Optimal lower bound of the average indeterminate length lossless quantum block encoding

Rabins Wosti (joint work with George Androulakis)

University of South Carolina

arXiv:2305.18748
Outline

1. Classical Data Compression
2. Shannon’s source coding theorem
3. Schumacher’s quantum source coding theorem
4. Generalization of Schumacher’s compression
5. Our work
Classical Source

Consider a **classical source** B that emits one symbol at each discrete time step from the **symbol set** $S = \{s_i\}_{i=1}^{4}$ with the following probabilities. Assume that the emissions at each time step are independent and identically distributed (i.i.d.).

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>$p(1) = 0.5$</td>
</tr>
<tr>
<td>s_2</td>
<td>$p(2) = 0.25$</td>
</tr>
<tr>
<td>s_3</td>
<td>$p(3) = 0.125$</td>
</tr>
<tr>
<td>s_4</td>
<td>$p(4) = 0.125$</td>
</tr>
</tbody>
</table>
Fixed-length classical encoding scheme

Let $A = \{0, 1\}$ be the **binary alphabet**. An example of a **fixed-length encoding scheme** $\phi = \{E : S \to A^*, D : A^* \to S\}$:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability $p(i) = \frac{1}{2^i}$</th>
<th>Codeword $E(s_i)$</th>
<th>Codeword Length $\text{length}(E(s_i))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>0.5</td>
<td>00</td>
<td>2</td>
</tr>
<tr>
<td>s_2</td>
<td>0.25</td>
<td>01</td>
<td>2</td>
</tr>
<tr>
<td>s_3</td>
<td>0.125</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>s_4</td>
<td>0.125</td>
<td>11</td>
<td>2</td>
</tr>
</tbody>
</table>

Average codeword length = $\sum_{i=1}^{4} p(i) \times \text{length}(E(s_i)) = 2$ bits/symbol.

In general, the average codeword length = $\lceil \log_2 N \rceil$ for a symbol set of size N.
Variable-length classical encoding scheme

An example of a **variable-length encoding scheme** $\phi' = \{E', D'\}$:

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
<th>Codeword $E'(s_i)$</th>
<th>Codeword Length $\text{length}(E(s_i))$</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>$p(1) = 0.5$</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>s_2</td>
<td>$p(2) = 0.25$</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>s_3</td>
<td>$p(3) = 0.18$</td>
<td>110</td>
<td>3</td>
</tr>
<tr>
<td>s_4</td>
<td>$p(4) = 0.07$</td>
<td>111</td>
<td>3</td>
</tr>
</tbody>
</table>

Average codeword length =

$$\sum_{i=1}^{4} p(i) \times \text{length}(E'(s_i)) = 1.75 \text{ bits/symbol}.$$

Called **Huffman code**.
Uniquely-decodable codes (Lossless codes)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Probability</th>
<th>Huffman Codeword</th>
<th>Alternate Codeword</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_1</td>
<td>$p(1) = 0.5$</td>
<td>$E(s_1) = 0$</td>
<td>$E'(s_1) = 0$</td>
</tr>
<tr>
<td>s_2</td>
<td>$p(2) = 0.25$</td>
<td>$E(s_2) = 10$</td>
<td>$E'(s_2) = 10$</td>
</tr>
<tr>
<td>s_3</td>
<td>$p(3) = 0.125$</td>
<td>$E(s_3) = 110$</td>
<td>$E'(s_3) = 100$</td>
</tr>
<tr>
<td>s_4</td>
<td>$p(4) = 0.125$</td>
<td>$E(s_4) = 111$</td>
<td>$E'(s_4) = 111$</td>
</tr>
</tbody>
</table>

A sequence of codeword 100 can be decoded in two ways: s_2s_1 and s_3.
Classical Kraft-McMillan Inequality:
Assume that a uniquely decodable classical encoding scheme over a binary alphabet encodes a set of D-many symbols into codewords of lengths $\{\ell_i \in \mathbb{N}\}_{i=1}^D$, then the codeword lengths must satisfy the following inequality

$$\sum_{i=1}^{D} 2^{-\ell_i} \leq 1$$

Conversely, if there exists a set of lengths $\{\ell_i\}_{i=1}^D$ that satisfy the above inequality, then there exists a uniquely decodable classical encoding scheme with those codeword lengths.
Classical Block Encoding

