basic Definitions and Properties

Risk Notions - Classification

Classification: Y = {+1,−1} (or more generally, has finiteley many elements - classes)

We have seen in the previous lecture, that constructing a classifier or decision function can
be seen as finding a set such that any element in the set gets a positive label .

General Classifier format: every (binary) classifier can be recast as:

hS(x) = χS(x)−χSc (x) =

 +1 if x ∈ S,

−1 if x /∈ S,
(3.4)

which is well defined for any subset S ⊂ X that is pX -measurable.

The risk of any hS , defined by (3.4), is given by

R[hS ] =

∫
X

Prob{hS(x) 6= y}dpX , (3.5)

which is the measure of the set of misclassified events.

Is there an “ideal set S∗” - classifier - that minimizes the risk over all admissible
measurable sets? Such a classifier is called Bayes Classifier: which depends only on the
underlying (unknow) probability distribution (that serves as a data model)  
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Risk Notions Basic Definitions and Properties

Bayes Classifier
Some usefull ingredients:

p(x , y) = pX (x) · p(y |x) a probability density on Z (see Lecture II, page 18)

Let
ρ(x) := Prob{y = 1|x}

denote the probability of a feature point x to have the label +1. The expected label is the
regression function

η(x) := E[y |x ] = ρ(x)− (1− ρ(x)) = 2ρ(x)− 1 (verify this) (3.6)

Define (see (3.4))

h∗(x) = hS∗ (x) = χS∗ (x)−χ(S∗)c (x) where S∗ := {x : η(x) ≥ 0}. (3.7)

Remark 1

The classifier (3.7) minimizes the risk R[hS ], i.e.,

S∗ = argmin
S
R[hS ],

any any set S′ that also mimizes the risk can differ from S∗ only by a set of either pX -measure
zero or where η vanishes.
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Risk Notions Basic Definitions and Properties

Risk Notions - Classification
The following properties explain the above definition.

Lemma 2

The Baye’s Risk is

R[h∗] = R[hS∗ ] =

∫
X

min{ρ, 1− ρ}dpX . (3.8)

For Cp :=
∫
X
ρdpX one has

R[hS ] = Cp −
∫
S

ηdpX . (3.9)

Moreover, the Excess Risk is given by

R[hS ]−R[hS∗ ] = ηS∗ − ηS =

∫
S∆S∗

|η|dpX , (3.10)

where ηS :=
∫
S
ηdpX and A∆B := (A \ B) ∪ (B \ A) is the symmetric difference of A and B.

Remark 3

By (3.9), maximizing ηS , which S∗ does, minimizes the risk.
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Risk Notions Basic Definitions and Properties

Excess Risk - Classification

R(S)−R(S∗) =

∫
S∆S∗

|η|dpX = ηS∗ − ηS
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Ω∗

Empirical Risk: A natural discrete analog to (3.5) is:

R̂[hS ] :=
1
N

#{i : hS(xi ) 6= yi}. (3.11)
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Risk Notions Basic Definitions and Properties

Proof of Lemma 2: As for (3.8), since x ∈ S∗ ⇔ η(x) > 0 ⇔ ρ(x) > 1/2 we have

x ∈ S∗ ⇒ Prob{y = −1|x} = 1− ρ(x) < 1
2 ≤ ρ(x),

x /∈ S∗ ⇒ Prob{y = 1|x} = ρ(x) ≤ 1
2 ≤ 1− ρ(x),

which yields (3.8).
To show (3.9) hS(x) 6= y iff either y = 1 and x ∈ Sc or y = −1 and x ∈ S. The probability of the
first case is

∫
S

(1− ρ)dpX , and of the second case is
∫

Sc
ρdpX i.e.,

∫
X

Prob{hS(x) 6= y}dpX =

∫
S

(1− ρ)dpX +

∫
Sc

ρdpX (3.12)

The right hand side can be rewritten as∫
S

(1− ρ)dpX +

∫
X

ρdpX −
∫
S

ρdpX = Cp +

∫
S

(1− 2ρ)dpX
(3.6)
= Cp −

∫
S

ηdpX ,

which is (3.9).
Concerning (3.10), the first identity follows directly from (3.9). Regarding the second identity, we
can rwite

