Computational Geometry Lab:
MONTE CARLO OVER A TRIANGULATION

John Burkardt
Information Technology Department
Virginia Tech
http://people.sc.fsu.edu/~jburkardt /presentations/cg_lab_monte_carlo_triangulation.pdf

August 28, 2018

1 Introduction

This lab continues the study of Computational Geometry. We have just considered the Monte Carlo method
for estimating an integral over a single triangle. We now take the next step, to estimate an integral over a
triangulation.

From our previous work, we can expect that if we wish to estimate an integral over a region R, we
must first produce a triangulation 7. In our previous work with quadrature rules, we immediately moved
to the problem of estimating integrals over individual triangles 7T; and then summing the result. We could
essentially mimic this process with the Monte Carlo method, that is, for each triangle, use a sampling method
to estimate the integral there, and then add up the results.

However, especially if the triangulation includes triangles of a wide range of areas, this will not be the
most efficient method. A more suitable approach essentially estimates the integral over the full triangulation.
Each time we pick a random number r, its value will tell us which triangle T; we should go to, and where to
find the selected point within that triangle.

2 Monte Carlo Quadrature over each Triangle of a Triangulation

Now we are finally ready to look at the big picture, which is: how can we estimate the integral of a function
f(x,y) over a region R? We know that the first step is to triangulate the region. And since the integral
over the sum of the triangles is the sum of the integrals over the triangles, we could simply apply the Monte
Carlo procedure to each triangle separately, and add the results.

While this seems straightforward, we should also consider variations to the problem or our desires that
might suggest alternative procedures.

To begin with, it may be the case that we have a limited budget of point evaluations that we can carry
out. In that case, we might find it advantageous to select some triangles in the triangulation where we will
carry out more evaluations, based on our knowledge of the function’s behavior.

It may also be the case that the triangulation we are working with is itself nonuniform - that is, some
triangles may be much smaller than others. Then, what might seem a sensible uniform policy of using the
same number of evaluation points in each triangle amounts to an overall nonuniform policy when we look
at how the full set of sample points was used over the entire triangulation. Nonuniform triangulations are
often used in response to known singularities in the data, sharp or reentrant corners in the boundary, or in
cases where it is possible to estimate the approximation error being made over each triangle.



Figure 1: tauy, A Uniform Triangulation.

3 Examples of Uniform and Nonuniform Triangulations

To illustrate the treatment of nonuniformity, we will consider two triangulations of the unit triangle.
Our uniform triangulation, tauy, is described by:

nodes = {

{0.00, 0.00}, {0.25, 0.00}, {0.50, 0.00}, {0.75, 0.00}, {1.00, 0.00%}
{0.00, 0.25}, {0.25, 0.25}, {0.50, 0.25}, {0.75, 0.25},

{0.00, 0.50}, {0.25, 0.50}, {0.50, 0.50},

{0.00, 0.75}, {0.25, 0.75},

{0.00, 1.00}

}

triangles = {
{1,2,6}, (2,3,7}, {3,4,8}, {4,5,9}, {2,7,6}, {3,8,7}, {4,9,8},
{6,7.10}, {7,8,11}, {8,9,12}, {7,11,10}, {8,12,11},
{10,11,133}, {11,12,14}, {13,14,15}

}
The nonuniform triangulation, taus, has the description:

nodes = {
{0.00000, 0.00000}, {1.00000, 0.00000}, {0.00000, 0.50000}, {0.50000, 0.50000},
{0.00000, 0.75000}, {0.25000, 0.75000}, {0.00000, 0.87500}, {0.12500, 0.87500},
{0.00000, 0.93750}, {0.62500, 0.93750}, {0.00000, 0.96875}, {0.03125, 0.96875},
{0.00000, 1.00000%}

}



Figure 2: taus, A Nonuniform Triangulation

triangles = {
{1,2,4}, (1,4,3}, {3,4,6}, {3,6,5}, {5,6,8}, {5,8,7},
{7,8,10}, {7,10,9}, {9,10,12}, {9,12,11}, {11,12,13}
}

We will use these triangulations in the program exercises.

4 Program #1: Monte Carlo Quadrature over each Triangle of a
Triangulation

Write a program which approximates the integral of f(x) = zP y?¢ over a triangulation of the unit triangle
Tref, by applying the Monte Carlo algorithm with N points to each triangle and summing the result.
Since you’ve already written a program that applies the Monte Carlo method to a single triangle, your
new program can simply call that program repeatedly, each time passing it a new triangle, and receiving
in return the integral estimate over that triangle. By summing the returned results, your new program
produces the integral estimate for the triangulation.
Your program should:

e read the powers p and q;
e compute I(f(z), Tref), the exact integral;
e read the random number seed;

e read the number of sample points N;



read the number of triangles in the triangulation

initialize Q to zero

read each triangle, integrating over that triangle using N points, add the result to Q

print the values of Q, I, and abs(Q-I).

