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Final Project Correction!

In problem 4, the original instructions told you to 
check whether one date was notequal to another 
by:

    if ( D1~= D2 && M1 ~= M2 && Y1 ~= Y2 )...

but the correct statement uses OR’s:

    if ( D1~= D2 || M1 ~= M2 || Y1 ~= Y2 )...

Two dates are unequal if any of D, M or Y is 
different.
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The Maze Problem



  

The Maze Problem

A maze is a puzzle involving a number of rooms or 
locations connected by doors or passageways.  One 
location is the entrance or starting point, the other 
location is the exit.

The player seeks the exit location by moving from  room 
to room.

The player has no idea where the exit is, there are many 
dead-ends, and when faced with a choice of several 
new rooms to explore, there is no obvious choice.



  

Searching the Labyrinth



  

Theseus in the Labyrinth

In mythology, the Greek hero Theseus entered 
the Labyrinth, an underground maze where the 
Minotaur monster lived.

He had to wander through the maze until he 
encountered and killed the Minotaur.

Once his mission was accomplished, he  to 
escaped the Labyrinth using a spool of thread 
he had been unwinding since he entered the 
maze.



  

Deleting Dead Ends

A spool of thread only helps you retrace your steps.

What if you want to solve a maze, that is, get from the 
start to the exit?

If you are lucky to have a map, you can try to simplify the 
puzzle by filling in all the dead ends.  As you fill them in, 
you may see more dead ends that can be eliminated.

Dead End Elimination: Given a map of the maze, 
eliminate all paths that you can see are dead ends.  
The remaining paths may form a direct route to the exit.



  

Removing First Dead Ends



  

After All Dead Ends Removed



  

A Maze Algorithm

The dead-end rule can be useful if you have a map or a 
printed puzzle, as long as the puzzle has just a single 
path to the exit.  

What if you simply walk into a maze and have to find your 
way through, using only local information?

A suggested method is the Right-Hand-Algorithm: at the 
starting point, place your right hand on the maze wall.  
Then proceed in such a way that your right hand never 
leaves the wall.  If the maze is "simple", you will reach 
the exit.



  

Using the Right Hand Rule



  

Right Hand Rule Idea

The right hand rule works for simple mazes, in which, if we 
ignore the openings for the entrance and exit, the maze walls 
form a single object.

That’s because the right hand rule is essentially tracing the 
entire maze wall, up to the point where the exit is encountered.

After all, if someone told you to paint the maze, you could do it 
this way, leaving a continuous trail of paint until you reached 
the exit.  

In fact, if there was no exit, then we would exactly trace the 
entire maze and return to the entrance.



  

Right Hand Rule Can Fail

The Right Hand Rule can fail if the maze has a 
more complicated structure.  

In particular, if the entrance or exit is in the 
interior of the maze, and the maze walls are not 
one connected piece, then the rule can fail.

Corn mazes often include overpasses or tunnels 
that make the right hand rule fail. 



  

Right Hand Rule Can Fail



  

Tremaux: A Better Maze Rule

Mark each path as you follow it. The marks need to be visible at both ends of the 
path. You can imagine the marks as being your footprints, or as chalk marks 
you make at the beginning and end of each path.

Never enter a path which has two marks on it (footprints in + footprints out).

If you arrive at a junction where you have to choose your next path:

  * if all the new paths are unmarked,  choose an arbitrary path and proceed;

  * if your current path has only one mark, turn around.

  * else your path has two marks.  Choose the path with the fewest marks.

When you finally reach the solution, paths marked exactly once will indicate a 
way back to the start.



  

Example Maze for Tremaux



  

Maze -> Graph

If we think of the "rooms" as nodes, and the 
connections or pathways as "edges", then we can 
represent any maze as a mathematical graph.

This means we can store the maze as an adjacency 
matrix (or edge list or other data structure).

It means we can apply mathematical algorithms to 
the graph, in order to answer questions about the 
maze.



  

Tremaux Maze -> Graph



  

Tremaux Graph



  

Questions

Questions we can ask about our maze, or any graph:

* Is the graph connected?

* How far away is each node from the entrance?

* Is there a path from A (entrance) to B (exit)?

* What is that path?

* How can we be sure to visit every node in the graph?

* How can we search for the Minotaur, and then find our 
way back to the starting position?



  

Is a Graph Connected?



  

Connection Detection

A graph is connected if it is possible to find a path 
(a sequence of edges) that lead from any node 
A to any other node B.

Our eye can easily decide whether a graph is 
connected, at least for small graphs.

