
Chapter 4

The Discrete versus
the Continuous

4.1 Connect the Dots
Plotting Continuous Functions

4.2 From Cyan to Magenta
Color Computations

4.3 One Third Plus One Third Is Not Two Thirds
The Floating Point Environment

There is an interesting boundary between continuous mathematics and digital computing:

• Display monitors are an array of dots. However, the dots are so tiny that the depiction
of a continuous function like sin(x) actually looks continuous on the screen.

• The number of possible display colors is limited. However, the number is so large
that for all practical purposes, it looks like we are free to choose from anywhere in
the continuous color spectrum.

• Computer arithmetic is inexact. However, the hardware can support so many digits
of numerical precision that there is the appearance of perfect computation. We begin
to think that one third is .333333333333333.

In this chapter we build respect for these scientifically based illusions and an appreciation
for what they can hide.

The stakes are high. In many applications, the volume of data that make up “the
answer” is too big for the human mind to assimilate. Increasingly, we must rely upon
quality graphics to help us spot patterns that would otherwise be hidden. Will the critical
discontinuities of a function be exposed? Will the shading of an object from hot pink to
deep purple look real or fake? Regarding arithmetic, if we think of the computer as a kind
of telescope, then rounding errors affect what we can distinguish in deep “computational”
space. Double stars will look like single stars if we are not careful.

Part of being a good computational scientist or engineer is to recognize professionally
(not cynically) that seeing is not always believing.

63

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

64 Chapter 4. The Discrete versus the Continuous

Programming Preview

Concepts

Visualization, plotting functions, granularity, one-dimensional arrays, vectors, vec-
tor operations, vector notation, subvectors, color, RGB, interpolation, floating point
arithmetic, error.

Language Features

vector: A one-dimensional list of values. May be a row or a column.

length: Returns the number of components in a vector.

zeros, ones: Return an array of 0’s or an array of 1’s.

linspace, logspace: Return an array of values that are equally spaced on a
linear scale or a logarithmic scale.

Colon notation: Specifies a set of values with a fixed increment, e.g., 1:2:9 is the
set “1 to 9 in steps of 2”.

for-loop: The loop index can count up or down with a fixed increment, e.g.,
9:−2:1, or take on the values in an arbitrary vector, e.g., [5, −2.5, 1].

plot, fill: Draw an xy plot or a colored polygon.

eps, inf, NaN, realmax, realmin: Several Matlab predefined constants.

MatTV

Video 10. Creating Arrays

How to create arrays of numbers.

Video 11. Array Addressing

How to access subarrays.

Video 12. Basic Mathematical Operations on Arrays

How to write simple expressions that perform a mathematical operation on all
elements of a vector. Vectorized code performs arithmetic (and relational and
logical) operations on multiple elements of an array in one statement.

Video 13. Script

How to write and run Matlab scripts that create simple graphics.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.1. Connect the Dots 65

4.1 Connect the Dots

Problem Statement

Write a script that displays a plot of the function

f (x)= sin(5x)exp(−x/2)

1+x2

across the interval [−2,3].

Program Development

Let us first consider a much simpler problem: the plotting of the sine function across the
interval [0,2π]. Even more, let us consider how we would approach such a problem “by
hand.” First, we would produce a table of values, e.g.,

x 0.000 1.571 3.142 4.712 6.283

sin(x) 0.000 1.000 0.000 −1.000 0.000

We would then connect the five points

P1 = (0.000,0.000)

P2 = (1.571,1.000)

P3 = (3.142,0.000)

P4 = (4.712,−1.000)

P5 = (6.283,0.000)

obtaining the simple plot that is illustrated in Figure 4.1. It is hard to be happy with such a
coarse depiction of such a smooth function. Five evenly distributed sample points means
an x-spacing of π/2 and that is just too crude. If we reduce the spacing from π/2 to π/4,
then the table of values expands to

x 0.000 0.785 1.571 2.356 3.142 3.927 4.712 5.498 6.283

sin(x) 0.000 0.707 1.000 0.707 0.000 −0.707 −1.000 −0.707 −0.000

(4.1)

and we obtain the plot shown in Figure 4.2. The graph still has “kinks” but there is definitely
an improvement.

Obviously, we can repeat this process of refining the graphs by checking out plots that
are based on more and more sample points. Eventually, the kinks disappear and our eyes

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

66 Chapter 4. The Discrete versus the Continuous

sin(x)

Figure 4.1. Plot of the Sine Function with 5 Sample Points.

sin(x)

Figure 4.2. Plot of the Sine Function with 9 Sample Points.

are “fooled” into seeing a smooth function. Just how much sampling is required to produce
an acceptable plot depends on human perception factors (How good are your eyes?), screen
granularity (Are there 100 pixels per inch or 500 pixels per inch?), and the underlying
application (How wild is the underlying function?). Let us write a script that sheds light on
the quality of our sine plot as a function of n, the number of sample points.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.1. Connect the Dots 67

The graphing of a given function y = f (x) across a given interval [L,R] involves
three basic steps:

Step 1. The production of a table of x-values chosen from the interval.

Step 2. The production of a table of y-values that correspond to the
evaluation of f at the x-values.

Step 3. A mechanism that connects the dots defined by the xy-pairs and
displays the resulting polygonal line.

To illustrate, here is a “rough draft” of the script that produced the plot shown in Figure 4.2:

x = linspace(0,2*pi,9);
y = sin(x);
plot(x,y)

The built-in function linspace is used to generate a table of equally spaced values across
the given interval. The syntax for linspace is as follows:

linspace(Left Endpoint , Right Endpoint , Number Sample Points)

The assignment x = linspace(0,2*pi,9) is the assignment of an array to x:

x: 0.000 0.785 1.571 2.356 3.1412 3.927 4.712 5.498 6.283

A table of values like this is a one-dimensional array. In Matlab this assembly of data is
also known as a vector. Higher-dimensional arrays will be discussed later. For now, we use
the terms “array,” “vector,” and “table” interchangeably.

The statement y = sin(x) looks familiar enough, only now the sin function is
handed a table of values instead of just a single number as is more customary. The result is
that y is assigned the array of sine evaluations that correspond to x:

y: 0.000 0.707 1.000 0.707 0.000 −0.707 −1.000 −0.707 −0.000

Notice that x and y house the top and bottom half, respectively, of the table of values (4.1).
The last line in the above script involves the plot function. If x and y are vec-

tors with the same length, then they define a set of points in the plane and the command
plot(x,y) simply “connects the dots.”

