Linear Algebra - Math 544,   Section 001.


Spring 2007


University of South Carolina


      Instructor  
      Matthew Boylan  
  Office     LeConte 400G  
  Phone     777-8874  
  E-mail     boylan@math.sc.edu  
  Office hours     Tues., 1 - 2  
  Thurs., 1 - 2  
  and by appointment  

  • University of South Carolina Mathematics Department .

  • Course information :

  • Text : Introduction to Linear Algebra, by Johnson, Riess, and Arnold, 5th ed., Addison Wesley, 2002.

  • Meeting schedule :

          Section 001  
      Lecture     MWF     10:10 - 11:00     LeConte 112  

  • Exam schedule :

      Exam 1:     Wednesday     February 14     10:10 - 11:00     LeConte 112  
      Exam 2:     Wednesday     March 21     10:10 - 11:00     LeConte 112  
      Exam 3:     Wednesday     April 18     10:10 - 11:00     LeConte 112  
      Final Exam:     Wednesday     May 2     2:00 - 5:00     LeConte 112  

  • Homework :

    Homework will be assigned each lecture but not collected. Instead, a weekly quiz will be given based on the homework.

  • Grading :

          Points/650     % of grade  
      Three hour exams:     100 pts. x 3     15% x 3  
      Final exam:     200 pts.     30%  
      Quizzes:     150 pts.     25%  
      Total:     650 pts.     100%  

  • Make-up policy :

    Missed quizzes and exams will not be made up.

  • Calculators :

    Calculators may be used to do homework, but not to do quizzes or exams.

  • Syllabus : (pdf)   (ps)

  • Other help resources : Private tutors , On-line materials for courses   (past 544 homepages),

    Math library   (linear algebra textbooks on reserve).


  • Lectures and Homework :

     
    Lectures Homework
      Dates     Sections     Topics     Problems     Quiz date  
      Jan     17     W     1.1     Introduction to matrices and systems of linear equations.     2, 4, 5, 6, 10, 12, 13, 14, 19, 21, 23, 27, 33, 35, 38.     Mon., 1/29  
      19     F     1.1              
      22     M     1.2     Echelon form and Gauss-Jordan elimination.     5, 9, 15, 16, 20, 25, 28, 31, 36, 37, 44.     Mon., 1/29  
      24     W     1.2              
      26     F     1.3     Consistent systems of linear equations.     3, 5, 6, 7-23.     Mon., 2/5  
      29     M     1.5     Matrix operations.     1d, 5, 9c, 11a, 17, 23, 27, 31, 41, 43, 45, 53, 54, 55.   Mon., 2/5    
      31     W     1.5              
      Feb     2     F     1.6     Algebraic properties of matrix operations.     1, 3, 11, 13, 15, 17, 21, 26, 27, 30, 41, 43, 46, 47, 49.     Mon, 2/13  
      5     M     1.7     Linear independence and non-singular matrices.     5, 9, 13, 23, 31, 33, 47, 50, 51, 52, 53, 55, 57.     Mon., 2/13  
      7     W     1.7     Guide to Exam 1          
      9     F     1.9     Matrix inverses and their properties.     1, 6, 11, 13, 19, 27, 31, 39, 45, 48, 51, 58, 61, 68, 70, 72, 74.      
      12     M     1.9              
      14     W         Exam I     Covers: information and homework from Sections 1.1 - 1.3, 1.5 - 1.7, and 1.9; class notes: 1/17 - 2/12; quizzes: 1-3.      
      16     F     3.2     Vector space properties of R^n.     1, 3, 7, 9, 11, 15, 18, 19, 21, 23, 29, 30, 31, 32.     Mon., 2/26  
      19     M     3.3     Examples of subspaces.     1, 5, 11, 13, 17, 25, 27, 31, 35, 43, 49, 50, 51, 53.     Mon., 2/26  
      21     W     3.3              
      23     F     3.4     Bases for subspaces.     3, 7, 9, 13, 19, 23, 27, 29, 30, 31, 33, 36, 38, 39.     Mon., 3/5  
      26     M     3.4              
      28     W     3.4              
      Mar     2     F     3.5     Dimension.     3, 7, 11, 13, 17, 23, 26, 27, 32, 33, 35, 36, 38, 39, 42.     Mon., 3/19  
      5     M     3.6     Orthogonal bases for subspaces.     3, 7, 9, 23, 24, 25, 28.     Mon., 3/19  
      7     W     3.7     Linear transformations.     5, 9, 11, 15, 19, 23, 25, 29, 35, 36, 39, 40, 44.      
      9     F     3.7     Guide to Exam 2          
      19     M     3.7     Optional review for Exam II:
    LC 112 at 6:00 pm.  
           
      21     W         Exam II     Covers: information and homework from Sections 3.2 - 3.7; class notes: 2/16 - 3/9; quizzes: 4 - 6.      
      23     F     4.1     The eigenvalue problem for 2 x 2 matrices.     1, 5, 9, 17, 18, 19.     Mon., 4/2  
      26     M     4.2     Determinants and the eigenvalue problem.     9, 13, 19, 21, 23, 25, 26, 27, 28, 29, 30, 31 a, 33.     Mon., 4/2  
      28     W     4.2              
      30     F     4.3     Elementary operations and determinants.     5, 9, 13, 17, 23, 25, 27, 28.     Mon., 4/9  
      Apr     2     M     4.4     Eigenvalues and the characteristic polynomial.     3, 9, 15, 20, 24, 25, 27, 30.     Mon., 4/9  
      4     W     4.5     Eigenspaces and eigenvectors.     1, 5, 13, 17, 18, 21, 22, 23.     Mon., 4/16  
      6     F     4.5              
      9     M     4.7     Similarity transformations and diagonalization.     5, 7, 8, 12, 15, 17, 25, 26, 27 b, c, 31, 43.     Mon., 4/16  
      11     W     4.7     Guide to Exam 3          
      13     F     5.2     Vector spaces (revisited).     5, 7, 9, 10, 13, 15, 18, 19, 25, 27, 29, 31, 33.      
      16     M     5.2     Optional review for Exam III:
    LC 112 at 6:00 pm.  
           
      18     W         Exam III     Covers: information and homework from Sections 4.1 - 4.5, 4.7, and 5.2; class notes: 3/23 - 4/16; quizzes: 7 - 9.      
      20     F     5.3     Subspaces (revisited).     1, 3, 5, 7, 9, 11, 17, 19, 21, 23, 24, 26, 27, 31 b, d.     Mon., 4/30  
      23     M     5.4     Linear independence, bases, and coordinates.     3, 5, 9, 10, 12, 13, 17, 19, 23, 24, 26, 27, 29, 31.     Mon., 4/30  
      25     W     5.4     Guide to new material for Final Exam.          
      27     F     5.5     Dimension (revisited).     1, 3, 5, 7, 13, 15, 16, 17.      
      30     M     Tying it all together.     Optional review for Final Exam: LC 112 at 6:00 pm         
      May     2     W         Final Exam, 2 - 5 pm     Cumulative: Sections 1.1 - 1.3, 1.5 - 1.7, 1.9, 3.2 - 3.7, 4.1 - 4.5, 4.7, 5.2 - 5.5.