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Definition of Shannon entropy

Shannon entropy

Figure 1: By cartoonist Mark Heath
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Definition of Shannon entropy

Definition of Shannon entropy

Entropy = measure of uncertainty (i.e. lack of information), measure of
our surprise when an event happens.

First attempt to measure our surprise when an event happens: 1
p .

Additivity of surprise for independent events.

Second attempt to measure our surprise when an event happens: log2
1
p

Average the surprises.

Shannon Entropy If P is a prob. distr. then H(P) = −
∑
i
pi log2 pi . If X

is a r.v. then H(X ) = 〈− log2 X 〉, (Claude Shannon, “A Mathematical
Theory of Communication”, 1948).
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Set-up of communication scheme

Set-up of communication scheme

Figure 2: By cartoonist Len Hawkins
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Set-up of communication scheme

General communication scheme

Alice or information source S(A)
C→ S(A)

Φ→ S(B)
D→ S(B) Bob.

where
A,A,B,B are von Neumann algebras,

S(·) denotes the set of states (positive unital functionals) on the algebra,

C = coding, D = decoding, Φ = channel.

Usually,

A = B = C ({1, . . . ,M}) or C ({0, 1}m) : classical communication,

A = B = B(H) or B((C2)⊗m) : quantum communication.

0, 1, |0〉, |1〉 = code characters. Sequences of code characters are called
codewords.
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Set-up of communication scheme

(General) states and channels
Classical state spaces: S= a finite set of symbols.
A= the Abelian algebra C (S) of all functions on S .
S(A)= all states (positive unital functionals) (i.e. prob. distr.) on S .

Quantum state spaces: A= the non-Abelian algebra B(H).
S(A)= all states on A.

A (noisy) channel is an affine map Φ : S(A)→ S(B) whose linear
extension, still denoted by Φ, has completely positive adjoint Φ†.

c-c (noisy) channels: Φ = (p(y |x))x∈S,y∈S ′ a column stochastic matrix.

q-q (noisy) channels: Φ(·) =
∑

j Vj · V ∗j with
∑

j V
∗
j Vj = 1.

q-q reversible channels: Φ(·) = U · U∗, U is a unitary.

c-q (noisy) channels: Φ(P) =
∑

s∈S psρs

q-c (noisy) channels: Φ(ρ) = (tr (ρMs))s∈S where Ms ≥ 0 for all s ∈ S
with

∑
s∈S Ms = 1 (POVM).
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Set-up of communication scheme

Codes
An example of a code C : S = {a, b, . . . , z} → {0, 1}+ := ∪∞n=0{0, 1}n,

a 7→ 0, b 7→ 1, c 7→ 00, d 7→ 01, e 7→ 10, f 7→ 11, . . .

Definition

C is called uniquely decodable if every finite sequence of code characters
corresponds to at most one message.
C is called instantaneous if no codeword is a prefix of another codeword.

Instantaneous codes $ Uniquely decodable codes.
An example of an instantaneous code:

a 7→ 1, b 7→ 01, c 7→ 001, d 7→ 0001, e 7→ 00001, . . .

An example of a uniquely decodable but not instantaneous code:

a 7→ 1, b 7→ 10, c 7→ 100, d 7→ 1000, e 7→ 10000, . . .

George Androulakis (Univ. of South Carolina) Entropy in communications 08/15/2019 8 / 33



Set-up of communication scheme

Statistical ensembles

S = {a, b, c, . . . , z, space} An element of S(C (S)) (i.e. a statistical
ensemble): (.0651, .0124, ... , .0007, .1918)T ≡
((a, .0651), (b, .0124,), ... , (z, .0007), (.1918, )) (freq. of English letters
and space).
(obtained from http://www.data-compression.com/english.html)

Definition

Average codeword length of a code C =
∑

i∈S pi length (C(i)).

For example, for the above statistical ensemble and for the instantaneous
code
a 7→ 1 , b 7→ 01 , c 7→ 001 , d 7→ 0001 , ... ,
the average codeword length is equal to
1× .0651 + 2× .0124 + · · ·+ 26× .0007 + 27× .1918
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Shannon’s noiseless coding Theorem

Loseless and asymptotically losseless classical data
compression

Figure 3: Claude Elwood Shannon (1916 – 2001)
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Shannon’s noiseless coding Theorem

Classical compression rates

Question

Assume that an information source emits symbols from a set S in an i.i.d.
way according to the statistical ensemble E = (ps)s∈S . What is the
minimum numbers of bits per symbol needed for an asymptotically
losseless data compression?