With these preliminaries we can address the question of how many function evalua-
tions are necessary to produce a smooth sine plot. A script of the form

for n=25:25:500
% Show sin(x) with n points
x = linspace(0,2*pi,n);
y = sin(x);
plot(x,y)
title(sprintf(’n = %3d’,n))
pause

end

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

68 Chapter 4. The Discrete versus the Continuous

reveals that n= 100 is “good enough” given typical screen granularity and average eyesight.
See Figure 4.3.

The title command is used to display the string sprintf(’n = %3d’,n)
across the top of the plot window. The function sprintf is just like fprintf, except
that it returns the specified string message instead of writing it to the command window.

The pause command halts the program until the user strikes a key. With this feature,
we can study the sequence of plots at our own pace.

n = 100

Figure 4.3. Plot of the Sine Function with 100 Sample Points.

Let us return to the problem posed at the beginning of the section. Two features of
Matlab make the task of function plotting easy. First, built-in functions like sin, cos,
exp, and log can accept an input argument that is a vector. When this is the case, they
return the corresponding array of function evaluations, e.g.,

1.234 5.678 9.123 −→ Built-In
Function f

−→ f (1.234) f (5.678) f (9.123)

A second feature of Matlab that is very handy in plot situations is its support of
vector-level operations. To illustrate, suppose variables a and b are initialized as follows:

a: 10 8 −5

b: 2 4 1

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.1. Connect the Dots 69

These vectors can be

scaled(*) c = 5*a ⇒ c: 50 40 −25

scaled(/) c = a/2 ⇒ c: 5 4 −2.5

negated c = -a ⇒ c: −10 −8 5

reciprocated c = 1./a ⇒ c: .100 .125 −.200

shifted c = 5+a ⇒ c: 15 13 0

exponentiated c = a.ˆ2 ⇒ c: 100 64 25

added c = a+b ⇒ c: 12 12 −4

subtracted c = a-b ⇒ c: 8 4 −6

multiplied c = a.*b ⇒ c: 20 32 −5

divided c = a./b ⇒ c: 5 2 −5

With this repertoire, we can easily build a table of values for more complicated functions.
For example, the script

x = linspace(-2,3,100);
y1 = 5*x; % vector scaling
y2 = sin(y1); % vector of sine evaluations
y3 = -x; % vector negation
y4 = y3/2; % vector scaling
y5 = exp(y4); % vector of exp evaluations
y6 = y2.*y5; % vector multiplication
y7 = x.ˆ2; % vector exponentiation
y8 = 1 + y7; % vector shifting
y = y6./y8; % vector division
plot(x,y)

results in the plotting of the function

f (x)= sin(5x)exp(−x/2)

1+x2

across the interval [−2,3]. The code for y can be collapsed down to a single assignment
statement:

y = (sin(5*x).*exp(-x/2))./(1 + x.ˆ2);

Notice how this looks just like a typical scalar assignment except for the “dot operations”
that designate vector multiplication, vector division, and vector exponentiation. Here is the
full solution script and the plot that it produces.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

70 Chapter 4. The Discrete versus the Continuous

The Script Eg4_1

% Script Eg4_1
% Plots the function f(x) = sin(5x)*exp(x/2)/(1 + xˆ2)
% across [-2,3].

L = -2; % Left endpoint
R = 3; % Right endpoint
N = 200; % Number of sample points

% Obtain the vector of x-values and f-values...
x = linspace(L,R,N);
y = sin(5*x) .* exp(-x/2) ./ (1 + x.ˆ2);

% Plot and label...
plot(x,y,[L R],[0 0],’:’)
title(’The function f(x) = sin(5x) * exp(x/2) / (1 + xˆ2)’)
ylabel(’y = f(x)’)
xlabel(’x’)

Figure 4.4. Sample Output from the Script Eg4_1.

The support of vector-level operations is a rich feature of the Matlab language that
enables us to write more readable and efficient code. To appreciate this point we need to
look more carefully at the vector structure and how particular components can be accessed
through the use of subscripts.

Consider the assignment x = linspace(15,30,4) which establishes x as a
length-4 row vector:

x: 15 20 25 30

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.1. Connect the Dots 71

Here is a better way to visualize x:

15

x(1)

20

x(2)

25

x(3)

30

x(4)

This schematic reinforces the idea that x is an array variable having four components that
are (traditional) simple variables. The names of the component variables are x(1), x(2),
x(3), andx(4). The numbers within the parentheses are subscripts. Subscripted variables
can be involved in assignment statements. For example, the fragment

x(1) = x(1) + 2;
x(2) = x(3) + x(4);
x(4) = x(4)/2;

transforms the vector x above into

17

x(1)

55

x(2)

25

x(3)

15

x(4)

The value of a subscript can be specified by a variable or an arithmetic expression. Thus,

x(1) = x(1) + 2;

is equivalent to

k = 1;
x(k) = x(k) + 2;

while

x(2) = x(3) + x(4);

is equivalent to

i = 1;
x(i) = x(i+2) + x(i+3);

When a subscript is specified by an arithmetic expression, the expression must evaluate to
a “legal” subscript. Thus

i = 3;
x(i) = x(i+1) + x(i+2);

will result in an error because i+2 evaluates to 5 and there is no x(5).