ηS∗ − ηS =

∫
S∗

ηdpX −
∫
S

ηdpX =

∫
S∗\S

ηdpX −
∫

S\S∗

ηdpX =

∫
S∗\S

|η|dpX +

∫
S\S∗

|η|dpX ,

as claimed. �
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Risk Notions Basic Definitions and Properties

Risk Notions for Further Learning Tasks

Pattern Recognition:

Median estimation L1-metric

R[f ] :=

∫
Z

1
2
|f (x)− y |dP(x , y), R̂ZN [f ] :=

1
N

N∑
i=1

|f (xi )− yi |

Density Estimation:

compare with Maximum Likelihood Estimation - log-likelihood function:

R[p] :=

∫
X

(− log p(x))dP(x), R̂ZN [p] := −
1
N

N∑
i=1

log p(xi )
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General Estimation Strategies - An Orientation Variance-Bias Decomposition

A General Road Map
Given a learning task (classification or regression):

Understand/define a suitable risk notion R and the corresponding minimal (Bayes) risk
R[f∗]
Devise a learning algorithm: ZN ⊂ Z → f̂ZN , that hopefully minimizes the excess risk

E [̂f ] := R[̂f ]−R[f∗]. (4.1)

Any such algorithm constructs (a regression function estimator or classifier) f̂ from a
hypothesis class H (polynomials, splines, kernels, networks, sets,...) that can be used to
represent the estimator. The complexity of H determines how well the optimal f∗ can be
at best approximated by elements from H 

fH ∈ argmin
g∈H

R[g] : R[fH]−R[f∗] =: aH(f∗,H) (4.2)

is the best approximation error or bias (a deterministic quantity).
According to the underlying statistical model, any outcome f̂ of an algorithm is based on
i.i.d. samples and hence itself a random variable over ZN . The only chance to estimate the
quantity E [̂f ] is to exploit this statistical model.
As error appraisal one can therefore ask for

E
[
E [̂fZN ]

]
or Prob{E [̂fZN ] ≥ εN}, N →∞. (4.3)
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General Estimation Strategies - An Orientation Variance-Bias Decomposition

Error Decomposition - Road Map

Thus, for any estimator f̂ , the excess risk E [̂f ] can be decomposed as

R[̂f ]−R[f∗] = R[̂f ]−R[fH]︸ ︷︷ ︸
Evar

+R[fH]−R[f∗]︸ ︷︷ ︸
a(f∗,H)

(4.4)

where both differences are, by definition nonnegative.
Once the hypothesis class H is chosen, the second term a(f∗,H) is deterministic and
independent of any learning algorithm. This term is the smaller the richer H is.
Both f̂ and fH belong to H. When H is very rich, one faces the risk of overfitting, i.e., the
variance of the random variable Evar is expected to increase, when H gets richer. As
mentioned earlier, a key objective is therefore to find a proper balance between bias and
variance.
To invoke the underlying probabilistic model, involve the empirical risk R̂ and further
decompose Evar as follows

Evar = R[̂f ]−R̂[̂f ] + R̂[̂f ]− R̂[fH] + R̂[fH]−R[fH]. (4.5)

If the algorithm is based on minimizing the empirical risk, the second difference is
non-positive and we obtain

Evar ≤
∣∣R[̂f ]− R̂[̂f ] + R̂[fH]−R[fH]

∣∣ ≤ ∣∣R[̂f ]− R̂[̂f ]
∣∣+
∣∣R̂[fH]−R[fH]

∣∣. (4.6)

This will be done by invoking concentration inequalities.
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General Estimation Strategies - An Orientation Variance-Bias Decomposition

Estimating Evar

Assumption: The estimator f̂ZN is obtained through Empirical Risk Minimiation (ERM)

f̂ZN = argmin
g∈H

R̂[g] (4.7)

The bound (4.6) Evar ≤
∣∣R[̂f ]− R̂[̂f ]

∣∣+
∣∣R̂[fH]−R[fH]

∣∣ involves quantities of the form∣∣∣R[g]− R̂[g]
∣∣∣ g ∈ H. (4.8)

Recall: Regression (5.32), (3.3)  

R[f ] :=

∫
Z

(y − f (x))2dP(x , y) = E[ξ], R̂ZN [f ] :=
1
N

N∑
i=1

(f (xi )− yi )
2 =

1
N

N∑
i=1

ξi . (4.9)

