
Insight Through
Computing

4. Iteration

The FOR loop

Insight Through
Computing

“Verify” Prime Number Theorem:

“The number of primes between 1
and N is roughly N/log(N).”

But how can we test if any number J
is a prime?

Insight Through
Computing

Is “j” a prime number?

Consider every possible divisor 1 < i < j

If every possible division j/i has a
nonzero remainder, then j is prime.

So if j is 100, do I have to write 98
separate MATLAB commands, to check
the divisors 2, 3, 4,…,99?

Insight Through
Computing

The Program We Don’t Want to Write

itsaprime = true
if (mod (j, 2) == 0)
 itsaprime = false;
end
if (mod (j, 3) == 0)
 itsaprime = false;
end
if (mod (j, 4) == 0)
 itsaprime = false;
end
(...and so on and so on up to j-1)

Insight Through
Computing

We see a Pattern

if (mod (j, *) == 0)
 itsaprime = false;
end

where “*” will be 2, 3, 4, …, j – 1, in that order.

MATLAB allows us to collect all these
statements into one set, with a variable taking
the place of *, that will automatically take on
each value.

Insight Through
Computing

Matlab’s FOR statement

itsaprime = true; Assume j is prime←

for i = 2 : j – 1 Check i=2,3,4,…,j-1←

 if (mod (j, i) == 0)
 itsaprime = false;
 end
end

Insight Through
Computing

We haven’t answered our original question

To “verify” the prime number theorem, we have to do
something more complicated.

It amounts to having a PAIR of loops, one inside the other.

For every integer J from 1 to 100000
 For every possible divisor I from 2 to J-1
 If J is divisible by I, then J is not a prime
 end
 If J is a prime, increase the prime count
end

We will talk about these more complicated loops in a later class.

Insight Through
Computing

To repeat something N times:

N = _____

for i = 1:N

end

Put the something here.

Insight Through
Computing

To repeat something N times:

N = _____

for i = 1:N

end

Repeated commands here.
The Loop
 “body”

Insight Through
Computing

To repeat something N times:

N = _____

for i = 1:N

end

Repeated commands.
The Loop
 “body”

The “count variable”

Insight Through
Computing

Using FOR Loops for sums
It is claimed that a formula for the sum of the integers
from 1 to n is n*(n+1)/2.

Write a script that accepts a value n, sums the integers
“the hard way”, and compares to the formula.

 n = input (‘Enter the value of N:’)

 s1 = 0;
 for i = 1 : n
 s1 = s1 + i; ← i can be used in formulas.
 end

 s2 = n * (n + 1) / 2;

 fprintf (‘ Sum = %d, Formula = %d\n’, s1, s2);

Insight Through
Computing

Loop Index Options

Although names like i, j and k are common, the loop
index can have any name.

And the range doesn’t have to start at 1.

% 4 percent interest rate
value = 1000;
for year = 2018 : 2037
 value = value + 0.04 * value;
 fprintf (‘ In %d, value is %g\n’, year, value);
end

Insight Through
Computing

Our Square Root Program

z = 2017;
x = z;
y = 1;
for i = 1 : 20 Maybe 20 steps is enough?←
 x = (x + y) / 2;
 y = z / x;
end
fprintf (‘ Square root estimate = %g\n’, x);

Insight Through
Computing

FOR I = LOW : HIGH

The loop starts I at the LOW value. If I is greater than HIGH, then the loop stops,
otherwise it executes the loop, then increases I by 1.

for I = 20 : 10
 →
(No steps will be taken!)

for I = 35 : 35
 → I = 35
(just one value is generated)

for I = 99 : 103
 → I = 99, 100, 101, 102, 103
(5 values are generated)

Insight Through
Computing

FOR Low:Increment:High

A FOR loop with three values uses the middle value as a stepsize,
which is otherwise 1 by default.

for I = 1 : 3 : 20
 → I = 1, 4, 7, 10, 13, 16, 19
(increase by 3, don’t exceed 20).

for I = 100 : -5 : 0
 → I = 100, 95, 90, …, 5, 0
(decrease by 5, don’t go below 0).

When the stepsize is negative, we really should write
High:Decrement:Low.

Insight Through
Computing

More complicated examples

N = 5;
for i = N + 1 : 2 * N
 fprintf (‘%d\n’, i)
end

for i = 1 : 5
 for j = 1 : i - 1
 fprintf (‘%d’, j);
 end
 fprintf (‘\n’);
end

Insight Through
Computing

Using Random Numbers

You can compute random numbers. Here
are 3 versions of the same command:

x = rand;
x = rand (); I suggest using this!←

x = rand (1, 1);

MATLAB will return in x a random number
between 0 and 1.

Insight Through
Computing

Random values change

for k = 1:10
 x = rand();
 fprintf(‘%10.6f\n’,x)
end

Displays 10 random numbers.