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

72 Chapter 4. The Discrete versus the Continuous

To further our ability to reason about subscripts, let us use a for-loop to set up the
vector x = linspace(15,30,4). Of course, for such a short vector we can do this
“by hand”:

x(1) = 15;
x(2) = 20;
x(3) = 25;
x(4) = 35;

But the recipes for the component values are simple functions of the subscript: the value of
x(k) is 10+5*k for k = 1, 2, 3, and 4. Thus,

for k=1:4
x(k) = 10 + 5*k; (4.1)

end

does the job. Knowing that the loop counter k steps from 1 to 2 to 3 to 4, this is equivalent to

k = 1;
x(k) = 10 + 5*k;
k = 2;
x(k) = 10 + 5*k;
k = 3;
x(k) = 10 + 5*k;
k = 4;
x(k) = 10 + 5*k;

When using a loop to set up a vector, it is a good habit to establish the size and
orientation of the vector using the zeros function before beginning the iteration. The
command

x = zeros(1,4);

establishes x as a length-4 row vector with components initialized to zero:

0

x(1)

0

x(2)

0

x(3)

0

x(4)

Let us trace the execution of (4.1) now that x has this form. The first time through the loop,
k has the value of 1. The dynamics of the assignment x(k) = 10 + 5*k is very similar
to what we learned for simple variable assignments. The right-hand side is a recipe for a
value, in this case 15. The left-hand side names the target variable, but now the name of the
target variable is computed: x(1). After the first pass the x array looks like this

15

x(1)

0

x(2)

0

x(3)

0

x(4)

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.1. Connect the Dots 73

The processing is similar during the second pass when k is 2:

15

x(1)

20

x(2)

0

x(3)

0

x(4)

And during the third pass when k is 3:

15

x(1)

20

x(2)

25

x(3)

0

x(4)

And during the fourth pass when k is 4:

15

x(1)

20

x(2)

25

x(3)

30

x(4)

As a more general illustration of vector setup using a for-loop, here is a fragment that is
equivalent to x = linspace(a,b,n) assuming that the variables a, b, and n (positive
integer greater than one) are initialized:

% The spacing factor...
h = (b-a)/(n-1);
% A length-n row vector... (4.2)
x = zeros(1,n);
for k=1:n

x(k) = a + (k-1)*h;
end

The recipe for the spacing factor h is derived from the fact that linspace generates n
equally spaced sample points across the interval [a,b] including both endpoints a and b.
Thus, the value of x(1) is a and the value of x(n) is b.

The above loop implementation requires the derivation of an explicit recipe for the
value of x(k). Here is an equivalent solution that avoids this:

% The spacing factor...
h = (b-a)/(n-1);
% A length-n row vector...
x = zeros(1,n); (4.3)
x(1) = a;
for k=2:n

x(k) = x(k-1) + h;
end

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

74 Chapter 4. The Discrete versus the Continuous

The idea behind this approach is that the kth sample point is h plus the (k− 1)st sample
point.

Talking Point: Granularity and the Array
With a sufficient number of function evaluations, the plot of a continuous function appears
smooth. With enough pixel support, a digital camera can produce a high-resolution wall
poster. With a sufficient number of frames per second a video can create the illusion of
motion. The message is clear: we are usually happy with a discretization if it is sufficiently
“fine grained.” To say that a plot or an image or a movie looks real is to say that the
underlying samplings are close to one another in space and/or time.

Underlying all this technology are arrays, squarely on the border between the discrete
and the continuous. Arrays are used to house digitized information. As we will see, a
music CD is a (very) big one-dimensional array, a digitized picture is a (very, very) big
two-dimensional array, and a DVD, being a sequence of still images, is a (very, very, very)
big three-dimensional array. Problem solving in these venues requires having a facility with
subscripts and an ability to reason at the vector level. It will take practice. Lots of practice!

MATLAB Review

Vector Orientation and Subscripts

A vector is a one-dimensional array. Vectors have a length and can be row oriented or column
oriented. If x is a vector, then y = x’ has the opposite orientation and we say that x has been
transposed. Subscripts start at one and must be integers. An error results if the value of a subscript
is less than one or is not an integer. A scalar variable is a length-1 vector.

Creating Short Vectors

To specify explicitly a short row vector, enclose the component values with square brackets and
separate the component values with spaces or with commas, e.g., v = [19 2 -3] or v =
[19, 2, -3]. The same rules apply for column vectors, except that the component values are
separated by semicolons, e.g., v = [19; 2; -3].

Concatenating Vectors

It is possible to make longer vectors by “gluing together” shorter vectors. If x is a length-n row
vector and y is a length-m row vector, then z = [x y] is a length n+m row vector obtained by
augmenting x with values from y. Thus,

x = [10 20]; y = [30 40 50]; z = [x y];

is equivalent to z = [10 20 30 40 50]. Column vectors may also be concatenated, but the
column vectors that make up the concatenation must be separated by semicolons, e.g.,

x = [10; 20]; y = [30; 40; 50]; z = [x; y];

length

If x is a vector, then n = length(x) assigns its length to n.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.1. Connect the Dots 75

Addressing an Array Component

If x is a vector, then x(k) is the kth component of x. To access an existing component, k is an
integer satisfying 1≤ k ≤ length(x), e.g.,

x = [10 25 20]; y = x(2);

To create a vector component, k can be any positive integer, e.g.,

x = [10 25 20]; y(4) = x(2);

creates a vector y with the values [0 0 0 25].

linspace

Use linspace to construct row vectors with equally spaced values. For example, the assignment
x = linspace(0,3,7) is equivalent to

x = [0.0 0.5 1.0 1.5 2.0 2.5 3.0]

In general, if a and b are real-valued scalars and n is an integer with n ≥ 2, then the assignment
x = linspace(a,b,n) is equivalent to

h = (b-a)/(n-1);
for k=1:n

x(k) = a + (k-1)*h;
end

Note that the spacing between components is (b−a)/(n−1) and not (b−a)/n.

logspace

Use logspace to construct vectors with values that are equally spaced logarithmically. For
example, x = logspace(-1,-6,6) is equivalent to

x = [10ˆ-1 10ˆ-2 10ˆ-3 10ˆ-4 10ˆ-5 10ˆ-6]

More generally, x = logspace(a,b,n) is equivalent to

e = linspace(a,b,n);
for k=1:n

x(k) = 10ˆe(k);
end

Colon Notation

The colon notation can be used to generate a row vector of equally spaced values with a prescribed
spacing. For example, x = 1:.3:2 is equivalent to x = [1.0 1.3 1.6 1.9], i.e., read
x = 1:.3:2 as “x goes from 1 up to 2 in steps of 0.3.” Note that the last component has the value
1.9, not 2. In general, if a < b and s > 0 or if b < a and s < 0, then x = a:s:b is equivalent to

n = floor((b-a)/s) + 1; % Number of components
for k = 1:n

x(k) = a + (k-1)*s;
end

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

76 Chapter 4. The Discrete versus the Continuous

The value of s is referred to as the stride. Use linspace(a,b,n) if it is handier to reason about
the number of sample points rather than their spacing or if it is critical to “land” on the “target” b.
If the stride in the colon expression is “missing,” then it is assumed to be one. Thus, 2:5 is the
same as 2:1:5 and the vector of integers [2 3 4 5].

zeros and ones

If n is an initialized positive integer, then x = zeros(1,n) assigns to x a length-n row vector of
zeros. Similarly, x = zeros(n,1) assigns to x a length-n column vector of zeros. The ones
function behaves the same way except that the components are assigned the value one instead of
zero.