So we need to estimate

∣∣∣ 1
N

N∑
i=1

ξi − E[ξ]
∣∣∣, ξi i.i.d. according to P (4.10)
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General Estimation Strategies - An Orientation Variance-Bias Decomposition

Estimating Evar

Classification: recall from Lemma 2 and (3.11)

R[hS ] =

∫
X

Prob
{

hS(x) 6= ydpX = Cp −
∫
S

ηdpX , R̂[hS ] =
1
N

#{i : hS(xi ) 6= yi} (4.11)

Consider the empirical quantities

pS :=

∫
S

dpX ↔ p̂S :=
1
N

N∑
i=1

χS(xi ) ηS :=

∫
S

ηdpX ↔ η̂S :=
1
N

N∑
i=1

yiχS(xi ). (4.12)

One can show:
argmin

S∈H
R̂[hS ] = argmin

S∈H

(
Cp − η̂S

)
= argmax

S∈H
η̂S  (4.13)

∣∣∣R̂[hS ]−R[hS ]
∣∣∣ =

∣∣∣ηS − η̂S

∣∣∣ (4.14)

Since pS = E[χS(X)] = EZN [p̂S ] and ηSE[YχS(X)] = E[η̂S ]

(4.14) requires again estimating
∣∣∣ 1
N

N∑
i=1

ξi − E[ξ]
∣∣∣ (4.15)
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General Estimation Strategies - An Orientation Variance-Bias Decomposition

Estimating Evar

Summary:

In all these cases estimating the quantities (4.8)
∣∣∣R[g]− R̂[g]

∣∣∣ for g ∈ H, appearing in the
bound (4.6) for Evar , amounts to estimating

sup
ZN⊂Z

∣∣∣ 1
N

N∑
i=1

ξi − E[ξ]
∣∣∣ for i.i.d ξi

This is precisely the subject of the concentration inequalities discussed in Lecture III.

Back to (4.6): Evar ≤
∣∣R[̂f ]− R̂[̂f ]

∣∣+
∣∣R̂[fH]−R[fH]

∣∣
Goal: show that both terms (being random variables) are small in expectation of with high
probability.

The second term
∣∣R̂[fH]−R[fH]

∣∣ is relatively harmless, because fH is a fixed object in
the hypothesis class H. So as soon as we know something about the variance or the
range of the underlying density, one can apply Hoeffding’s or Bernstein’s inequality (see
Lecture III, Theorem 2, (3.5), Corollary 5, (3.14)) to conclude that
R
{∣∣R̂[fH]−R[fH]

∣∣ > ε
}
≤ 2e−cNε2

(some c > 0).
The first term is more critical because we need an estimate that is valid for all f̂ ∈ H. This
is where the complexity of the hypothesis class H enters - the more complex H is, the
harder it gets to have simultaneous estimates.
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A Closer Look at ERM for Classification

ERM in Classification - Summary
Scenario:

ZN = {(xi , yi ), . . . , (xN , yN )} ⊂ X × {+1,−1}, i.i.d. according to P(x , y);

η(x) = E[y |x ] = 2ρ(x)− 1, ρ(x) = Prob{y = 1|x};

pS :=
∫
S

dpX , ηS :=
∫
S
ηdpX ,

p̂S := 1
N
∑N

i=1
χS(xi ), η̂S := 1

N
∑N

i=1 yiχS(xi ) ⇒ pS = E[p̂S ], ηS = E[η̂S ]

R[hS ] = Cp − ηS , R̂[hS ] = Cp − η̂S .

Recall from (4.6) that we need to bound for all S ∈ H (̂f ↔ hS)

Evar ≤
∣∣R[hS ]−R[hSH ]− (R̂[hS ]− R̂[hSH ])

∣∣
=

∣∣ηSH − ηS − (η̂SH − η̂S)
∣∣ (5.1)

≤
∣∣η̂S − ηS

∣∣+
∣∣ηSH − η̂SH

∣∣ (5.2)

where SH := argminS∈HR[hS ].

