# include <stdlib.h>
# include <stdio.h>
# include <math.h>
# include <time.h>

# include "asa159.h"

/******************************************************************************/

int i4_max ( int i1, int i2 )

/******************************************************************************/
/*
  Purpose:

    I4_MAX returns the maximum of two I4's.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    29 August 2006

  Author:

    John Burkardt

  Parameters:

    Input, int I1, I2, are two integers to be compared.

    Output, int I4_MAX, the larger of I1 and I2.
*/
{
  int value;

  if ( i2 < i1 )
  {
    value = i1;
  }
  else
  {
    value = i2;
  }
  return value;
}
/******************************************************************************/

int i4_min ( int i1, int i2 )

/******************************************************************************/
/*
  Purpose:

    I4_MIN returns the smaller of two I4's.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    29 August 2006

  Author:

    John Burkardt

  Parameters:

    Input, int I1, I2, two integers to be compared.

    Output, int I4_MIN, the smaller of I1 and I2.
*/
{
  int value;

  if ( i1 < i2 )
  {
    value = i1;
  }
  else
  {
    value = i2;
  }
  return value;
}
/******************************************************************************/

void i4mat_print ( int m, int n, int a[], char *title )

/******************************************************************************/
/*
  Purpose:

    I4MAT_PRINT prints an I4MAT.

  Discussion:

    An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M].

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    28 May 2008

  Author:

    John Burkardt

  Parameters:

    Input, int M, the number of rows in A.

    Input, int N, the number of columns in A.

    Input, int A[M*N], the M by N matrix.

    Input, char *TITLE, a title.
*/
{
  i4mat_print_some ( m, n, a, 1, 1, m, n, title );

  return;
}
/******************************************************************************/

void i4mat_print_some ( int m, int n, int a[], int ilo, int jlo, int ihi,
  int jhi, char *title )

/******************************************************************************/
/*
  Purpose:

    I4MAT_PRINT_SOME prints some of an I4MAT.

  Discussion:

    An I4MAT is an MxN array of I4's, stored by (I,J) -> [I+J*M].

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    20 August 2010

  Author:

    John Burkardt

  Parameters:

    Input, int M, the number of rows of the matrix.
    M must be positive.

    Input, int N, the number of columns of the matrix.
    N must be positive.

    Input, int A[M*N], the matrix.

    Input, int ILO, JLO, IHI, JHI, designate the first row and
    column, and the last row and column to be printed.

    Input, char *TITLE, a title.
*/
{
# define INCX 10

  int i;
  int i2hi;
  int i2lo;
  int j;
  int j2hi;
  int j2lo;

  fprintf ( stdout, "\n" );
  fprintf ( stdout, "%s\n", title );

  if ( m <= 0 || n <= 0 )
  {
    fprintf ( stdout, "\n" );
    fprintf ( stdout, "  (None)\n" );
    return;
  }
/*
  Print the columns of the matrix, in strips of INCX.
*/
  for ( j2lo = jlo; j2lo <= jhi; j2lo = j2lo + INCX )
  {
    j2hi = j2lo + INCX - 1;
    j2hi = i4_min ( j2hi, n );
    j2hi = i4_min ( j2hi, jhi );

    fprintf ( stdout, "\n" );
/*
  For each column J in the current range...

  Write the header.
*/
    fprintf ( stdout, "  Col:" );
    for ( j = j2lo; j <= j2hi; j++ )
    {
      fprintf ( stdout, "  %6d", j - 1 );
    }
    fprintf ( stdout, "\n" );
    fprintf ( stdout, "  Row\n" );
    fprintf ( stdout, "\n" );
/*
  Determine the range of the rows in this strip.
*/
    i2lo = i4_max ( ilo, 1 );
    i2hi = i4_min ( ihi, m );

    for ( i = i2lo; i <= i2hi; i++ )
    {
/*
  Print out (up to INCX) entries in row I, that lie in the current strip.
*/
      fprintf ( stdout, "%5d:", i - 1 );
      for ( j = j2lo; j <= j2hi; j++ )
      {
        fprintf ( stdout, "  %6d", a[i-1+(j-1)*m] );
      }
      fprintf ( stdout, "\n" );
    }
  }

  return;
# undef INCX
}
/******************************************************************************/

void i4vec_print ( int n, int a[], char *title )

/******************************************************************************/
/*
  Purpose:

    I4VEC_PRINT prints an I4VEC.