Vector Operations

If x is a vector and s is a scalar, then x*s multiplies each component by s, x+s adds s to
each component, x/s divides each component by s, s./x reciprocates each component and then
multiplies by s, and x.ˆs raises each component to the power of s. If y has the same length and
orientation as x, then x+y, x-y, x.*y, x./y, x.ˆy produce vectors by combining components
in the indicated fashion.

for-Loops (Again)

for-loops have the form

for loop variable = vector of loop values

code fragment

end

where the loop variable successively takes on the values in the vector of loop values. The num-
ber of loop body repetitions is therefore the length of this vector. In the simplest case, the vec-
tor of loop values has the form 1:n. Other possibilities include 0:.1:10, [1 -2 3 -4],
n:-1:1, . . . , etc.

pause

pause stops the program and waits for the user to press any key before continuing. pause(t)
stops the program for t seconds before continuing; t can be a fraction.

plot

Use plot to display the data points (xk ,yk) defined by a pair of vectors that have equal length
and orientation. The command plot(x,y) “connects the dots,” thereby displaying the graph
of y versus x in a figure window. It is possible to display more than one graph with a single
plot command, e.g., plot(x,y1,x,y2,x,y3,...) plots y1 versus x, y2 versus x, y3
versus x, etc.

Line and Marker Formats

It is possible to specify how the dots are connected in a plot command, e.g.,

plot(x,y1,’-’,x,y2,’:’,x,y3,’-.’,x,y4,’--’)

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.1. Connect the Dots 77

Use ’-’ for solid lines, use ’:’ for dotted lines, use ’-.’ for dash-dot lines, and use ’--’
for dashed lines. Instead of connecting the dots, it is possible just to put a specified marker at the
dots, e.g.,

plot(x,y1,’.’,x,y2,’o’,x,y3,’+’,x,y4,’x’,x,y5,’*’)

Use ’.’ for point marks, use ’o’ for circle marks, use ’+’ for plus marks, use ’x’ for x-marks,
and ’*’ for star marks.

Line and Marker Colors

Lines and markers can be colored using these mnemonics:

w white c cyan b blue m magenta
r red y yellow g green k black

For example,

plot(x,y1,’r’,x,y2,’*b’,x,y3)

colors the first plot red (line) and the second plot blue (star marks). The color of the third plot (line)
is automatically selected since no color is specified.

title, xlabel, ylabel

It is possible to place a title over a plot and to label the axes:

title(string)

xlabel(string)

ylabel(string)

sprintf

Thesprintf function, likefprintf, is used to produce formatted strings that incorporate values
of specified variables. It has the form

sprintf(string with format controls , list of variables)

Example:

title(sprintf(’Temperature = %4d degrees’,T))

sprintf returns a string that can be stored in a variable or used as the argument to a function, as
shown in the example above with function title.

semilogx, semilogy, loglog

A plot with logarithmic scaling along the x-axis, y-axis, or both can be achieved by using
semilogx(a,b), semilogy(a,b), or loglog(a,b), where a and b are vectors of the
same length.

More Refined Graphics

Appendix A covers line width, font size, special characters, legends, axis labelling, coloring, and
other features that can be used to produce professional-looking graphics.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

78 Chapter 4. The Discrete versus the Continuous

Exercises

M4.1.1 Experiment with Eg4_1 by changing the number of sample points in the interval [−2,3].
If you double N, is the graph visibly smoother? If you halve N, is the shape of the function still
clear? For this function in the given range, roughly how small can N be and still give a reasonable
graph?

M4.1.2 Modify Eg4_1 so that it places a green x marker at the point (z,o) if z is a zero, a blue
circle marker at (z,f (z)) if z is a local minimum, and a red circle marker at (z,f (z)) if z is a local
maximum.

M4.1.3 Modify Eg4_1 to solicit user input values of L and R. The plot should be a red dashed line
across [L,c], a black solid line across [c,d], and a red dashed line across [d ,R], where c= (2L+R)/3
and d = (L+2R)/3.

P4.1.4 Modify Eg4_1 to use the colon expression instead of the built-in function linspace to
create the vector of x-values. linspace allows you to specify the number of points, while the
colon expression allows you to specify the increment between points. Write a colon expression that
matches the linspace function call in Eg4_1 exactly.

P4.1.5 Write a script that inputs three values a, b, c and then prints the length of a:c:b and the
distance from the last vector component to b.

P4.1.6 How long is the vector x after the following script is executed?

x = 1:10:100;
while length(x) < 1000

x = [x x(1) x];
end

P4.1.7 Write a script that uses semilogy to display the function f (x)= 3x+ (2+sin(x))2x across
[0,10].

P4.1.8 Recall that the cosine function has period 2π . In the following fragment, complete the
plot statement so that the cosine function is displayed across the interval [−2π ,6π]:

x = linspace(0,2*pi);
y = cos(x);
plot(???)

Your solution should not involve any additional cosine evaluations.

P4.1.9 Write a script that displays in a single figure window a plot of the functions x, x2, x3, x4,
and x5 across the interval [0,1].

P4.1.10 Plot the function

f (x)= 1+ x

1− x/2

1+ x/6

1− x/6

1+ x/10

1−x/10

across the interval [−2,5].

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.2. From Cyan to Magenta 79

P4.1.11 Write a script that inputs a positive integer n and then generates a length-10 row vector f
according to the following formula:

fk =



n if k = 1

3fk−1+1 if 10≥ k > 1 and fk−1 is odd

fk−1/2 if 10≥ k > 1 and fk−1 is even.

Your script should plot the points (1,f1), . . . , (10,f10) using the star marker.

4.2 From Cyan to Magenta

Problem Statement
The idea of interpolating values in a table is familiar. Consider this excerpt from a sine
table:

x◦ sin(x◦)
...