So we want to bound:

Prob
{∣∣ηSH − ηS − (η̂SH − η̂S)

∣∣ ≥ ε} or Prob
{∣∣η̂S − ηS

∣∣ ≥ ε}, S ∈ H.
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A Closer Look at ERM for Classification A Preliminary Result

A First Result: #H <∞
Proposition 4

Assume that in the above scenario
#H = H <∞. (5.3)

For any fixed r ∈ N define

eN (S) :=
√

pS∆SHεN + εN , εN = εN (H) :=
10(r log N + log #H)

3N
. (5.4)

Then

ProbZN
{
∀S ∈ H, one has

∣∣ηSH − ηS − (η̂SH − η̂S)
∣∣ ≤ eN (S)

}
≥ 1− 2N−r . (5.5)

Thus, in view of (4.4), for Ŝ := argminS∈H R̂[hS ], the excess risk bound

R[hŜ ]−R[hS∗ ] ≤ eN (Ŝ) + a(hS∗ ,H) (5.6)

holds with probability at least 1− 2N−r .

Recall: a(hS∗ ,H) is a best approximation error depending on the regression function

η(x) = E[y |x ]. and H. How to estimate such terms, later.
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A Closer Look at ERM for Classification A Preliminary Result

Some Ingredients
Understand first who the empirical quantities p̂S , η̂S approximate pS , ηS , respectively.

Lemma 5

For pS , p̂S , ηS , η̂S defined in Scenario, one has

Prob
{
|pS − p̂S | > δ

}
≤ 2e

− Nδ2
2pS +2δ/3 , (5.7)

and

Prob
{
|ηS − η̂S | > δ

}
≤ 2e

− Nδ2
2pS +2δ/3 . (5.8)

Proof: We already know E[p̂S ] = pS , E[η̂S ] = ηS . We wish to apply Bernstein’s Inequality,
Lecture III, Corollary 5. We need a bound M for the random variables χS(x), yχS(x) (see
Scenario) which is clearly one. Moreover, for each S ∈ H

var[χS ] = E
[
(χS − pS)2] =

∫
S

χS(x)2 − 2χS(x)pS + p2
SdpX

=

∫
S

(1− 2p2
S + p2

S)dpX = pS(1− p2
S) ≤ pS .
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A Closer Look at ERM for Classification A Preliminary Result

Proof of Lemma 5 continued: Similarly

var[yχ(x)] = E
[
(yχS(x)− ηS)2] =

∫
S

y2χS(x)2 − 2yχS(x)ηS + η2
SdpX

= pS − 2η2
S + η2

SpS = pS + η2
S(pS − 2) ≤ pS ≤ 1,

Inserting this into Bernstein’s inequality Lecture III, (3.14)

Prob
(∣∣∣ 1

N

( N∑
j=1

Xj

)
− µ

∣∣∣ > ε
)
≤ 2 exp

{
−

Nε2

2(σ2 + εM/3)

}

with M = 1, σ2 ≤ pS yields (5.7), (5.8). �

We could apply (5.8) to both summands in (5.2) to estimate the probability in (5.5). A somewhat

better estimated would be obtained through estimates for (5.1), i.e., for
∣∣ηSH − ηS − (η̂SH − η̂S)

∣∣
in (5.5). This can be obtained in exactly the same way as above, as shown next.
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A Closer Look at ERM for Classification A Preliminary Result

Some Ingredients

Recall SH is the best approximation from the hypothesis class H to the Bayes set S∗. Consider
the random variable

YχS(X)− YχSH (X) = Y
(χS\SH −χSH\S

)
,

for which we have again |YχS(X)− YχSH (X)| ≤ 1 and as above one can show

var
[
YχS(X)− YχSH (X)

]
≤ pS∆SH . (5.9)

Since
E
[
Y (χS(X)−χSH (X))

]
= E

[
η̂S − η̂SH

]
= ηS − ηSH , (5.10)

the same arguments as above yield:

Lemma 6

For pS , p̂S , ηS , η̂S defined in Scenario, one has (see (5.1))

ProbZN
{
|ηS − ηSH − (η̂S − η̂SH )| > δ

}
≤ 2e

− Nδ2
2pS∆SH

+2δ/3
. (5.11)
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Some Ingredients

Lemma 7

For any finite H, #H = H <∞ and εN = εN (H) defined by (5.4), we have

ProbZN
{
∀S ∈ H : |ηS − ηSH − (η̂S − η̂SH )| ≤

√
εNpS∆SH + εN

}
≥ 1− 2N−r . (5.12)

Proof: Substituting δ =
√
εNpS∆SH + εN in (5.11), yields for any fixed S

Prob
{
|ηS−ηSH−(η̂S−η̂SH )| >

√
εNpS∆SH+εN

}
≤ 2 exp

{
−

N(
√
εNpS∆SH + εN )2

2pS∆SH + 2(
√
εNpS∆SH + εN )/3

}
.