Fix block size \(l = 2 \). Consider 2-extension of the classical source \(B^2 \) that emits one symbol from the symbol set

\[
S^2 = \left\{ s_{i_1} s_{i_2} \right\}_{i_1, i_2 = 1}^4
\]

at each discrete time step. Each symbol \(s_{i_1} s_{i_2} \) is emitted with the probability \(p(i_1)p(i_2) \) for \(i_1, i_2 \in \{1, \ldots, 4\} \).

Average codeword length of Huffman code that encodes symbols from the source \(B^2 \) is 3.46 bits/block. That is, 1.73 bits/symbol. Also called code rate.

What if block size \((l) \to \infty \)?

How much can you compress the information from an i.i.d. classical source with negligible loss of information?
Shannon’s source coding theorem (Informally)

Consider an i.i.d. classical source $\mathcal{B} = \{p(i), s_i\}_{i=1}^{N}$ with Shannon entropy $H(\mathcal{B}) = -\sum_{i=1}^{N} p(i) \log_2 p(i)$. Also, let $\mathcal{S}^n = \{s_{i_1}, \ldots, s_{i_n}\}$ for $i_1, \ldots, i_n \in \{1, \ldots, N\}$ be the set consisting of all n-sequences of symbols from the source. For any $\epsilon \geq 0$, let $R = H(\mathcal{B}) + \epsilon$. Then there exists a reliable compression scheme $\phi^n = \{E^n, D^n\}$ of code rate R for the n-extension of the source. That is,

$$\Pr(s_1, \ldots, s_n : D^n \circ E^n(s_1, \ldots, s_n) = (s_1, \ldots, s_n)) \to 1 \quad \text{as } n \to \infty$$

Conversely, any compression scheme $\phi^n = \{E^n, D^n\}$ with code rate $R < H(\mathcal{B})$ is not reliable for the n-extension of the source. That is,

$$\Pr(s_1, \ldots, s_n : D^n \circ E^n(s_1, \ldots, s_n) = (s_1, \ldots, s_n)) \to 0 \quad \text{as } n \to \infty$$

Based on Asymptotic Equipartition Property (AEP) of typical sequences.

$nH(\mathcal{B}) \leq \text{Average codeword length of Huffman code for } \mathcal{B}^n \leq nH(\mathcal{B}) + 1.$
Schumacher’s quantum source coding theorem (Informally)

Consider an i.i.d. quantum source $B = \{ p(i), |s_i\rangle \}_{i=1}^{N}$ where each $|s_i\rangle \in \mathcal{H}$ of dimension D. Let $\rho = \sum_{i=1}^{N} p(i) |s_i\rangle\langle s_i|$ be the ensemble state.

Consider the spectral decomposition of $\rho = \sum_{i=1}^{D} \lambda_i |\lambda_i\rangle\langle \lambda_i|$. Then, the **von-Neumann entropy** of the source is given by $S(\rho) = -\sum_{i=1}^{D} \lambda_i \log_2 \lambda_i$. Also, let $S^n = \{ s_{i_1}, \ldots, s_{i_n} \}$ for $i_1, \ldots, i_n \in \{1, \ldots, N\}$ be the set consisting of all n-sequences of symbols from the source. For any $\epsilon \geq 0$, let $R = S(\rho) + \epsilon$. Then there exists a reliable compression scheme $\phi^n = \{ E^n, D^n \}$ of code rate R for the n-extension of the source. That is,

$$\text{tr}(\Pi_{\Lambda_n} \rho^\otimes n) \rightarrow 1 \quad \text{as } n \rightarrow \infty$$

where $\Lambda_n \subset \mathcal{H}^\otimes n$ is the typical subspace and Π_{Λ_n} is the projector from $\mathcal{H}^\otimes n$ onto Λ_n. Conversely, any compression scheme $\phi^n = \{ E^n, D^n \}$ with code rate $R < S(\rho)$ is not reliable for the n-extension of the source. That is,

$$\text{tr}(\Pi_{\Lambda_n} \rho^\otimes n) \rightarrow 0 \quad \text{as } n \rightarrow \infty$$