...
44 0.6947
45 0.7071
46 0.7193
47 0.7314
...

...

To estimate sin(45.2), sin(45.4), sin(45.6), and sin(45.8), we take appropriate linear com-
binations of sin(45) and sin(46):

sin(45.2)= sin(45) + 1

5
(sin(46)− sin(45)) = 4

5
sin(45)+ 1

5
sin(46) = 0.7096

sin(45.4)= sin(45) + 2

5
(sin(46)− sin(45)) = 3

5
sin(45)+ 2

5
sin(46) = 0.7120

sin(45.6)= sin(45) + 3

5
(sin(46)− sin(45)) = 2

5
sin(45)+ 3

5
sin(46) = 0.7144

sin(45.8)= sin(45) + 4

5
(sin(46)− sin(45)) = 1

5
sin(45)+ 4

5
sin(46) = 0.7169.

The idea is that if we “walk” from x = 45 to x = 46 and have completed fraction f of the
journey, then we should see the same fractional change in the sine value, e.g.,

2

5
= 45.4−45.0

46.0−45.0
= sin(45.4)− sin(45)

sin(46)− sin(45)
.

This is linear interpolation.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

80 Chapter 4. The Discrete versus the Continuous

Linear interpolation can be used to interpolate between “known” colors just as it can
be used to interpolate between known numerical values. Colors in the Matlab graphics
environment are represented by length-3 vectors whose first, second, and third components
specify the amounts of red, green, and blue that makes up the color, e.g.,

cyan = = [0.0 1.0 1.0]

magenta = = [1.0 0.0 1.0]

We refer to vectors that represent colors as rgb vectors. Each component value is between 0
and 1. Thus, cyan is an equal mix of green and blue while magenta is an equal mix of red and
blue. We can generate an interpolation of these two colors by applying linear interpolation
to each component. Thus, we can compute the rgb vector for a color that is 3/5 cyan and
2/5 magenta as follows:

3

5

[
0.0 1.0 1.0

] + 2

5

[
1.0 0.0 1.0

] = [
0.4 0.6 1.0

]
.

Here is what it looks like:

 = [0.4 0.6 1.0]

Write a script that displays eleven “paint chips” that range from cyan to magenta:

[0.00 , 1.00 , 1.00]

[0.10 , 0.90 , 1.00]

[0.20 , 0.80 , 1.00]

[0.30 , 0.70 , 1.00]

[0.40 , 0.60 , 1.00]

[0.50 , 0.50 , 1.00]

[0.60 , 0.40 , 1.00]

[0.70 , 0.30 , 1.00]

[0.80 , 0.20 , 1.00]

[0.90 , 0.10 , 1.00]

[1.00 , 0.00 , 1.00]

Figure 4.5. Cyan to Magenta.

The nine “in between” colors should be equally spaced. Use linear interpolation.

Program Development

The fill command can be used to display a “tile” of a particular color. For example,

x = [0 3 3 0]; y = [0 0 1 1]; v = [0.0 1.0 1.0];
fill(x,y,v)

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.2. From Cyan to Magenta 81

�1 0 1 2 3 4
�1

�0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Figure 4.6. Three Colored Rectangles.

produces a rectangle with vertices (0,0), (3,0), (3,1), and (0,1) and fills it with the color
specified by the rgb vector v (cyan).

The following fragment displays in a single window a cyan rectangle, a magenta
rectangle, and a rectangle that has the interpolated color that we derived above:

x = [0 3 3 0];
y = [0 0 1 1];
hold on
fill(x,y,[0.0 1.0 1.0])
fill(x,y+1[0.4 0.6 1.0])
fill(x,y+2,[1.0 0.0 1.0])

See Figure 4.6. The hold command ensures that all subsequent plots are added to the
current figure window.

The problem we are to solve requires a similar display, only there are to be eleven
rectangles. Using a loop to oversee this, we obtain the following pseudocode solution:

n = 10;

Other Initializations

for j=0:n
% Display rectangle j

Compute the rgb vector v for the j th tile’s color. (4.4)

Compute the x and y vectors that locate the position of
the j th tile.

fill(x,y,v)
end

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

82 Chapter 4. The Discrete versus the Continuous

Let us start with the color computation. Our plan is to display the j th tile with a color that
has cyan fraction (1− j/10) and magenta fraction j/10:

cyan = [0 1 1];
magenta = [1 0 1]; (4.5)
f = j/n;
v = (1-f)*cyan + f*magenta;

Note that tile 0 is cyan and tile 10 is magenta. If the value of j is 4, then v defines the mixed
color displayed above.

Regarding the positioning of the tiles, we build on the idea behind Figure 4.6 where
each tile has width 3 and height 1. We position tile 0 at the bottom of the stack, e.g.,

fill([0 3 3 0],[0 0 1 1],v).

The fill command for subsequent tiles is the same except that the values in the y vector
increase by one each step. Thus, the recipes for the x and y vectors are

x = [0 3 3 0]; (4.6)
y = [0 0 1 1] + j;

Substituting (4.5) and (4.6) into (4.4) and doing a little rearranging, we obtain

cyan = [0 1 1]; % rgb of the "bottom" color
magenta = [1 0 1]; % rgb of the "top" color
n = 10; % the number of "in between" colors is n-1
x = [0 3 3 0]; % locates the x-values in the tiles
y = [0 0 1 1]; % locates the y-values in the tiles

for j=0:n
% Display the jth tile ...
f = j/n;
v = (1-f)*cyan + f*magenta
fill(x,y+j,v)

end

This essentially completes the solution. However, we add a few features so that the overall
graphic looks better and is more informative.