  Discussion:

    An I4VEC is a vector of I4's.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    14 November 2003

  Author:

    John Burkardt

  Parameters:

    Input, int N, the number of components of the vector.

    Input, int A[N], the vector to be printed.

    Input, char *TITLE, a title.
*/
{
  int i;

  fprintf ( stdout, "\n" );
  fprintf ( stdout, "%s\n", title );
  fprintf ( stdout, "\n" );

  for ( i = 0; i < n; i++ )
  {
    fprintf ( stdout, "  %6d: %8d\n", i, a[i] );
  }
  return;
}
/******************************************************************************/

int i4vec_sum ( int n, int a[] )

/******************************************************************************/
/*
  Purpose:

    I4VEC_SUM sums the entries of an I4VEC.

  Discussion:

    An I4VEC is a vector of I4's.

  Example:

    Input:

      A = ( 1, 2, 3, 4 )

    Output:

      I4VEC_SUM = 10

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    29 May 2003

  Author:

    John Burkardt

  Parameters:

    Input, int N, the number of entries in the vector.

    Input, int A[N], the vector to be summed.

    Output, int I4VEC_SUM, the sum of the entries of A.
*/
{
  int i;
  int sum;

  sum = 0;
  for ( i = 0; i < n; i++ )
  {
    sum = sum + a[i];
  }

  return sum;
}
/******************************************************************************/

double r8_uniform_01 ( int *seed )

/******************************************************************************/
/*
  Purpose:

    R8_UNIFORM_01 returns a unit pseudorandom R8.

  Discussion:

    This routine implements the recursion

      seed = 16807 * seed mod ( 2^31 - 1 )
      r8_uniform_01 = seed / ( 2^31 - 1 )

    The integer arithmetic never requires more than 32 bits,
    including a sign bit.

    If the initial seed is 12345, then the first three computations are

      Input     Output      R8_UNIFORM_01
      SEED      SEED

         12345   207482415  0.096616
     207482415  1790989824  0.833995
    1790989824  2035175616  0.947702

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    11 August 2004

  Author:

    John Burkardt

  Reference:

    Paul Bratley, Bennett Fox, Linus Schrage,
    A Guide to Simulation,
    Springer Verlag, pages 201-202, 1983.

    Pierre L'Ecuyer,
    Random Number Generation,
    in Handbook of Simulation
    edited by Jerry Banks,
    Wiley Interscience, page 95, 1998.

    Bennett Fox,
    Algorithm 647:
    Implementation and Relative Efficiency of Quasirandom
    Sequence Generators,
    ACM Transactions on Mathematical Software,
    Volume 12, Number 4, pages 362-376, 1986.

    P A Lewis, A S Goodman, J M Miller,
    A Pseudo-Random Number Generator for the System/360,
    IBM Systems Journal,
    Volume 8, pages 136-143, 1969.

  Parameters:

    Input/output, int *SEED, the "seed" value.  Normally, this
    value should not be 0.  On output, SEED has been updated.

    Output, double R8_UNIFORM_01, a new pseudorandom variate, strictly between
    0 and 1.
*/
{
  int k;
  double r;

  k = *seed / 127773;

  *seed = 16807 * ( *seed - k * 127773 ) - k * 2836;

  if ( *seed < 0 )
  {
    *seed = *seed + 2147483647;
  }
/*
  Although SEED can be represented exactly as a 32 bit integer,
  it generally cannot be represented exactly as a 32 bit real number!
*/
  r = ( ( double ) ( *seed ) ) * 4.656612875E-10;

  return r;
}
/******************************************************************************/

void rcont2 ( int nrow, int ncol, int nrowt[], int ncolt[], int *key,
  int *seed, int matrix[],  int *ierror )

/******************************************************************************/
/*
  Purpose:

    RCONT2 constructs a random two-way contingency table with given sums.