Reformulation: What is the infimum of positive numbers R such that for
every δ > 0 and for all n large enough there exist (typical) sets

TR,δ,n ⊆ Sn with
log2 |TR,δ,n|

log2 |S |n
< R, and there exist coding and decoding

maps Cn and Dn respectively as in the diagram

TR,δ,n ⊆ Sn Cn−→ Sn Dn−→ Sn

such that Dn ◦ Cn(t) = t for all t ∈ TR,δ,n (⇔ Cn is 1− 1) and

Prob (TR,δ,n) =
∑

s1s2···sn∈TR,δ,n

ps1ps2 · · · psn > 1− δ.
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Shannon’s noiseless coding Theorem

Shannon’s noiseless coding Theorem (asymptotically
loseless data compression)

Theorem (Shannon’s noiseless coding Theorem (asymptotically
loseless data compression))

Assume that an information source emits symbols from a set S according
to the statistical ensemble E = (ps)s∈S and let X be the r.v. with values
in S and p.m.f. equal to E . Then for every R > H(X ) and for every δ > 0

there exist sets TR,δ,n ⊆ Sn for all n large enough, with
log2 |TR,δ,n|

log2 |S |n
< R

such that Prob (TR,δ,n) ≥ 1− δ.
Moreover, for every R < H(X ) and for every sequence of sets Tn ⊆ Sn

with log2 |Tn|
log2 |S|n

< R we have that Prob (Tn)→ 0.

TR,δ,n :=

{
s1s2 · · · sn ∈ Sn :

1

2nR
< ps1ps2 · · · psn <

1

2n(H(X )−δ)

}
.
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Shannon’s noiseless coding Theorem

Shannon’s noiseless coding Thm, (loseless data
compression)

Question

What is the minimum average codeword length among all uniquelly
decodable codes

{1, . . . ,M} C→ {0, 1}+ := ∪∞n=0{0, 1}n.

Theorem (Shannon’s noiseless coding Thm, (loseless data
compression))

Let C : {1, . . . ,M} → {0, 1}+ be a uniquely decodable code. Assume that
the symbols 1, . . . ,M are produced by i.i.d. copies of a r.v. X ∼ (pk)Mk=1

and assume that the length (C(k)) = nk for all 1 ≤ k ≤ M. Then
Average codeword length =

∑M
k=1 pknk ≥ H(X ).

Moreover, equality holds if and only if pk = 1
2nk for k = 1, . . . ,M.
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Shannon’s noiseless coding Theorem

Optimal codes
An example:

X Probabilities

x1 1/2
x2 1/4
x3 1/8
x4 1/8

Then

H(X ) = −1

2
log2

1

2
− 1

4
log2

1

4
− 2× 1

8
log2

1

8
=

7

4
.

Consider the code C with C(x1) = 0, C(x2) = 10, C(x3) = 110 and
C(x4) = 111. Then

Average codeword length =
1

2
× 1 +

1

4
× 2 +

1

8
× 3 +

1

8
× 3 =

7

4
.

In general such optimal code may not exist, (if − log2 pk 6∈ N for some k),
but always there exist a code (e.g. Huffman’s or Shannon-Fano’s code) s.t.

H(X ) ≤ Average codeword length ≤ H(X ) + 1.
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Shannon’s noisy channel coding Theorem

The classical capacity of a c-c channel

Figure 4: By cartoonist Justin Dufford.
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Shannon’s noisy channel coding Theorem

The capacity of a noisy channel

Definition

Let Φ : S(A)→ S(B) be a noisy channel. We define that the classical
capacity Cc(Φ) (resp. quantum capacity Cq(Φ)) of Φ to be equal to the
maximum asymptotic rate of (resp. cu)bits per repetition at which reliable
classical (resp. quantum) communication is possible, i.e. the supremum of
positive numbers R such that there exist two sequences (nk)k and (mk)k
which tend to infinity such that mk

nk
≥ R, and there exist sequences

(Cmk ,nk )k and (Dnk ,mk
)k) of coding and decoding functions in the

communication scheme

S(Amk
)
Cmk ,nk−→ S(A⊗nk )

Φ⊗nk−→ S(B⊗nk )
Dnk ,mk−→ S(Amk

)

such that ‖1S(Amk
) −Dnk ,mk

◦ Φ⊗nk ◦ Cmk ,nk‖ → 0 as k →∞, where

Am := C ({0, 1}m), (resp. Am := B((C2)⊗m)).
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Shannon’s noisy channel coding Theorem

Shannon’s mutual information
Let X , Y be r.v. such that X takes the values x1, x2, . . . and Y takes the
values y1, y2, . . ..