Based on AEP of typical subspaces.
Generalization of Schumacher’s compression

- Universal compression scheme: Josza et. al.[1] for i.i.d. quantum sources, Kaltchenko & Yang [2, 3] for stationary ergodic sources
- Variable-length (indeterminate-length) compression scheme: Schumacher & Westmoreland [4], and Hayashi & Matsumoto [5, 6] for i.i.d. sources
- Quantum source: Kaltchenko & Yang [2, 3] and Bjelaković & Igor [7] for stationary ergodic sources, all others for i.i.d. sources

No-go theorems for (completely) lossless quantum data compression introduced by Boström & Felbinger [8].

We are interested in:

- completely lossless
- source-dependent
- indeterminate-length
- quantum stochastic source
- encode tensor product of pure states in blocks of equal size
Quantum code

Let \mathcal{H} be a Hilbert space of dimension D. A **quantum code** on \mathcal{H} is a linear isometry $U : \mathcal{H} \to (\mathbb{C}^2)^\oplus$. Thus, for every quantum code U on \mathcal{H}, the dimension of its range is equal to D, and if $(|\psi_i\rangle)_{i=1}^{D}$ is any orthonormal sequence in its range, then U has the form

$$U = \sum_{i=1}^{D} |\psi_i\rangle \langle e_i| ,$$

where $(|e_i\rangle)_{i=1}^{D}$ is an orthonormal basis of \mathcal{H}. For any pure state $|s\rangle = \sum_{i=1}^{D} \alpha_i |e_i\rangle$, the quantum state $|\sigma\rangle = U |s\rangle = \sum_{i=1}^{D} \alpha_i |\psi_i\rangle$ obtained by applying U to a state $|s\rangle \in \mathcal{H}$ is called **codeword**.

Let each $|\psi_i\rangle \in (\mathbb{C}^2)^\otimes \ell_i$ for some $\ell_i \in \mathbb{N}$. If $\ell_i = \ell \ \forall i$, then $|\sigma\rangle \in (\mathbb{C}^2)^\otimes \ell$ and is a **length state**, otherwise it is an **indeterminate-length state**.

Define length observable $\Lambda = \sum_{\ell=0}^{\infty} \ell \Pi_\ell$. Indeterminate-length of a codeword $|\sigma\rangle$ is given by $Tr(|\sigma\rangle \langle \sigma| \Lambda) = \langle \sigma| \Lambda |\sigma\rangle = \sum_{i=1}^{D} |\alpha_i|^2 \ell_i$.

Rabins Wosti (joint work with George Androulakis) (Univ. of South Carolina)
Concatenation of quantum codewords

Consider a linear map $U^m = U \circ \cdots \circ U : \mathcal{H}^\otimes m \to (\mathbb{C}^2)^\oplus$ defined such that

$$(U \circ \cdots \circ U) |s_1\rangle \otimes \cdots \otimes |s_m\rangle = U |s_1\rangle \circ \cdots \circ U |s_m\rangle = |\sigma_i\rangle \circ \cdots \circ |\sigma_m\rangle$$

where each $|s_i\rangle = \sum_{j=1}^{D} \alpha_i^j |e_j\rangle$ such that $\sum_{j=1}^{D} |\alpha_i^j|^2 = 1$. Concatenation of normalized indeterminate-length states can result in unnormalized states. (Check $\frac{1}{\sqrt{2}} (|0\rangle + |00\rangle)$ and $\frac{1}{\sqrt{2}} (|0\rangle - |00\rangle)$) [9]

So, $(U \circ \cdots \circ U) |s_1\rangle \otimes \cdots \otimes |s_m\rangle$

$$= \sum_{j_1, \ldots, j_m=1}^{D} \alpha_1^{j_1} \cdots \alpha_m^{j_m} |\psi_{j_1}\rangle \circ \cdots \circ |\psi_{j_m}\rangle$$