Insight Through
Computing

 Our 10 random values might be this:

0.579736
0.609194
0.256451
0.246079
0.149936
0.564178
0.027311
0.790830
0.437630
0.997130

Insight Through
Computing

For loops and random values

Simulate flipping a coin. If rand() < 0.5, we got a
head, otherwise a tail.

heads = 0;
for i = 1 : 1000
 x = rand ();
 if (0.5 <= x)
 heads = heads + 1;
 end
end

Insight Through
Computing

Estimate Circle Area

Chapter 2.1 of our text estimates the
area of a circle using a for loop. (Look
at Eg2_1.m in today’s “files” directory.)

It does this by dividing the region into
tiny boxes and counting how many are
inside the circle, whose formula is

 x^2 + y^2 <= 1

Insight Through
Computing

A simpler approach

Instead, we will estimate the area of the
unit circle using random numbers.

Using a for loop, we only have to write one
set of statements, and then we can
repeat them as many times as we want.

Pick random points (x,y) in [-1,+1]x[-1,+1].
Count how many points are in the circle.

Insight Through
Computing

Creating Random Values in a Box

We will need random points (x,y) in the box
[-1,+1]x[-1,+1], but rand() gives us values in
[0,1]. How do we fix this?

1) the interval [0,1] is 1 unit wide, but we want
2 units wide. Scale: x <= 2 * rand().

2) Now our interval [0,2] starts at 0, but we
want to start at -1. Shift: x <= 2*rand() – 1.

3) Same for y.

Insight Through
Computing

The program circle_area.m

n = 1000;
inside = 0;
for i = 1 : n
 x = 2 * rand () - 1; put x and y into [-1,+1]←

 y = 2 * rand () - 1;
 if (x^2 + y^2 <= 1)
 inside = inside + 1;
 end
end
area = 4.0 * inside / n;

Insight Through
Computing

Getting Real Random Values in [A,B]

x = rand() will be 0 < x < 1.
If we need real random values z in [a,b]:
 * we “stretch” the values to size (b-a);
 * and we shift the values to start at a;
z = a + (b – a) * rand ();

To get random values between 35 and 40,
 z = 35 + 5 * rand ();
To get random values between -1 and +1:
 z = -1 + 2 * rand ();

Insight Through
Computing

Random Integers between A and B

For random integers between A and B,
 i = randi ([A, B])

To “roll” a die and get a random result:
 roll = randi ([1, 6])
To pick a random day of a (nonleap) year:
 day = randi ([1, 365])
To choose a number between -50 and 75
 n = randi ([-50, 75])

Insight Through
Computing

Flipping a coin with randi()

We used rand() to simulate flipping a coin. It
might be simpler to use randi(). We can ask
for a random integer that is 0 or 1. In fact, if
we think of 1 as meaning “heads”, then we can
simply add every result.

heads = 0;
for i = 1 : 1000
 heads = heads + randi ([0, 1]);
end

Insight Through
Computing

Splitting a Stick

Question:

A stick with unit length is split into two parts.

The breakpoint is randomly selected.

On average, how long is the shorter piece?

Insight Through
Computing

Split Stick Program Strategy

The value x = rand() will tell us where the stick is
randomly broken.

The pieces have length x and 1-x.

We can use MATLAB’s min() function to tell us which
piece is shorter. (There is also a max() function!)

If we do this many times, and average the lengths of
the short pieces, we approximate the mathematical
answer.

Insight Through
Computing

stick_split.m

n = 1000;
s = 0.0;
for k = 1 : n
 x = rand ();
 s = s + min (x, 1.0 – x);
end
average = s / n

Insight Through
Computing

Future FOR Loop topics

FOR loops are used to compute sequences.
FOR loops can define vectors.
Nested FOR loops can set up a matrix.
FOR loops let us improve an approximation

until we decide it is “close enough”.
We will see how to jump out of a FOR loop

if we realize we’re done early.

Insight Through
Computing

Exercises

Print numbers divisible by 3 between 10 and 50.
Sum the even numbers between 1 and 100.
Print odd numbers between 20 and 60, but do

not print 37!
Roll two dice 20 times, print the maximum sum.
What are the chances that the sum of two

random numbers will be less than 1?
Estimate area between x-axis and the graph

y=x^2 for 0 <= x <= 1.

Insight Through
Computing

New Concepts

for i = 1 : n
for i = Low : High
for i = Low : Increment: High
for i = High: Decrement: Low
z = min(x,y)
z = max(x,y)
x = rand ()
n = randi ([a,b])

Insight Through
Computing

New Concepts

Determine if a number is prime.
Shift random number from [0,1] to a

different range.
Simulate random process by averaging.
Estimate area by random sampling.
Estimate probability by averaging trials.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