Case 1. εN ≤ pS∆SH :  numerator in exponential ≥ NpS∆SHεN and denominator

≤
10pS∆SH

3 . Thus, exponent ≥
NpS∆SH

εN

10εN/3 =
3NpS∆SH

10 ≥ 3NεS
10 .

Case 2. εN > pS :  numerator in exponential ≥ Nε2N and denominator ≤ 10εN
3 . Thus,

exponent ≥ Nε2
N

10εN/3 =
3NεN

10 .
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Proof of Lemma 7 continued: Therefore, in both cases we obtain for a fixed S ∈ H

Prob
{
|ηS − ηSH − (η̂S − η̂SH )| >

√
εNpS∆SH + εN

}
≤ 2 exp

{
−

3NεN
10

}
. (5.13)

Now recall the definition of

εN = εN (H) =
10(r log N + log #H)

3N
⇒ 2 exp

{
−

3NεN
10

}
= 2N−r (#H)−1 (5.14)

which says, in view of (5.13), that for each S ∈ H

Prob
{
|ηS − ηSH − (η̂S − η̂SH )| >

√
εNpS∆SH + εN

}
≤ 2N−r (#H)−1.

By the Union Bound (Lecture IV, Remark 4) it follows that

Prob
{

for every S ∈ H : |ηS − ηSH − (η̂S − η̂SH )| ≤
√
εNpS∆SH + εN

}
≥ 1−

∑
S∈H

2N−r (#H)−1 = 1− 2N−r , (5.15)

which is (5.12). �

The Proof of Proposition 4 follows now from Lemma 7 and the decomposition (4.4). �
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A Major Deficit of Proposition 4

The assumption #H = H <∞ is completely unrealistic. Even for simple linear SVMs

H = {S : S is a half-space = {x ∈ Rd : w · x + b ≥ 0} for some b ∈ R, w ∈ Rd}

i.e., #H =∞.

Since #H enters through

eN (S) :=
√

pS∆SHεN + εN , εN = εN (H) :=
10(r log N + log #H)

3N
.

the definition of the threshhold εN (H) in (5.4), as well as the Union Bound argument in
(5.15), a new ingredient is required.

Key Observation: any given finite set of data ZN cannot “see” infinitely many different
elements in H.

What should therefore matter is the capacity of the hypothesis class H to separate subsets
of given data.

This capacity is quantified by the so called Vapnik-Chervonenkis--dimension
(VC-dimension) of H, see [5, 4].
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Shattering

Given a collection of sets H in X and a set of m points P = {x1, . . . , xm} ⊂ X}, define:

s(H,P) := #
{
A ⊂ P : ∃S ∈ H such thatA ⊂ S, P \ A ⊂ Sc

}
, (5.16)

i.e., the number of different subsets of the data set P that can be separated by some element S
in H from the rest in P.

Note: s(H,P) = the number of different outputs (hS(x) : x ∈ P) ∈ {+1,−1}#P , S ∈ H, the
classifier based on H can have on P.

Shatter number:
s(H,m) := max {s(H,P) : P ⊂ X , #P = m} (5.17)

is called the mth shatter number of H - the separation capacity of H on sets of cardinality m.

Ideally H can single out each subset of a set of m points, i.e.,

s(H,m) = 2m = # of subsets of some set of cardinality m. (5.18)

In this case one says H shatters m points.
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Shattering
When m increases eventually H ceases to shatter m points.

Example: H = set of all half-planes: ∃P ⊂ R2, #P = 3 = m, s(H,m) = s(H,P) = 23 = #2P

• ∃P ⊂ R2, #P = 3 = m, s(H,m) = s(H,P) = 23 = #2P

• Half-planes can no longer shatter m = 4 points.

• Thus, shatter numbers desribe the complexity of H. To avoid overfitting, there should by a
finite maximal number m(H) such that H shatters m(H) points but not m(H) + 1 points.