For starters, next to each tile we display its rgb value using the text command.
This command expects an xy location and a string that is to be displayed at that location.
Inserting the statement

text(3.5,j+.5,sprintf(’[%4.2f , %4.2f , %4.2f]’,v(1),v(2),v(3)))

just after the fill statement results in the display of the rgb values. Notice how individual
components of the rgb vector v are referenced by the sprintf command. The xy position
is just to the right of the tiles. It usually takes a bit of trial and error to get the location of a
“text message” exactly right.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.2. From Cyan to Magenta 83

At the beginning of the script we prepare the figure window with

close all
figure
axis equal off
hold on

These commands (a) close any open figure windows, (b) create a new figure window, (c) hide
the axes and force the scaling in the x and y directions to be the same, and (d) hold the
current figure window in place so that the results of the subsequent fill commands are
added to the current window. After the loop we add the statements

hold off
shg

which turns off the hold toggle (good programming) and ensures that the figure window
is displayed on the screen (on top of the command window instead of being hidden by it).
Here is the finished script:

The Script Eg4_2

% Script Eg4_2
% Displays interpolants of the colors cyan and magenta

% Prepare the figure window...
close all
figure
axis equal off
hold on

% Initializations...
cyan = [0 1 1]; % rgb of the "bottom" color
magenta = [1 0 1]; % rgb of the "top" color
n = 10; % the number of "in between" colors is n-1
x = [0 3 3 0]; % locates the x-values in the tiles
y = [0 0 1 1]; % locates the y-values in the tiles

% Add colored tiles to the figure window...
for j=0:n

% Display the jth tile and its rgb value...
f = j/n;
v = (1-f)*cyan + f*magenta;
fill(x,y+j,v)
text(3.5,j+.5,sprintf(’[%4.2f , %4.2f , %4.2f]’,...

v(1),v(2),v(3)))
end
hold off
shg

It produces the “paint chip” graphic that is displayed in Figure 4.5.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

84 Chapter 4. The Discrete versus the Continuous

Talking Point: Interpolation

Interpolation is a way of inferring the value of a function from known, surrounding values
of the function. We have examined the notion in the context of color.

An interesting step up from linear interpolation is cubic interpolation where the inter-
polant is a cubic polynomial rather than a linear polynomial. Whereas a linear interpolant
is based upon a pair of data points, a cubic interpolant is based on four.

Cubic interpolants do a better job of capturing nonlinearity. Moreover, they have a “smooth-
ness” about them that can translate into graphical renditions that are more pleasing to the
human eye.

Because it serves as a bridge between the discrete and the continuous, interpolation
has a central role to play in computational science and engineering. There is a never-ending
search for clever new ways to estimate what is going on in between the dots (or colors).

MATLAB Review

fill

Use fill to display colored polygons. It works like plot except that in fill(x,y,c) the last
point specified by vectors x and y is connected to the first point and the enclosed area is colored
according to c. Examples:

fill(x,y,’r’)
fill(x,y,[.3 .1 .9])
fill(x1,y1,’k’,x2,y2,’w’,x3,y3,[.5 .5 .5])

The perimeter of fill(x,y,c) is displayed by plot([x x(1)],[y y(1)],’k’).

rgb Vectors

A 3-vector c with component values chosen from [0,1] can be used to represent a color. The red
intensity value is c(1), the green intensity value is c(2), and the blue intensity value is c(3).
Here are the rgb values for the eight basic colors that have Matlab mnemonics:

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.2. From Cyan to Magenta 85

Color Mnemonic rgb

black k [0 0 0]

blue b [0 0 1]

green g [0 1 0]

cyan c [0 1 1]

red r [1 0 0]

magenta m [1 0 1]

yellow y [1 1 0]

white w [1 1 1]

text

Use text to display strings in the figure window. A text command has the form

text(x-coordinate , y-coordinate , string).

figure

This opens up a new figure window and makes it the “current” figure window. Figure windows are
indexed. Thus, figure(3) makes the third figure window the current figure window, if it exists,
or creates a figure window that is indexed 3 if it does not already exist. The fragment

x = linspace(0,2*pi,100);
figure
plot(x,sin(x))
figure
plot(x,cos(x))

creates two figure windows; one displays the sine function and the other the cosine function.

close all

This closes (deletes) all open figure windows.

hold on, hold off

Following a hold on command, subsequent executions of plot and fill are placed in the
current figure window. To turn off this feature use hold off. It is good to set the hold toggle to
off at the end of a script. Otherwise, the next script that you run might exhibit strange behavior if
it involves graphics.

shg

This brings the current figure to the front, eclipsing the command window and all other open figure
windows. It is often handy to place an shg at the end of an important graphical computation that
requires an immediate evaluation.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

86 Chapter 4. The Discrete versus the Continuous

axis off, axis equal, axis square

These commands adjust the default axis properties. Use axis off to hide the axes. (In this case
title still works but xlabel and ylabel do not.) Use axis equal to force equal scaling
along the x- and y-axes. (Otherwise, a circle will appear as an ellipse.) Use axis square if
you want the plot window to be square instead of the default rectangular shape. Note that

axis off equal

is equivalent to

axis equal
axis off

Exercises

M4.2.1 Modify Eg4_2 so that instead of cyan and magenta the “endpoint” colors are [x x x]
and [1 1 1] (white) where the value of x satisfies 0 ≤ x ≤ 1 and is obtained via input. How
small must x be before you see a distinct levels of grayness across the 11 tiles?

M4.2.2 Modify Eg4_2 so that it produces three figures. The first should display the tiles with
endpoint colors red and green, the second with endpoint colors red and blue, and the third with
endpoint colors green and blue.

P4.2.3 Consider the regular n-gon with vertices(
cos

(
2πk

n

)
, sin

(
2πk

n

))
k = 1:n.

Write a script that inputs n and draws a regular n-gon that is colored yellow and has a red perimeter.

P4.2.4 Write a script that draws an 8-by-8 checkerboard with red and black tiles.

P4.2.5 Write a script that draws an equilateral triangle that is partitioned into four smaller equilateral
triangles by connecting the midpoints of its sides. The four little triangles should be colored
differently.

P4.2.6 Define the ellipse E(θ ,a,b) by

x(t)= a cos(t)cos(θ)−b sin(t) sin(θ)

y(t)= b sin(t)cos(θ)+a cos(t) sin(θ),

where 0 ≤ t ≤ 2π and θ is the “tilt angle.” Write a script that displays E(0,3,1), E(π/6,3,1),
E(π/3,3,1), and E(π/2,3,1) in four separate figures. Paint the ellipses magenta.

P4.2.7 Write a script that draws a bullseye with n concentric rings. The kth ring should have inner
radius k− 1 and outer radius k. (Thus, the innermost ring is just a radius-1 disk.) The kth ring
should be colored white if k is odd and red if k is even.

P4.2.8 Write a script that draws the 5-ring Olympic symbol. Get the colors and proportions right!