U^m is an isometry $\iff \{ |\psi_{j_1} \circ \cdots \circ \psi_{j_m}\rangle \}$ is an orthonormal set. U is uniquely decodable $\iff U^m$ is an isometry for every $m \in \mathbb{N}$ $\iff \{ |\psi_{j_1} \circ \cdots \circ \psi_{j_m}\rangle : (j_1, \ldots, j_m) \in \{1, \ldots, D\}^m \}$ is an orthonormal set for every $m \in \mathbb{N}$. Such a sequence $(|\psi_i\rangle)_{i=1}^{D}$ is called jointly orthonormal sequence of length codewords.
Quantum stochastic source

A quantum stochastic source \mathcal{B} consists of a set of pure states $\{|s_n\rangle\}_{n=1}^{N}$ of a Hilbert space \mathcal{H}, and a stochastic process $X = (X_n)_{n=1}^{\infty}$, where each X_n is a random variable which takes values in $\{1, 2, \ldots, N\}$. At every positive integer time n the state $|s_{X_n}\rangle$ is emitted from the quantum source. If p denotes the probability distribution of the stochastic process X, then for every $k \in \mathbb{N}$ and $(n_1, \ldots, n_k) \in \{1, \ldots, N\}^k$, we have that

$$p(n_1, \ldots, n_k) = P(X_1 = n_1, \ldots, X_k = n_k).$$

Also, the conditional probability distribution of the stochastic process X is defined for any $k \geq 2$ and $(n_1, \ldots, n_k) \in \{1, \ldots, N\}^k$ by

$$p(n_k|n_{k-1}, \ldots, n_1) = P(X_k = n_k|X_{k-1} = n_{k-1}, \ldots, X_1 = n_1).$$
Case for 2 blocks

Fix $r \in \mathbb{N}$ as the block size and $m = 2$ as the number of blocks. Consider the ensemble state of two block ρ_{2r}

$$
\sum_{i_1, \ldots, i_{2r} = 1}^{N} p(i_1, \ldots, i_{2r}) |s_{i_1} \cdots s_{i_{2r}}\rangle \langle s_{i_1} \cdots s_{i_{2r}}|
$$

$$
= \sum_{i_1, \ldots, i_r = 1}^{N} p(i_1, \ldots, i_r) |s_{i_1} \cdots s_{i_r}\rangle \langle s_{i_1} \cdots s_{i_r}| \otimes
$$

$$
= \sum_{i_{r+1}, \ldots, i_{2r} = 1}^{N} p(i_{r+1}, \ldots, i_{2r} | i_1, \ldots, i_r) |s_{i_{r+1}} \cdots s_{i_{2r}}\rangle \langle s_{i_{r+1}} \cdots s_{i_{2r}}|
$$

$$
\sum_{i_{r+1}, \ldots, i_{2r} = 1}^{N} p(i_{r+1}, \ldots, i_{2r} | i_1, \ldots, i_r) |s_{i_{r+1}} \cdots s_{i_{2r}}\rangle \langle s_{i_{r+1}} \cdots s_{i_{2r}}| \otimes \rho_{i_1, \ldots, i_r}
$$

where ρ_{i_1, \ldots, i_r} is second block ensemble state given that $|s_{i_1} \cdots s_{i_r}\rangle$ is emitted in the first block.
Consider a linear map $U_1 \circ \cdots \circ U_m : \mathcal{H}^\otimes m \to (\mathbb{C}^2)^\oplus$ defined such that

$$(U_1 \circ \cdots \circ U_m) |s_1\rangle \otimes \cdots \otimes |s_m\rangle = U_1 |s_1\rangle \circ \cdots \circ U_m |s_m\rangle$$

and each $U_j = \sum_{i=1}^{D} |\psi^j_i\rangle \langle e^j_i|$. $U_1 \circ \cdots \circ U_m$ is uniquely decodable

$\iff U_1 \circ \cdots \circ U_m$ is an isometry

$\iff |\psi^{j_1}_1 \cdots \psi^{j_m}_m\rangle : (j_1, \ldots, j_m) \in \{1, \ldots, D\}^m$ is an orthonormal set.