• In this case one has

s(H, k) = s(H,m(H)) = 2m(H), k ≥ m(H). (5.19)
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VC-Dimension

Definition 8

Given a hypohesis class H ⊂ 2X of subsets of the feature space X , then

VC(H) := argmax
m∈N

{s(H,m) = 2m} = log2
(

sup
k∈N

s(H, k)
)

(5.20)

is called the VC-dimension of H.

Extension to function classes: Consider the epigraph of a function f : X → R

epi(f ) := {(x , t) ∈ Z : t ≤ f (x)}

which associates the set epi(f ) with f (specialize this to f = hS).

Definition 9

Suppose that H is a class of functions (e.g. polynomials, splines, wavelets neural nets, etc. used
in regression). Then we define

VC(H) = VC
(
{epi(f ) : f ∈ H}

)
. (5.21)
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VC-Dimension

A detailed discussion of VC-dimension concepts can be found in [4]. A useful fact is:

Proposition 10

Let H be an n-dimensional linear space of functions on X which are continuous almost
everywhere. Then VC(H) = n + 1.

A further useful fact needed later can be found in [1].

Lemma 11

One has
VC
(
{S∆SH : S ∈ H}

)
≤ 2VC(H). (5.22)
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Towards A Better Result
We indicate heuristically how the concept of VC-dimension leads to a better result than
Proposition 4. Complete proofs can be found in [1].

Recall: by (5.10) the relevant sets in the variance |ηS − ηSH − (η̂S − η̂SH )| are S∆SH,
S ∈ H. Let H∆ := {S∆SH : S ∈ H}.
Intuitively, we do not need to estimate the probability in (5.12) for all S in H but only for
s(H∆,N) many “representers” in H∆ that can produce the s(H∆,N) many different
outcomes. We argue only formally to indicate how the VC-dimension enters. By (8), we
have

s(H∆,N) = 2VC(H∆)
(5.22)
≤ 22VC(H). (5.23)

Formally, replace the #H in the threshhold εN (H) := 10(r log N+log #H)
3N from (5.4) by

22VC(H), to obtain the new threshhold

εN (H) :=
10
(
r log N + log

(
22VC(H)

))
3N

=
10
(
r log N + (2 log 2)VC(H)

)
3N

. (5.24)

Use this threshhold in (5.14) to obtain

2 exp
{
−

3NεN
10

}
= 2N−r 2−2VC(H)
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A Better Result
The union bound in (5.15) applies now to at most s(H∆,N) representers in H so that this
becomes

Prob
{

for every S ∈ H : |ηS − ηSH − (η̂S − η̂SH )| ≤
√
εNpS∆SH + εN

}
≥ 1− 22VC(H)2N−r 2−2VC(H) = 1− 2N−r . (5.25)

This argument is not rigorous. The critical issue remains to bound quantities like
supS∈H |R[hS ]− R̂[hS ]|. This requires in the end much more involved arguments such as
symmetrization in combination with concentration inequalities, see e.g. [2]. The following result is
more advanced and uses VC-dimension in combination with Talagrad’s inequality for empirical
processes, [1].

Theorem 12

Assume that VC(H) <∞. Then for a sufficiently large constant A > 0 and for any fixed r ∈ N

eN (S) :=
√

pS∆SHεN + εN , εN = εN (H) = A max{r + 1,VC(H)}
log N

N
(5.26)

there exists an absolute constant C0 such that for any N ≥ 2

ProbZN
{
∀S ∈ H :

∣∣ηSH − ηS − (η̂SH − η̂S)
∣∣ ≤ eN (S)

}
≥ 1− 2N−r . (5.27)
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A Better Result
To derive from the variance estimate in Theorem 12 a total excess risk bound, one can introduce
the following modulus depending on the mapping eN from(5.26):

ω(p, eN ) := sup
{ ∫

S∆SH

|η|dpX : S ∈ H and
∫

S∆SH

|η|dpX ≤ 3eN (S)
}
. (5.28)

Then one can show [1, Corollary 2.4]:

Theorem 13

Suppose that for some δ < 1 (take δ = δ(N) = 1− C0N−r from Theorem 12)

ProbZN

{
∀S ∈ H : |ηS − ηSH − (η̂S − η̂SH )| ≤ eN (S)

}
≥ 1− δ, (5.29)

then the ERM-minimizer Ŝ ∈ H satisfies

ProbZN

{
R[hŜ ]−R[hS∗ ] ≤ ω(p, eN ) + 2a(S∗,H)

}
≥ 1− δ, (5.30)

where a(S∗,H) = infS∈HR[hS ]−R[hS∗ ] = R[hSH ]−R[hS∗ ] is the best approximation error
from H.
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Concluding Remarks

Results of very similar flavor hold also for regression, see e.g. [3].