Definition

The Shannon’s conditional entropy
H(X |Y = yj) = −

∑
i p(xi |yj) log2 p(xi |yj) quantifies the uncertainty

about the r.v. X conditionally that the r.v. Y takes the value yj .

Definition

The Shannon’s conditional entropy H(X |Y ) =
∑

j p(yj)H(X |Y = yj)
the uncertainty about the r.v. X conditionally that the r.v. Y is known.

Definition

The Shannon’s mutual information about X conveyed by Y is defined
by I (X : Y ) = H(X )− H(X |Y ).

Easy Facts: H(X |Y ) = H(X ,Y )− H(Y ) and I (X : Y ) = I (Y : X ).
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Shannon’s noisy channel coding Theorem

Accessible information of a noisy c-c channel
Consider a c-c noisy channel Φ and ignore the coding and decoding
schemes:

S(A)
Φ→ S(B).

Let E = (xi , pi )i be the statistical ensemble describing the input of the
noisy channel Φ, i.e. the p.m.f. of the r.v. X . Let X be the r.v. that
produces the inputs x1, x2, . . . of the channel and Y be the r.v. that
describes the outputs y1, y2, . . . of the channel.

Φ = (p(yj |xi ))i ,j (column stochastic matrix) where p(yj |xi ) is the
probability that the output of the channel is yj when the input of the
channel is xi then Prob (Y = yj) =

∑
i Prob (X = xi )p(yj |xi ).

Definition

The accessible information of the c-c channel Φ is defined by
Acc (Φ) := supE I (X : Y ), (the maximum information about the input of
the channel conveyed by the output of the channel).
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Shannon’s noisy channel coding Theorem

Shannon’s noisy channel coding Theorem

Definition

A c-c channel Φ : S(A)→ S(B) is called memoryless if for every fixed
n ∈ N, if we apply the channel Φ⊗n repeatedly, the value of Φ⊗n at the
(k + 1)th application only depends on the value of Φ⊗n on the kth
application and not on the previous inputs/outputs.

Theorem (Shannon’s noisy channel Theorem)

Let Φ : S(A)→ S(B) be a c-c memoryless channel with C (Φ) > 0. Then
Cc(Φ) = Acc (Φ).
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Schumacher’s coding Theorem

Quantum data compression
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Schumacher’s coding Theorem

von Neumann entropy

Definition

If ρ is a density operators (states) on a Hilbert space H, then the
von Neumann entropy H(ρ) is defined as follows: H(ρ) = −tr (ρ log2 ρ).

Theorem

Unitary invar.: H(ρ) = H(UρU∗) (⇒ H(ρ) = H( eigenvalues of ρ)).

Positivity: 0 ≤ H(ρ)(≤ dim (H)).

Concavity: H(
∑

k pkρk) ≥
∑

k pkH(ρk) for any prob. distr. (pk)k
and sequence of states (ρk)k ⊆ S(B(H)).

Additivity: If ρi ∈ S(H)i ) then H(ρ1 ⊗ ρ2) = H(ρ1) + H(ρ2).

Subadditivity: If ρ ∈ S(H1 ⊗H2) then
H(ρ) ≤ H(trH1 (ρ)) + H(trH2 (ρ)).

Lower semicontinuity: ‖ρn − ρ‖1 → 0⇒ H(ρ) ≤ lim infn H(ρn).

Entropy increase: H(ρ) ≤ H(Φ(ρ)).
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Schumacher’s coding Theorem

Setting for quantum data compression
Let H be a d dimensional Hilbert space. Let a symbol set S of normalized
vectors of a Hilbert space H. WLOG assume that Span S = H. Each
s ∈ S is identified with the pure state |s〉〈s|.