Fix a jointly orthonormal sequence of length codewords $(|\psi_i\rangle)_{i=1}^{D}$. Setting $(|\psi^j_i\rangle)_{i=1}^{D} = (|\psi_i\rangle)_{i=1}^{D}$ $\forall j$ makes $U_1 \circ \cdots \circ U_m$ uniquely decodable.
Special block codes

Consider a quantum stochastic source S which contains an alphabet of N many pure states $(|s_i\rangle)^N_{i=1}$ that span a Hilbert space \mathcal{H} of dimension D. Let $r, m \in \mathbb{N}$ where r denotes the block size, and m denotes the number of blocks. A special block code is a family of isometries $U = \left\{ U^{n_1,\ldots,n_{(k-1)r}} : 1 \leq k \leq m, \ n_1, \ldots, n_{(k-1)r} \in \{1, \ldots, N\} \right\}$, such that every isometry used in the family U has a common sequence of jointly orthonormal length codewords. Thus more explicitly, there exists a jointly orthonormal sequence of length codewords $(|\psi_i\rangle)^{Dr}_{i=1} \subseteq (\mathbb{C}^2)^\oplus$, and an orthonormal sequence $\left(|e_i^{n_1,\ldots,n_{(k-1)r}}\rangle \right)^{Dr}_{i=1}$ for $1 \leq k \leq m$ and $n_1, \ldots, n_{(k-1)r} \in \{1, \ldots, N\}$ such that

$$U^{n_1,\ldots,n_{(k-1)r}} = \sum_{i=1}^{Dr} |\psi_i\rangle \langle e_i^{n_1,\ldots,n_{(k-1)r}}|.$$
Average codeword length of special block code (for 2 blocks)

We will denote by $ACL(\mathcal{U})$ the average codeword length of the special block code \mathcal{U}, which is defined to be equal to

$$\sum_{n_1, \ldots, n_{mr}}^{N} p(n_1, \ldots, n_{mr}) \text{Tr} \left(\left| U(s_{n_1} \cdots s_{n_r}) \circ U^{n_1, \ldots, n_r} (s_{n_{r+1}} \cdots s_{n_{2r}}) \circ \cdots \circ U^{n_1, \ldots, n_{(m-1)r}} (s_{n_{(m-1)r+1}} \cdots s_{n_{mr}}) \right| \right)$$

$$\left\langle U(s_{n_1} \cdots s_{n_r}) \circ U^{n_1, \ldots, n_{nr}} (s_{n_{r+1}} \cdots s_{n_{2r}}) \circ \cdots \circ U^{n_1, \ldots, n_{(m-1)r}} (s_{n_{(m-1)r+1}} \cdots s_{n_{mr}}) \left| \Lambda \right\rangle \right.$$
Main result

Consider a quantum stochastic source \mathcal{B} consisting of an alphabet of N many pure states spanning a D-dimensional Hilbert space \mathcal{H}, and a stochastic process X having mass function p as defined before. Fix $m, r \in \mathbb{N}$. Let

$$LB(\mathcal{B}, m, r)$$

denote the infimum of the set containing $ACL(\mathcal{U})$ for every special block code \mathcal{U} that is used to encode mr many states emitted by \mathcal{B} into m blocks each of size r. Then $LB(\mathcal{B}, m, r)$ can be computed as follows: For each $k = 1, \ldots, m$, and a sequence $n_1, \ldots, n_{(k-1)r}$ of integers chosen from the set $\{1, \ldots, N\}$, let $\left(\lambda_i^{n_1, \ldots, n_{(k-1)r}}\right)^{D^r}_{i=1}$ be the eigenvalues of the k^{th} block conditional ensemble state $\rho^{n_1, \ldots, n_{(k-1)r}}$, arranged in decreasing order, and $\left(\left|\lambda_i^{n_1, \ldots, n_{(k-1)r}}\right\rangle\right)^{D^r}_{i=1}$ be the corresponding eigenvectors.
Let
\[\mathcal{L} = \left\{ (\ell_1, \ldots, \ell_{D_r}) : \ell_i \in \mathbb{N} \cup \{0\} \text{ for all } i, \ell_1 \leq \ell_2 \leq \cdots \leq \ell_{D_r}, \text{ and } \sum_{i=1}^{D_r} 2^{-\ell_i} \leq 1 \right\}. \]