P4.2.9 Look up the design parameters for the flags of Japan, Switzerland, France, and Sweden and
write a script that produces accurate renditions in four separate figures.

P4.2.10 Write a script that draws an 11-by-11 checkerboard with the property that the tile in row i

and column j has color [(i− 1)/11 0 (j − 1)/11]. Assume that row 1 is the bottom row and
column 1 is the leftmost column.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.3. One Third Plus One Third Is Not Two Thirds 87

4.3 One Third Plus One Third Is Not Two Thirds

Problem Statement

Consider the following command window interaction:

>> format long
>> x = 1/3
x =

0.333333333333333
>> y = x+x
y =

0.666666666666667

The computer is doing what we do with never-ending decimals: it rounds. Rounding is
necessary because the hardware that is used to store numbers is finite.

The finiteness of computer arithmetic has other ramifications. For sufficiently large
values of k, 1+ 1/2k will equal 1 and 1/2k will equal zero. Moreover, there is a limit to
the size of 2k . These features distinguish computer arithmetic, which is discrete, from real
arithmetic, which is continuous.

Write a script that showcases the finiteness of computer arithmetic and sheds light on
how much memory the computer allocates for the storage of a real value.

Program Development

Let us first confirm that there are indeed issues with computer arithmetic. At first glance, it
sure looks like the following script would never terminate:

k = 0;
while (1 + 1/2ˆk) > 1 (4.7)

k = k+1
end

However, it does terminate and the last value of k that it reports is 53. This is because the
computer does floating point arithmetic, a system of calculation that basically represents
numbers in a “constrained” scientific notation. The constraints are necessary because com-
puter memory is finite—there is not enough room to store never-ending decimals like π or√

2 or 1/3.
Recall that any nonzero number x can be expressed in the form

x =±m×10e

where m satisfies 1≤m< 10 and e is an integer.2 Here are some examples:

1230 = +1.23×10+3 − .000083615 = −8.3615×10−5.

2 “Classical” scientific notation restricts m to the range 1/10 ≤ m < 1. The style we are adopting is
sometimes referred to as “engineering notation.”

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

88 Chapter 4. The Discrete versus the Continuous

The representation is unique. (A special convention is required for the representation of
zero, e.g., 0.0×100.)

Floating point arithmetic systems represent real numbers in this style with limits
placed on the precision of m and the size of e. To illustrate, let us consider a “toy” system
in which three digits are allocated for m and one digit is allocated for e. Here are some
numbers and their representations in this environment:

a = 12.3 a: + 1 2 3 + 1

b = .000000123 b: + 1 2 3 − 7

c = −12.3 c: − 1 2 3 + 1

Note that with 3-digit precision, some numbers can only be stored approximately:

x = 12.34 x: + 1 2 3 + 1

y = 12.37 y: + 1 2 4 + 1

z = π z: + 3 1 4 + 0

A reasonable thing to do if there is not enough room to store a value is to round. Since 12.37
is closer to 1.24× 101 than 1.23× 101, the former value is stored. A tie-breaking rule is
required in the event that the value to be represented is midway between two floating point
numbers.

Rounding is a necessary feature of just about every floating point calculation be-
cause the mantissa, m, of the answer is almost always bigger than the mantissas of the
operands, e.g.,

+ 1 2 3 + 1 × + 4 5 6 + 1

evaluates to 5.6088×102. The mantissa must be rounded. The official floating point product
becomes

+ 5 6 1 + 2

In general, when two floating point numbers are combined through addition, subtraction,
multiplication, or division, the floating point result is the rounded version of the correct
answer.

A consequence of having limited precision is that a small number can have zero
impact when it shows up in an arithmetic operation. For example, in our toy system,
1+10−1 and 1+10−2 can be computed exactly:

+ 1 0 0 + 0 + + 1 0 0 − 1 → + 1 1 0 + 0

+ 1 0 0 + 0 + + 1 0 0 − 2 → + 1 0 1 + 0

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.3. One Third Plus One Third Is Not Two Thirds 89

while the floating point addition of 1 and 10−3 is 1:

+ 1 0 0 + 0 + + 1 0 0 − 3 → + 1 0 0 + 0

This is because the floating point representation of 1.001 requires four digits which is beyond
the capability of our toy system. Notice that if we were able to execute the script

k = 0;
while 1 + 1/10ˆk > 1

k = k+1
end

on a computer with our toy floating point number system, then the last value of k displayed
would be three—precisely the number of digits allocated to m.

We are now set to explain why on a “real computer” 53 is the smallest integer value
of k for which the floating point addition of 1 and 1/2k is 1. Computers encode information
with 0’s and 1’s. This is why the base-2 system is used to represent numerical information.
With a base-2 place value system, 1.0101 represents 1+5/16 because

1 ·20+0 ·2−1+1 ·2−2+0 ·2−3+1 ·2−4 = 1
5

16
.

Just about every computer manufacturer implements the IEEE floating point standard. In
this standard, 52 base-2 bits are allocated for the fraction part ofm. Thus, the number 1 has
the representation

1.000 · · ·000︸ ︷︷ ︸
52 bits

On the other hand, because the sum of 1 and 1/253 has the form

1.000 · · ·0001︸ ︷︷ ︸
53 bits

it evaluates to 1 because there is not enough room to store the 53-bit fraction part.3 This
explains the output of the script (4.7).

Let us turn our attention to the floating point behavior of 1/2k and 2k , again using our
toy system for motivation. It is natural to think that 10−9 is the smallest positive number
that can be represented:

x = 10−9 x: + 1 0 0 − 9

However, if the system permits unnormalized representations, then we can encode even
smaller values, e.g.,

x = 10−11 x: + 0 0 1 − 9

Thus, in our toy floating point environment it makes sense to regard any number smaller
than 10−11 as zero.