  Discussion:

    It is possible to specify row and column sum vectors which
    correspond to no table at all.  As far as I can see, this routine does
    not detect such a case.

  Licensing:

    This code is distributed under the GNU LGPL license.

  Modified:

    12 November 2010

  Author:

    Original FORTRAN77 version by WM Patefield.
    C version by John Burkardt.

  Reference:

    WM Patefield,
    Algorithm AS 159:
    An Efficient Method of Generating RXC Tables with
    Given Row and Column Totals,
    Applied Statistics,
    Volume 30, Number 1, 1981, pages 91-97.

  Parameters:

    Input, int NROW, NCOL, the number of rows and columns
    in the table.  NROW and NCOL must each be at least 2.

    Input, int NROWT[NROW], NCOLT[NCOL], the row and column
    sums.  Each entry must be positive.

    Input/output, int *KEY, a flag that indicates whether data has
    been initialized for this problem.  Set KEY = .FALSE. before the first
    call.

    Input/output, int *SEED, a seed for the random number generator.

    Output, int MATRIX[NROW*NCOL], the matrix.

    Output, int *IERROR, an error flag, which is returned
    as 0 if no error occurred.
*/
{
  int done1;
  int done2;
  static double *fact = NULL;
  int i;
  int ia;
  int iap;
  int ib;
  int ic;
  int id;
  int idp;
  int ie;
  int igp;
  int ihp;
  int ii;
  int iip;
  int j;
  int jc;
  int *jwork;
  int l;
  int lsm;
  int lsp;
  int m;
  int nll;
  int nlm;
  int nlmp;
  int nrowtl;
  static int ntotal = 0;
  double r;
  double sumprb;
  double x;
  double y;

  *ierror = 0;
/*
  On user's signal, set up the factorial table.
*/
  if ( !(*key) )
  {

    *key = 1;

    if ( nrow <= 1 )
    {
      printf ( "\n" );
      printf ( "RCONT - Fatal error!\n" );
      printf ( "  Input number of rows is less than 2.\n" );
      *ierror = 1;
      return;
    }

    if ( ncol <= 1 )
    {
      printf ( "\n" );
      printf ( "RCONT - Fatal error!\n" );
      printf ( "  The number of columns is less than 2.\n" );
      *ierror = 2;
      return;
    }

    for ( i = 0; i < nrow; i++ )
    {
      if ( nrowt[i] <= 0 )
      {
        printf ( "\n" );
        printf ( "RCONT - Fatal error!\n" );
        printf ( "  An entry in the row sum vector is not positive.\n" );
        *ierror = 3;
        return;
      }
    }

    for ( j = 0; j < ncol; j++ )
    {
      if ( ncolt[j] <= 0 )
      {
        printf ( "\n" );
        printf ( "RCONT - Fatal error!\n" );
        printf ( "  An entry in the column sum vector is not positive.\n" );
        *ierror = 4;
        return;
      }
    }

    if ( i4vec_sum ( ncol, ncolt ) != i4vec_sum ( nrow, nrowt ) )
    {
      printf ( "\n" );
      printf ( "RCONT - Fatal error!\n" );
      printf ( "  The row and column sum vectors do not have the same sum.\n" );
      *ierror = 6;
      return;
    }

    ntotal = i4vec_sum ( ncol, ncolt );

    if ( fact )
    {
      free ( fact );
    }

    fact = ( double * ) malloc ( ( ntotal + 1 ) * sizeof ( double ) );
/*
  Calculate log-factorials.
*/
    x = 0.0;
    fact[0] = 0.0;
    for ( i = 1; i <= ntotal; i++ )
    {
      x = x + log ( ( double ) ( i ) );
      fact[i] = x;
    }