Define a function \(L : \mathcal{L} \rightarrow [0, \infty) \) by
\[
L((\ell_i)_{i=1}^{D_r}) := \sum_{j=2}^{m} \left(\sum_{n_1, \ldots, n_{(j-1)r}=1}^{N} p(n_1, \ldots, n_{(j-1)r}) \sum_{i=1}^{D_r} \lambda_i^{n_1, \ldots, n_{(j-1)r} \ell_i} \right) + \sum_{i=1}^{D_r} \lambda_i \ell_i.
\]

Then,
\[
LB(S, m, r) = \min \{ L((\ell_i)_{i=1}^{D_r}) : (\ell_i)_{i=1}^{D_r} \in \mathcal{L} \}.
\]

Moreover, the infimum defining \(LB(S, m, r) \) is actually a minimum, i.e., there exists a special block code
\[
\min \{ L((\ell_i)^{D_r}) : (\ell_i)^{D_r} \in \mathcal{L} \} = ACL(\mathcal{V}).
\]

The minimizer \(\mathcal{V} \) is given as follows: Assume that \(L \) achieves its minimum on \(\mathcal{L} \) at the point \((\ell_i)^{D_r} \in \mathcal{L}\). Since the sequence \((\ell_i)^{D_r}_{i=1} \) satisfies the classical Kraft-McMillan inequality, (which is the last condition in the definition of \(\mathcal{L} \)), there exists a classical uniquely decodable sequence \((\omega_i)^{D_r}_{i=1} \) of codewords with corresponding lengths \((\ell_i)^{D_r}_{i=1} \). Let \((|\omega_i\rangle)^{D_r}_{i=1} \) be the corresponding sequence of qubit strings in the Fock space \((\mathbb{C}^2)^\oplus\). For each \(k \in \{1, \ldots, m\} \), and string \(n_1, \ldots, n_{(k-1)r} \in \{1, \ldots, N\} \), define

\[
\mathcal{V}^{n_1, \ldots, n_{(k-1)r}} : \mathcal{H}^\otimes r \rightarrow (\mathbb{C}^2)^\oplus,
\]

by

\[
\mathcal{V}^{n_1, \ldots, n_{(k-1)r}} = \sum_{i=1}^{D_r} |\omega_i\rangle \langle \lambda_i^{n_1, \ldots, n_{(k-1)r}}|.
\]
Concatenation of rank-1 operators

Consider a collection of normalized states $\{ |\phi_i\rangle \}_{i=1}^{N}$ such that each $|\phi_i\rangle$ is in the linear span of a jointly orthonormal sequence of length codewords $(|\psi_j\rangle)_{j=1}^{D}$. Then, $|\phi_i \circ \cdots \circ \phi_N\rangle$ is a normalized state. So, one can define the concatenation of rank-1 operators $(|\phi_i\langle\phi_i|)_{i=1}^{N}$ as

$$|\phi_1\rangle\langle\phi_1| \circ \cdots \circ |\phi_N\rangle\langle\phi_N| = |\phi_1 \circ \cdots \circ \phi_N\rangle\langle\phi_1 \circ \cdots \circ \phi_N|$$
For $z \in \mathbb{N}$ consider a non-increasing sequence of positive real numbers $Q_1 \geq Q_2 \geq \cdots \geq Q_z \geq 0$. Further, consider another arbitrary sequence of positive real numbers l_1, l_2, \ldots, l_z and its non-decreasing enumeration $l'_1 \leq l'_2 \leq \cdots \leq l'_z$. Then,

$$
\sum_{i=1}^{z} Q_i l'_i \leq \sum_{i=1}^{z} Q_i l_i.
$$
Sketch of the proof for 2 blocks