The main flavor is always: increasing r in (5.26) improves the success probability while
increasing εN linearly.

The S-dependent accuracy threshold eN (S) is always bounded by 2
√
εN .

Keeping VC(H) fixed and increasing the number N of samples shows that εN decreases
like log N

N and the variance estimate (5.27) holds with increasing probability.

However, keeping VC(H) and hence the complexity of the hypothesis class H fixed would
freeze the bias term a(hS∗ ,H) and the excess risk would not decrease below the
approximation error.

Thus to decrease the risk, one should also gradually increase the complexity of H = HN ,
ideally, so as to balance the two terms representing variance and bias. This can be done
by model selection, see e.g. [1].

How fast the bias a(hS∗HN ) as well as the modulus ω(p, eN ) can tend to zero as N grows,
depends on the “regularity” of the decision boundary ∂S∗ and on the way how the
regression function η(x) passes through ∂S∗. So called “margin conditions” describe this
in a similar way as differentiability is used in approximation theory to characterize
approximation properties of functions. A discussion of such conditions can also be found in
[1].
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Regression - a Sketch
Always: ZN = {(xi , yi ), . . . , (xN , yN )} ⊂ X × Y i.i.d. samples from an unknown probability
measure P with density p

Regression: Y ⊂ Rn has a continuous range, objective: estimate the regression function
f∗ = fp(x) := E[y |x ] (see Lecture II, (8.3)).

Risks: For any f ∈ L2(X , pX ) ∩ C(X ), f : X → Y, let

R[f ] :=

∫
Z

(y − f (x))2dP(x , y), R̂ZN [f ] :=
1
N

N∑
i=1

(f (xi )− yi )
2. (5.31)

Recall: dP(x , y) = dP(y |x)dPX (x), and the fact that fp := E[y |x ] is an orthogonal projection
yield

R[f ] = R[fp] + ‖f − fp‖2
L2(X ,pX ). (5.32)

Given a hypothesis class H, let
f̂ = f̂ZN = argmin

f∈H
R̂[f ]. (5.33)

Recall:
R[̂f ]−R[f∗] = R[̂f ]−R[fH]︸ ︷︷ ︸

Evar

+R[fH]−R[f∗]︸ ︷︷ ︸
a(f∗,H)

(5.34)
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Setting

Assumptions:

|fp(x)| = |f∗(x)| ≤ M̄, a.e., i.e., y is bounded almost surely.

H ⊂ C(X ) is compact and ∃M <∞ s.t.

|f (x)− y | ≤ M, a.e. ∀ f ∈ H. (5.35)

Some Consequences: samples are i.i.d.

E
[
R̂[f ]

]
= R[f ], var[R̂[f ]] = var

[
(Y − f (X))2] =: σ2 ≤ M4, (5.36)

 var
[
R[f ]− R̂[f ]

]
= σ2 −R[f ]2 (5.37)

Covering Numbers: N (H, δ) := the smallest number of balls of radius δ that cover H.

SinceH is compact, N (H, δ) <∞; covering numbers quantify the complexity ofH, see [3, 7, 6]
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Single Elements in H

Proposition 14

Under the above assumptions: for a given f ∈ H

ProbZN
{
|R[f ]− R̂[f ]| ≤ δ

}
≥ 1−min

 2e
− Nδ2

2(σ2+M2δ/3) (Bernstein’s inequality)

2e−
Nδ2

2M2 (Hoeffding’s inequality)
(5.38)

Notice: when σ2 is small compared with M2δ, Bernstein’s inequality gives a better estimate.

To estimate the sample error or “variance” term

Evar ≤
∣∣R[̂f ]− R̂[̂f ]

∣∣+
∣∣R̂[fH]−R[fH]

∣∣
as in the case of classification, we need to bound

sup
f∈H

∣∣R[f ]− R̂[f ]
∣∣

in probability.
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Supremum over H
Theorem 15

Under the above assumptions: one has for all δ > 0

ProbZN

{
sup
f∈H
|R[f ]− R̂[f ]| ≤ δ

}
≥ 1−N

(
H,

δ

8M

)
min

 2e
− Nδ2

4(2σ2+M2δ/3)

2e−
Nδ2

2M2

(5.39)

where σ2 = σ2(H) = supf∈H var
[
(Y − f (X))2] ≤ M4.