Choose (p,q) = (2,3), and let N = 1000. Run your program using triangulation 7y and 75. Does one
triangulation give a better estimate?

Repeat the exercise with N = 100, 000. Is the same triangulation still better?

5 Monte Carlo Quadrature over each Triangle of a Triangulation

The approach of applying the MC method to each triangle individually is suitable for situations in which the
triangulation is relatively uniform, that is, if the individual triangles are all roughly the same size. However,
when the triangles vary significantly in size, we will be expending more work in some parts of the region
than others. This is obvious if you plot the sample points.

As a matter of efficiency, we would prefer that the sample points be spread out evenly over the entire
triangulated region. The accuracy of our estimate is governed by the point density over the triangles; when
this density varies, the accuracy is governed by the worst value, that is, the relatively low density in the
largest trinagle. In effect, the higher density in the other triangles is wasted.

So in such a situation, it is best to step back from the individual triangles and work at the level of the
full triangulation. All we want to do is to uniformaly sample the area of the triangulation. This is easy to
do in a systematic way. Let Area(T;) be the area of triangle T;, and Area(7) the area of the triangulation.

Now define )
23:1 Area(T;)
Area(r)

and for convenience define CumArea(Ty) = 0. Then the values in CumArea are an increasing sequence whose
first entry is 0 and whose last entry is 1.
Now suppose we pick a random number r and find the triangle index i so that

CumArea(T;) =

CumArea(T;—1) < r < CumArea(T;)

The CumArea vector gives us a way to select a triangle from the triangulation in a way that is uniform
with respect to area. If we then choose a point at random from triangle T;, we now have a procedure
for selecting points in a way that is uniform over the entire triangulation. In other words, a plot of the
selected points should show no unusual concentration of values, whether or not the individual triangles of
the triangulation are uniform in size or vastly different.

6 Program #2: Monte Carlo Quadrature over a Triangulation

Write a program which carries out the scheme for uniform sampling over a nonuniform triangulation, in
order to approximate the integral of f(x) = 2P y? over a triangulation of the unit triangle Tref,
Your program should:

e read the powers p and q;
e read the random number seed;

e read the number of sample points N;



e read the number of triangles in the triangulation
e read all the triangles

e compute the cumulative area vector

e initialize Q to zero

e apply the Monte Carlo method to the entire triangulation, using the cumulative area vector to select
a triangle

e print the final value of Q as the integral estimate

Notice in this case that the variable N now counts the total number of sample points. So to make a fair
comparison with the previous program, this program should use a value of N that is about 16 times the
value used for that program, since the uniform triangulation 7 used 16 triangles.

Choose (p,q) = (2,3), and let N = 16000. Run your program using triangulation 73 and 7. You should
expect that the errors for both triangulations should be about the same.

Repeat the exercise with N = 1,600, 000.
Your results should indicate that, by using a cumulative area vector, you can do uniform sampling and
get better convergence, even if your underlying triangulation is nonuniform.

7 A Face-Off Between Monte Carlo and Quadrature Rules

It’s time to look briefly at the question of the difference between estimating an integral by using quadrature
rules or the Monte Carlo method. We will make a couple simple comparisons using a cost/benefit analysis.
Our cost is N, the number of function evaluations. Our benefit is a low error. Since it’s easy to control IV,
our analysis will ask simply, for a given triangulation 7, and a value of N, what is the comparison between
the errors made by the two methods?

Recall that the power of quadrature rules partly lies in their exactness. If a function is polynomial, or
well approximated by a polynomial, then a quadrature rule approach is likely to get a very good estimate
quickly.

The Monte Carlo method has advantages of its own, but here we will concentrate on the fact that it
essentially works about the same even when the function we are integrating has a discontinuous derivative,
a jump, a singularity, or is highly oscillatory. It just doesn’t care!

8 Program #3: Monte Carlo vs Quadrature Rules

Consider the following integrands:

filz,y) =vl]z -y
fola,y) =1,if(4z — 1)* + (4y = 1)* <1
=0, otherwise

fs(x,y) =Y
Ja(w,y) =sin8zy

Use the uniform triangulation 71 with 16 triangles. Try the quadrature rules of order 1, 3, 4, 6 and 7 on
each function and compare this to a Monte Carlo rule using the equivalent number of function evaluations.
In the words, the last Monte Carlo calculation should use just 112 points.

With such a low number of points, Monte Carlo will have very poor accuracy. So the thing to observe is
when the quadrature rule does well or not. If we move to a finer triangulation, all the Monte Carlo results
will get better, but the bad quadrature results will become terrible.