Consider the quantum stochastic source as described above, and fix the number of blocks, \(m=2 \). The ensemble state for two blocks \(\rho_{2r} \) can be written as

\[
\sum_{n_1,\ldots,n_{2r}=1}^{D'} p(n_1, \ldots, n_{2r}) |s_{n_1}, \ldots, s_{n_{2r}}\rangle \langle s_{n_1}, \ldots, s_{n_{2r}}|
\]

The average codeword length of our encoding for two blocks is given by

\[
\sum_{n_1,\ldots,n_{2r}=1}^{N} p(n_1, \ldots, n_{2r}) \text{Tr} \left(|U(s_{n_1} \cdots s_{n_r}) \circ U^{n_1,\ldots,n_{2r}}(s_{n_{r+1}} \cdots s_{n_{2r}})| \langle U(s_{n_1} \cdots s_{n_r}) \circ U^{n_1,\ldots,n_r}(s_{n_{r+1}} \cdots s_{n_{2r}}) | \Lambda \rangle \right)
\]
\[
= \sum_{n_1, \ldots, n_{2r} = 1}^N p(n_1, \ldots, n_{2r}) \text{Tr} \left(U | s_{n_1} \cdots s_{n_r} \rangle \langle s_{n_1} \cdots s_{n_r} | U^\dagger \circ \right)
\]
\[
U^{n_1, \ldots, n_r} | s_{n_{r+1}} \cdots s_{n_{2r}} \rangle \langle s_{n_{r+1}} \cdots s_{n_{2r}} | (U^{n_1, \ldots, n_r})^\dagger \Lambda
\]
\[
= \sum_{n_1, \ldots, n_r = 1}^N \text{Tr} \left(p(n_1, \ldots, n_r) U | s_{n_1} \cdots s_{n_r} \rangle \langle s_{n_1} \cdots s_{n_r} | U^\dagger \circ \right)
\]
\[
U^{n_1, \ldots, n_r} \rho^{n_1, \ldots, n_r} (U^{n_1, \ldots, n_r})^\dagger \Lambda
\]

Substituting \(U = \sum_{j=1}^{D^r} | \psi_j \rangle \langle e_j |, \ U^\dagger = \sum_{j'=1}^{D^r} | e_{j'} \rangle \langle \psi_{j'} |, \)
\(U^{n_1, \ldots, n_r} = \sum_{k=1}^{D^r} | \psi_k \rangle \langle e_{k_1}^{n_1, \ldots, n_r} |, \ U^{n_1, \ldots, n_r} = \sum_{k'=1}^{D^r} | e_{k'}^{n_1, \ldots, n_r} \rangle \langle \psi_{k'} |, \) and
\(\Lambda = \sum_{\ell=0}^{\infty} \ell \prod_{\ell} \) into the above equation and applying some simplifications, we get
= \sum_{n_1,\ldots,n_r=1}^{D_r} p(n_1, \ldots, n_r) \sum_{j,j'=1}^{D_r} \langle e_j | s_{n_1} \cdots s_{n_r} \rangle \langle s_{n_1} \cdots s_{n_r} | e_{j'} \rangle \\
\sum_{i=1}^{D_r} \lambda_i^{n_1,\ldots,n_r} \sum_{k,k'=1}^{D_r} \langle e_{n_1}^{k_1,\ldots,n_r} | \lambda_i^{n_1,\ldots,n_r} \rangle \langle \lambda_i^{n_1,\ldots,n_r} | e_{k'}^{n_1,\ldots,n_r} \rangle \\
\sum_{\ell=0}^{\infty} \ell \langle \psi_j' \psi_k' | \prod_{\ell} | \psi_j \psi_k \rangle \\

Since the sequence \{ |\psi_r \rangle_{r=1}^{D_r} \} is a jointly orthonormal sequence, that causes \(j = j' \) and \(k = k' \). So, the average codeword length simplifies to