  }
/*
  Construct a random matrix.
*/
  jwork = ( int * ) malloc ( ncol * sizeof ( int ) );;

  for ( i = 0; i < ncol - 1; i++ )
  {
    jwork[i] = ncolt[i];
  }

  jc = ntotal;

  for ( l = 0; l < nrow - 1; l++ )
  {
    nrowtl = nrowt[l];
    ia = nrowtl;
    ic = jc;
    jc = jc - nrowtl;

    for ( m = 0; m < ncol - 1; m++ )
    {
      id = jwork[m];
      ie = ic;
      ic = ic - id;
      ib = ie - ia;
      ii = ib - id;
/*
  Test for zero entries in matrix.
*/
      if ( ie == 0 )
      {
        ia = 0;
        for ( j = m; j < ncol; j++ )
        {
          matrix[l+j*nrow] = 0;
        }
        break;
      }
/*
  Generate a pseudo-random number.
*/
      r = r8_uniform_01 ( seed );
/*
  Compute the conditional expected value of MATRIX(L,M).
*/
      done1 = 0;

      for ( ; ; )
      {
        nlm = ( int ) ( ( double ) ( ia * id ) / ( double ) ( ie ) + 0.5 );
        iap = ia + 1;
        idp = id + 1;
        igp = idp - nlm;
        ihp = iap - nlm;
        nlmp = nlm + 1;
        iip = ii + nlmp;
        x = exp ( fact[iap-1] + fact[ib] + fact[ic] + fact[idp-1] -
          fact[ie] - fact[nlmp-1] - fact[igp-1] - fact[ihp-1] - fact[iip-1] );

        if ( r <= x )
        {
          break;
        }

        sumprb = x;
        y = x;
        nll = nlm;
        lsp = 0;
        lsm = 0;
/*
  Increment entry in row L, column M.
*/
        while ( !lsp )
        {
          j = ( id - nlm ) * ( ia - nlm );

          if ( j == 0 )
          {
            lsp = 1;
          }
          else
          {
            nlm = nlm + 1;
            x = x * ( double ) ( j ) / ( double ) ( nlm * ( ii + nlm ) );
            sumprb = sumprb + x;

            if ( r <= sumprb )
            {
              done1 = 1;
              break;
            }
          }

          done2 = 0;

          while ( !lsm )
          {
/*
  Decrement the entry in row L, column M.
*/
            j = nll * ( ii + nll );

            if ( j == 0 )
            {
              lsm = 1;
              break;
            }

            nll = nll - 1;
            y = y * ( double ) ( j ) / ( double ) ( ( id - nll ) * ( ia - nll ) );
            sumprb = sumprb + y;

            if ( r <= sumprb )
            {
              nlm = nll;
              done2 = 1;
              break;
            }

            if ( !lsp )
            {
              break;
            }

          }

          if ( done2 )
          {
            break;
          }

        }

        if ( done1 )
        {
          break;
        }

        if ( done2 )
        {
          break;
        }

        r = r8_uniform_01 ( seed );
        r = sumprb * r;

      }

      matrix[l+m*nrow] = nlm;
      ia = ia - nlm;
      jwork[m] = jwork[m] - nlm;

    }
    matrix[l+(ncol-1)*nrow] = ia;
  }
/*
  Compute the last row.
*/
  for ( j = 0; j < ncol - 1; j++ )
  {
    matrix[nrow-1+j*nrow] = jwork[j];
  }
  matrix[nrow-1+(ncol-1)*nrow] = ib - matrix[nrow-1+(ncol-2)*nrow];

  free ( jwork );

  return;
}
/******************************************************************************/

void timestamp ( )

/******************************************************************************/
/*
  Purpose:

    TIMESTAMP prints the current YMDHMS date as a time stamp.

  Example:

    17 June 2014 09:45:54 AM

  Licensing:

    This code is distributed under the GNU LGPL license. 

  Modified:

    17 June 2014

  Author:

    John Burkardt

  Parameters:

    None
*/
{
# define TIME_SIZE 40

  static char time_buffer[TIME_SIZE];
  const struct tm *tm;
  time_t now;

  now = time ( NULL );
  tm = localtime ( &now );

  strftime ( time_buffer, TIME_SIZE, "%d %B %Y %I:%M:%S %p", tm );

  printf ( "%s\n", time_buffer );

  return;
# undef TIME_SIZE
}