For the maze puzzle, connectedness guarantees 
that no matter which nodes we choose as start 
and finish, there will be a path from one to the 
other.



  

Connected: Any A to Any B

From the definition, we know that a graph G is connected if we can get from any node 
A to any node B.  This might suggest the following algorithm.:

      value = true;

      for a = 1 : n

        for b = 1 : n

          value = a_to_b ( adj, a, b );  % Is there a path from node A to node B?

          if ( value == false )

            return

          end

        end

      end 



  

A "Flooding" Solution

Here is a simpler and faster approach for connection.  

Suppose our bathtub starts overflowing at node 1.  What dry 
rooms will become wet?  The rooms connected to room 1.  
Stop worrying about room 1, and start worrying about 
these newly flooded rooms (say rooms 5 and 7).

Any room connected to 5 or 7 that was dry will also become 
wet.  List all those rooms, and forget about 5 and 7.

Keep doing this until no more rooms get flooded.  Count the 
wet rooms.  Does this match the number of rooms in the 
graph?  Then the graph is connected.



  

GRAPH_CONNECTED in Words
function value = graph_connected ( adj )

%

%% GRAPH_CONNECTED is true if the graph G is connected.

%

%  N is the number of nodes.

%

%  WET(I) will be TRUE if node I got wet.

%  WET_NUM counts how many nodes are wet.

%

%  OLD holds the nodes that got wet on the last step.

%  NEW lists the nodes that just got wet on this step.

%

%  If there were NEW nodes on the previous step, make them OLD, 

%  set NEW to the empty list and take another step:

%

%      For each node J in the OLD list

%

%          if node I a neighbor node that is DRY?

%          then node I is WET, node I is added to the NEW list, and WET_NUM increases by 1.

%

%  If WET_NUM == N, then the graph is connected.



  

graph_connnected.m
function value = graph_connected ( adj )

  [ n, n ] = size ( adj );

  reach = zeros(1,n);

  reach(1) = true;

  new = [1];

  reached = 1;

  while ( 0 < length ( new ) )

    old = new;

    new = [];

    for k = 1 : length ( old )

      j = old(k);

      for i = 1 : n

        if ( adj(i,j) == 1 )

          if ( ~ reach(i) )

            reach(i) = true;

            new = [ new, i ];

            reached = reached + 1;

          end

        end

      end

    end

  end

  value = ( reached == n );

  return

end



  

Disconnected Graph

     1  2  3  4  5  6  7  8

  +--------------------------

1 | 0  0  0  1  0  1  0  0

2 | 0  0  1  0  0  0  0  0

3 | 0  1  0  0  0  0  0  1

4 | 1  0  0  0  1  1  0  0

5 | 0  0  0  1  0  0  0  0

6 | 1  0  0  1  0  0  0  0

7 | 0  0  0  0  0  0  0  0

8 | 0  0  1  0  0  0  0  0

The row of zeros makes it easy to see that this graph is not connected.

Usually, it is not so easy!



  

Distance from a node



  

Lewis Carroll’s “Doublets”

A word game invented by Lewis Carroll tries to transform one word into another 
by switching one letter at a time.   Although Carroll called the game “Doublets”, 
it is also known as “Word Ladders”.  The score is the number of steps needed.

 Thus, FIND to LOSE:

      FIND

      FINE

      LINE

      LIVE

      LOVE

      LOSE

for a score of 5.



  

A Graph Distance Puzzle

We can think of the problem of changing “FIND” to 
“LOSE” as a graph puzzle.  Imagine all four letter 
words as nodes.  Connect any two words that 
differ in a single position.  

Our task is to find a path from “FIND” to “LOSE” (if 
there is one) and to choose the path that is the 
shortest, that is, that requires the fewest number 
of edges to make the trip.

More puzzles: LOVE to HATE, WARM to COLD, 
WHEAT to BREAD, TEARS to SMILE...

 



  

Six Degrees of Kevin Bacon



  

Another Graph Puzzle

In the Kevin Bacon game, the challenger names an actor, and the 
player must find a sequence of movies that link that actor to 
Kevin Bacon.  For instance, if the challenge is “Heath Ledger” 
then:

1: Heath Ledger

    was in “I’m Not There” and so was...

2: Tyrone Benskin

    was in “Criminal Law”, and so was...

3: Kevin Bacon

So Heath Ledger is “two degrees” from Kevin Bacon.



  

Graph Distance
Lewis Carroll’s Doublets and Six Degrees of 

Kevin Bacon are simple examples of the 
problem of determining the distance between 
two nodes on a graph.