= \sum_{n_1,\ldots,n_r=1}^{D_r} p(n_1, \ldots, n_r) \sum_{j=1}^{D_r} |\langle e_j | s_{n_1} \cdots s_{n_r} \rangle|^2 \sum_{i=1}^{D_r} \lambda_i^{n_1,\ldots,n_r} \\
\sum_{k=1}^{D_r} |\langle e_{k}^{n_1,\ldots,n_r} | \lambda_i^{n_1,\ldots,n_r} \rangle|^2 (\ell_j + \ell_k)
Using Birkhoff-von Neumann theorem, it can be shown that the above equation is minimized when \(|e_i^{n_1,\ldots,n_r}\rangle = |\lambda_i^{n_1,\ldots,n_r}\rangle \) upto an overall phase factor for \(1 \leq i \leq D^r \). So, the above equation simplifies to
\[
\begin{align*}
&= \sum_{n_1, \ldots, n_r=1}^{D^l} \left(\sum_{n_1, \ldots, n_r=1}^{D^l} \right) p(n_1, \ldots, n_r) \left(\sum_{j=1}^{D^r} \ell_j \langle e_j | s_{n_1}, \ldots, n_r \rangle \right)^2 + \\
&= \sum_{j=1}^{D^l} \ell_j \langle e_j | \left(\sum_{n_1, \ldots, n_r=1}^{D^l} \right) p(n_1, \ldots, n_r) \langle s_{n_1} \cdots s_{n_r} | s_{n_1} \cdots s_{n_r} \rangle \rangle | e_j \rangle + \\
&= \sum_{n_1, \ldots, n_r=1}^{D^l} \sum_{i=1}^{D^r} \ell_i \lambda_i^{n_1, \ldots, n_r} + \\
&= \sum_{n_1, \ldots, n_r=1}^{D^l} \sum_{i=1}^{D^r} \ell_i \lambda_i^{n_1, \ldots, n_r} + \\
&= \sum_{j=1}^{D^l} \ell_j \langle e_j | \rho_r | e_j \rangle + \sum_{n_1, \ldots, n_r=1}^{D^l} \sum_{i=1}^{D^r} p(n_1, \ldots, n_r) \sum_{n_1, \ldots, n_r=1}^{D^l} \sum_{i=1}^{D^r} \ell_i \lambda_i^{n_1, \ldots, n_r}
\end{align*}
\]
\[
\sum_{j, k=1}^{D^l} \ell_j \lambda_k |\langle e_j | \lambda_k \rangle|^2 + \sum_{n_1, \ldots, n_r=1}^{D^l} p(n_1, \ldots, n_r) \sum_{i=1}^{D^l} \ell_i \lambda_i^{n_1, \ldots, n_r}
\]

Again, using Birkhoff-von Neumann theorem, the above equation is minimized when \(|e_j\rangle = |\lambda_j\rangle \) upto an overall phase factor for \(1 \leq j \leq D^l \). Thus, the equation reduces to

\[
\sum_{j=1}^{D^r} \ell_j \lambda_j + \sum_{n_1, \ldots, n_r=1}^{D^r} p(n_1, \ldots, n_r) \sum_{i=1}^{D^r} \ell_i \lambda_i^{n_1, \ldots, n_r}
\]

In general, for \(m \in \mathbb{N} \) blocks, the equation is given by

\[
\sum_{j=2}^{m} \left(\sum_{n_1, \ldots, n_{(j-1)r}}^{N} p(n_1, \ldots, n_{(j-1)r}) \sum_{i=1}^{D^r} \lambda_i^{n_1, \ldots, n_{(j-1)r}} \ell_i \right) + \sum_{i=1}^{D^r} \lambda_i \ell_i
\]

Hence, the minimum average codeword length is obtained by using the set of \(\{\ell_i\}_{i=1}^{D^r} \) that minimizes the above equation and satisfies \(\sum_{i=1}^{D^r} 2^{-\ell_i} \leq 1 \).
References

Hayashi, Masahito, and Keiji Matsumoto. “Simple construction of