3A “round-to-even” tie-breaking rule is used.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

90 Chapter 4. The Discrete versus the Continuous

At the other extreme, the largest number our miniature system can represent is

x = 9.99×109 x: + 9 9 9 + 9

It is natural to regard any number larger than this as infinite.
How does the IEEE floating point standard treat these extreme situations? To answer

this question we need to understand the overall IEEE representation. Altogether, 64 bits are
used to represent a floating point number: one bit for the sign, 52 bits for the fraction part
of m, and 11 bits for e including its sign. Analogous to why the smallest positive floating
point number in the toy system is 10−2 · 10−9 = 10−11, we find that the smallest positive
number in the IEEE system is about 2−52 · 2−210 ≈ 2−1076. That is why 1075 is the last
value of k displayed by the script

k = 0;
while 1/2ˆk > 0

k = k+1
end

For very large numbers, the IEEE standard assigns the special value of inf if an expression
evaluates to a quantity that is larger than the largest representable floating point number.
The threshold is approximately 2210

and that explains why the last value of k reported by
the script

k = 0;
while 2ˆk < inf

k = k+1
end

is 1024.
The script Eg4_3 illustrates all these features of the IEEE floating point standard. It

is listed below together with its output.

Talking Point: Xeno Revisited

The ancient Greek Xeno of Elea posed a number of paradoxes that have bothered philoso-
phers for centuries. The most famous can be framed in the context of trying to reach a wall
through a succession of steps, each of which halves the remaining distance. If d = 1 at the
start, then d = 1/2 after one step, d = 1/22 after two steps, d = 1/23 after three steps, etc.
The paradox is that you apparently will never reach the wall. However, in the floating point
context, you do arrive at your destination even though it may require 1075 steps! Apologies
to Xeno.

In computational science and engineering we have to appreciate the finiteness of
computer arithmetic. Rounding errors and exponent limits force a departure from business-
as-usual mathematics. Full machine precision in the IEEE setting means approximately
16 significant (base-10) digits, and it is almost always a challenge to attain such small
relative error in a calculation. The floating point scene is rife with less-is-more paradoxes,
situations where an approximate algorithm can yield more accurate results than an allegedly

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.3. One Third Plus One Third Is Not Two Thirds 91

The Script Eg4_3

% Script Eg4_3
% Floating Point Number Facts

clc
% p = largest positive integer so 1+1/2ˆp > 1.
x=1; p=0; y=1; z=x+y/2;
while x˜=z

y = y/2;
p = p+1;
z = x+y/2;

end
fprintf(...
’p = %2.0f is the largest positive integer so 1+1/2ˆp > 1.\n’,p)

% q = smallest positive integer so 1/2ˆq = 0.
x = 1; q = 0;
while x>0

x = x/2;
q = q+1;

end;
fprintf(...

’q = %2.0f is the smallest positive integer so 1/2ˆq == 0.\n’,q)

% r = smallest positive integer so 2ˆr = inf.
x = 1; r = 0;
while x˜=inf

x = 2*x;
r = r+1;

end
fprintf(...

’r = %2.0f is the smallest positive integer so 2ˆr == inf.\n’,r)

Sample Output from the Script Eg4_3

p = 52 is the largest positive integer so 1+1/2ˆp > 1.
q = 1075 is the smallest positive integer so 1/2ˆq = 0.
r = 1024 is the smallest positive integer so 2ˆr = inf.

exact algorithm. Xeno with a digital computer would have been the author of numerous
paradoxes!

MATLAB Review

eps

This built-in constant is the machine precision, i.e., the smallest number ε such that 1+ ε > 1 in
floating point arithmetic. For the IEEE standard, it has the value 2−52 ≈ 10−16.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

92 Chapter 4. The Discrete versus the Continuous

inf

This is a special floating point number that behaves like infinity. The following expressions have
value inf: 1/0, tan(pi/2), abs(log(0)), sqrt(inf), inf/10000. If x = inf, then
a = 1/x is assigned the value of zero and a = -x is assigned the value of -inf. The boolean
expression x==inf is true if the value of x is inf.

realmax, realmin

This is the largest positive floating point number and smallest positive floating point number,
respectively.

NaN

This is a special floating point number that is referred to as not-a-number. If x = 0/0, then x has
the value NaN. If a variable has value NaN, then any expression involving the variable has value
NaN.

Exercises
M4.3.1 Consider the following script:

x = input(’Enter a positive number:’);
z = x;
while x+z>x

z = z/2;
end

What is the connection between the last value of z, the value of x, and eps?

M4.3.2 What is the value of 1/0 - 1/0? What is the value of 2/0 - 1/0? What is the value of
(1/0)/(1/0)?

P4.3.3 Calculus tells us that for very small positive values of h,

eh(x)=
∣∣∣∣ sin(x+h)− sin(x)

h
− cos(x)

∣∣∣∣ = O(h).

Write a script that inputs x in the range [0,2π] and prints out the value of eh(x) for h =
1/10,1/100, . . . ,1/1016. What value of h minimizes the error? Note that in the evaluation of
the divided difference, any errors in the evaluation of sin(x+h)− sin(x) are magnified by 1/h.
Thus, as h goes to zero the “calculus” error goes to zero but the roundoff error goes to infinity. Thus,
the “optimum” choice of h reflects the need to compromise these two tendencies.

P4.3.4 Plot the functions f (x)= (1−x)6 and

g(x)= x6−6x5+15x4−20x3+15x2−6x+1

across the interval [.995,1.005]. Even though f = g, the plots will look very different. This is
because the g-evaluation attempts to compute very small values through the “lucky cancellation”
of large values while the f -evaluation computes very small values through repeated multiplication
of modestly small values.

P4.3.5 Horner’s scheme rearranges a polynomial as follows:

anx
n+an−1x

n−1+·· ·+a0 = ((anx+an−1)x+·· ·)x+a0.

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

4.3. One Third Plus One Third Is Not Two Thirds 93

Evaluating the polynomial in this order helps reduce the cancellation error discussed in P4.3.4. Plot
the function g(x)= x6−6x5+15x4−20x3+15x2−6x+1 across the interval [.995,1.005] using
Horner’s scheme and using the “typical” evaluation order (g(x) exactly as shown above). You will
see that the cancellation error using Horner’s scheme is smaller.

P4.3.6 What is the smallest value of n such that the value of factorial(n) is inf?

P4.3.7 How many base-10 digits are there in 1000!?

Copyright © 2010
The Society for Industrial and Applied Mathematics

D
ow

nl
oa

de
d

10
/0

1/
17

 to
 1

98
.8

2.
23

0.
35

. R
ed

is
tr

ib
ut

io
n

su
bj

ec
t t

o
SI

A
M

 li
ce

ns
e

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p