We assume that all we have to work with is the 
adjacency information, which tells us about 
immediate neighbors. 

What we want to know is the minimum number of 
steps we need in order to go from a given 
starting point to a given goal.



  

Distance from Node A to any Node

The “flooding” idea, which we used to determine if a 
graph is connected, can also help us to determine how 
many steps it takes to reach any node if we start at a 
given node A.

Node A will have a distance of 0.

All the immediate neighbors of A have a distance of 1.

Neighbors of neighbors of A, if not already encountered, 
have a distance of 2, and so on.

Nodes we never reach will have distance “Infinity”.



  

The Museum Map



  

distance_from_a.m
function d = distance_from_a ( adj, a )

  [ n, n ] = size ( adj );

  d(1:n,1) = Inf;                %  <- Iniialize distance to “Infinity”

  distance = 0;

  d(a) = distance;

  new = [ a ];

  while ( 0 < length ( new ) )       %  <- Search for next layer of neighbors

    old = new;

    new = [];

    distance = distance + 1;

    for k = 1 : length ( old )

      j = old(k);

      for i = 1 : n

        if ( adj(i,j) == 1 && d(i) == Inf )

            d(i) = distance;

            new = [ new, i ];

          end

        end

      end

    end

  end

return

end

    



  

distance_from_a ( Adj, 1 )



  

distance_from_a ( Adj, 9 )



  

Can You Get From A to B?



  

A to B?

If a graph is connected, then we already know that we 
can get from any node to any other node, so we could 
consider running a code like graph_connected().

If this returns FALSE, however, we really only know that 
some nodes can’t reach other nodes.

And if it returns TRUE, then although we know A and B 
have a connecting path, we don’t know what it is.  

So graph_connected() does not really answer our 
problem sufficiently.



  

A to B?
Again, let’s consider using the “flood” method.  We 

will start at node A, and find all the neighbors, 
then the neighbor’s neighbors and so on.  

We will stop if:

1) we encounter B, because now we know they 
are connected, or

2) if we never encounter B, running out of 
neighbors.  So there is no path.

This method gives us a reliable TRUE/FALSE 
answer, although not an actual path.



  

A_TO_B in Words
function value =  a_to_b ( adj, a, b )

%

%% A_TO_B is true if there is a path from node A to node B.

%

%  VALUE = FALSE;                                              % Assume there is no path

%  WET(I) will be TRUE if node I got wet.              %  WET(A) = TRUE.

%  WET_NUM counts how many nodes are wet.  %  WET_NUM = 1;

%

%  OLD holds the nodes that got wet on the last step.

%  NEW lists the nodes that just got wet on this step.    % NEW = [ A ];

%

%  If there were NEW nodes on the previous step, make them OLD, 

%  set NEW to the empty list and take another step:

%

%      For each node J in the OLD list

%

%          if node B is a neighbor, VALUE = TRUE, and RETURN

%

%          if node I is a neighbor node that is DRY

%          then node I is WET, node I is added to the NEW list, and WET_NUM increases by 1.

%

 



  

a_to_b.m
function value = a_to_b ( adj, a, b )

  value = false;

  [ n, n ] = size ( adj );

  reach = zeros(1,n);

  reach(a) = true;

  new = [ a ];

  while ( 0 < length ( new ) )

    old = new;

    new = [];

    for k = 1 : length ( old )

      j = old(k);

      for i = 1 : n

        if ( adj(i,j) == 1 && ~ reach(i) )

            reach(i) = true;

            new = [ new, i ];

            if ( i == b )

              value = true;

              return

            end

          end; end; end; end; return; end



  

Tremaux Graph: Path from A to P?

a_to_b ( adj, 1, 16 ) returns TRUE



  

Is There a Path from A to B?

adj = disconnected_adj ( );

value = a_to_b ( adj, 1, 5 );

value = a_to_b ( adj, 1, 8 );

adj = tremaux_adj ( );

value = a_to_b ( adj, 4, 12 );

value = a_to_b ( adj, 10, 1 );

adj = risk_adj ( );

value = a_to_b ( adj, 42, 10 );



  

List the path from A to B

It turns out to be easy to get the path from A to B.  
We are at node J, looking for a “dry” neighbor I 
and when we find one, we set REACH(I) to 
TRUE.  Instead, we can set REACH(I) to J.

 This tells us that if we are at node I, we can get 
closer to the starting node by moving to node J.

If we move to node J, we can look at REACH(J) 
and get one more step closer, and so on.



  

A_TO_B_PATH in Words
function path =  a_to_b_path ( adj, a, b )

%

%% A_TO_B_PATH lists nodes in a path from A to B.