Preliminary observation:

Lemma 16

Underthe above assumptions: For any two f , g ∈ H and ZN ∈ ZN one has

|(R[f ]− R̂[f ])− (R[g]− R̂[g])| ≤ 4M‖f − g‖L∞(X ). (5.40)

The proof is elementary and uses the decomposition (see [3, Prop. 3])

(f (x)− y)2 − (g(x)− y)2 = (f (x)− g(x))(f (x) + g(x)− 2y).
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Proof of Theorem 15: Let m := N
(
H, δ/(4M)

)
and let fj , j = 1, . . . ,m, be the centers of balls

Bj ⊂ H, j = 1, . . . ,m, covering H. By Lemma 16

|(R[f ]− R̂[f ])− (R[fj ]− R̂[fj ])| ≤ 4M‖f − fj‖L∞ ≤ 4M
δ

4M
= δ, ∀ f ∈ Bj ,

for any ZN ∈ ZN . Since therefore |R[f ]− R̂[f ]| ≤ |R[fj ]− R̂[fj ]|+ δ we conclude

sup
f∈Bj

|R[f ]− R̂[f ]| ≥ 2δ ⇒ |R[fj ]− R̂[fj ]| ≥ δ.

Thus, for each j ∈ {1, . . . ,m}

ProbZN

{
sup
f∈Bj

|R[f ]− R̂[f ]| ≥ 2δ
}
≤ ProbZN

{
|R[fj ]− R̂[fj ]| ≥ δ

}
≤ e
− Nδ2

2(σ2(fj−y)+M2δ/3) , (5.41)

where we have used Proposition 14 in the last step.

The claim (5.39) follows now from the Union Bound, Lecture IV, Remark 4. �

W. Dahmen, J. Burkardt (DASIV) VI - Statistical Learning Principles 44 / 47



A Closer Look at ERM for Classification Better Results - VC-Dimension

Sample Error
Evar ≤ |R[̂f ]− R̂[̂f ]|+ |R[fH]− R̂[fH]| ⇒

ProbZN

{
Evar ≥ δ

}
≤ ProbZN

{
|R[̂f ]− R̂[̂f ]|+ |R[fH]− R̂[fH]| ≥ δ

}
≤ ProbZN

{
sup
f∈H
|R[f ]− R̂[f ]| ≥ δ/2

}

Use Theorem 15 with δ replaced by δ/2 to conclude

Theorem 17

Under the above assumptions one has for δ > 0

ProbZN

{
Evar ≤ δ

}
≥ 1−N

(
H,

δ

16M

)
e
− Nδ2

8(2σ2+M2δ/6) (5.42)

Thus to achieve target accuracy δ with probability at least 1− η, it suffices to take

N ≥
8
(

2σ2 + M2δ
6

)
δ2

{
ln
(

2N (H,
δ

16M

))
+ | ln η|

}
. (5.43)
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Excess Risk
Main Goal: estimate (f∗(x) = fp(x) = E[y |x ])

R[̂f ]−R[fp] = Evar +R[fH]−R[fp] = Evar + a(fp,H)  

ProbZN

{
R[̂f ]−R[fp] ≥ δ + a(fp,H)

}
= ProbZN

{
Evar + a(fp,H) ≥ δ + ra(fp,H)

}
= ProbZN

{
Evar ≥ δ

}
(5.44)

For many choices of H and f with some smoothness properties one has

a(f ,HD) ≤ C(f )D−r , N (HD , η) ∼ η−a, for some r , a > 0.

(5.43) with η = N−b  N ∼ δ−2(d | log δ|+ b log N) ∼ δ−2(a + b) log N, i.e.,

δ ∼
√

(a+b) log N
N

Ideally: choose HD such that δ ≈ a(fp,H) D ∼
(

N
(a+b) log N

) 1
2r , 

For A sufficiently large, with probability at least 1− N−r one has

R[̂fZN ]−R[fp] <∼

√
A log N

N , N →∞.
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