%

%  BACK(I) points to a node closer to A.

%  BACK(A) = -1

%

%  OLD holds the nodes that we encountered on the last step.

%  NEW lists the nodes that we just touched on this step.         <- Initially NEW = [ A ];

%

%  If there were NEW nodes on the previous step, make them OLD, 

%  set NEW to the empty list and take another step:

%

%      For each node J in the OLD list

%

%          if node I is a neighbor and BACK(I) = -1, then BACK(I) = J

%          if this is actually node B, we are done.

%          otherwise  add node I to the NEW list.

%

%  PATH = []

%  node = B;  

%  while (true)

%     PATH = [ node, PATH ]

%    node = BACK(node)

 



  

Path Examples
adj = museum_adj(); label = museum_label();

path = a_to_b_path ( adj, 17, 1 );

label(path);

  'QPOIHNMGA'

adj = risk_adj();  label = risk_label();

path = a_to_b_path(adj,42,9);

label(path);

    "Eastern Australia"

    "Indonesia"

    "Siam"

    "China"

    "Mongolia"

    "Kamchatka"

    "Alaska"

    "Alberta"

    "Western US"

    "Central America"



  

The Museum Map



  

RISK Game Board Numbered



  

Search a Graph



  

Breadth First Search

The “flooding” idea has now allowed us to 
determine whether a graph is connected, and 
how many steps it takes to reach any node 
from a given starting point.

This idea is very important in mathematical graph 
theory, and in computer science.  It is known as 
“breadth first search”, (BFS) because it starts at 
a single point, and explores the graph by 
looking at successively further layers of nodes. 



  

Search the Graph

A graph is a sort of simplified map, and a map can 
be used to search for things.

Suppose we have a map of the rooms of a 
museum, and we want to organize a search of the 
rooms until we find the room that contains a 
particular painting.

Instead of wandering, we want to plan a trip that is 
guaranteed to visit every room (if necessary) until 
we find the painting.



  

The Museum Map



  

Museum Adjacency
        A B C D E F G H I J K L M N O P Q R

A | . . . . . . 1 . . . . . . . . . . .

B | . . 1 . . . . 1 . . . . . . . . . .

C | . 1 . . . . . . . . . . . . . . . .

D | . . . . 1 . . . . . . . . . . . . .

E | . . . 1 . 1 . . . . 1 . . . . . . .

F | . . . . 1 . . . . . . . . . . . . .

G | 1 . . . . . . . . . . . 1 . . . . .

H | . 1 . . . . . . 1 . . . . 1 . . . .

I | . . . . . . . 1 . i . . . . 1 . . .

J | . . . . . . . . 1 . . . . . . . . .

K | . . . . 1 . . . . . . 1 . . . . 1 .

L | . . . . . . . . . . 1 . . . . . . 1

M | . . . . . . 1 . . . . . . 1 . . . .

N | . . . . . . . 1 . . . . 1 . . . . .

O | . . . . . . . . 1 . . . . . . 1 . .

P | . . . . . . . . . . . . . . 1 . 1 .

Q | . . . . . . . . . . 1 . . . . 1 . .

R | . . . . . . . . . . . 1 . . . . . .



  

The Museum Problem

For the museum problem, suppose we start at node "Q", and we need a plan to visit 
every room in the museum until we find the room containing a specific painting.  

We can assume that this is actually the room labeled "D", or numerically "4", but this 
fact is not known to us until we reach that room.

We know how to find a path from "Q" to every room, but that's not the best way to think 
about the problem.

Instead, we imagine starting at Q and, as long as possible, always moving to a 
neighboring unvisited room, with three  rules:

1) If you have a choice of rooms to visit, remember the ones you didn't choose so you 
can come back to them later;

2) If you reach a dead-end (no neighboring unvisited rooms), reverse your path until 
you reach a room that still has unvisited neighbors.

3) If you reach the room that contains the desired object (the painting) then you are 
done.



  

A Miniature Museum Search

 D   E    F

--+     +---

 J|  K    L

--+     +

 P   Q  | R

Q: options P and K.  Choose P, remember K.

P: no options, return to Q.

Q: option is K.

K: options L and E.  Choose L, remember E.

L: only option is R:

R: no options.  Return to L.

L: no options, return to K.

K: option E.

E: options D and F.  Choose D.

D: found the painting!



  

Programming

Our program needs the adjacency matrix.

It needs to know the current location.

It needs to know the path from "Q" to the current 
location.

It needs to know if a room was already visited.
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