A quantum source emits symbols from S in an i.i.d. way according to the
quantum statistical ensemble (|s〉, ps)s∈S . Thus the probability that the
symbol |s1s2 . . . sn〉 (i.e. the pure state
|s1s2 . . . sn〉〈s1s2 . . . sn| = |s1〉〈s1| ⊗ |s2〉〈s2| ⊗ · · · ⊗ |sn〉〈sn|), is emitted is
equal to ps1ps2 . . . psn .

Find the smallest number of cubits per symbol for asymtotically
lossless data recovery i.e. the smallest R such that for arbitrary 0 < δ
there exist arbitrarily large n ∈ N, a subspace TR,δ,n of S⊗n with dimension
at most 2Rn, and a unitary map U : H⊗n → H⊗n which is identity when
restricted to TR,δ,n such that the average fidelity of any element of T⊥R,δ,n

and its image via U is at most equal to δ: TR,δ,n ⊆ S⊗n ⊆ H⊗n U→ H⊗n.
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Schumacher’s coding Theorem

Schumacher’s Theorem

Theorem (Schumacher’s coding Theorem, 1995)

Let H be a d-dimensional Hilbert space and let S be a set of normalized
vectors of H. Assume that a quantum source emits elements of S in an
i.i.d. way according to the statistical ensemble E = (|s〉, ps)s∈S . Let
ρ =

∑
s∈S ps |s〉〈s| be the quantum state corresponding to this statistical

ensemble. Since dim (H) = d we have that H(ρ) ≤ d. Given any
R > H(ρ) and δ > 0 there exist arbitrarily large n ∈ N, a subspace TR,δ,n

of S⊗n of dimension at most 2Rn, and a unitary operator U : H⊗n → H⊗n
which is identity when restricted to TR,δ,n and such that the average
fidelity between the elements of T⊥R,δ,n and their images via U is at most
equal to δ.
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Schumacher’s coding Theorem

Idea of the proof of Schumacher’s Theorem

ρ =
∑
s∈S

ps |s〉〈s| (the average state).

Let ρ =
∑
t∈T

t|t〉〈t| be the spectral decomposition of ρ.

Thus

ρ⊗n =
∑

t1,...,tn∈T
t1 · · · tn|t1 · · · tn〉〈t1 · · · tn| is the spectral decomp. of ρ⊗n.

T :=

{
|t1t2 · · · tn〉 :

1

2nR
< t1t2 · · · tn <

1

2n(H(X )−δ)

}
and TR,δ,n := Span(T ).

Then
∑

|t1t2···tn〉∈T c
R,δ,n

t1t2 · · · tnF (|U(|t1t2 · · · tn〉), |t1t2 · · · tn〉) < δ

where fidelity between ρ and |v〉, is F (u, v) := tr (u|v〉〈v |) = 〈v |u|v〉.
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Give an upper bound for the accessible classical information of a q-q
channel

Compute the accessible information of a quantum channel
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Give an upper bound for the accessible classical information of a q-q
channel

Define and give an upper bound for the accessible classical
information of a q-q channel
Consider the classical communication scheme

S(C (S))
C−→ S(B(H))

Φ−→ S(B(H))
D−→ S(C (S ′))

via a noisy q-q channel Φ.

Alice transmits info according to a classical statistical ensemble
E = (ps)s∈S . Let X denote the r.v. with values in S and p.m.f. equal to
(ps)s∈S .

Assume that Alice uses the code C(s) = ρs where (ρs)s∈S is a set of
quantum states on some Hilbert space H.

For every state Φ(ρs) that Bob receives, he performs a POVM
M = (Ms′)s′∈S ′ , (Ms′ ≥ 0 for all s ′ ∈ S ′ and

∑
s′∈S ′

Ms′ = 1) in order to

obtain a p.m.f. (decoding) D(Φ(ρs)) = (tr (Ms′Φ(ρs)))s′∈S ′ .

Give an upper bound on the accessible classical information that Bob
receives.George Androulakis (Univ. of South Carolina) Entropy in communications 08/15/2019 26 / 33



Give an upper bound for the accessible classical information of a q-q
channel

Definition and upper bound for the accessible classical
information of a q-q channel
Thus if Alice sends the symbol s ∈ S then Bob receives the symbol s ′ ∈ S ′

with transitional probability p(s ′|s) = tr (Ms′Φ(ρs)). Hence Bob receives
the symbol s ′ ∈ S ′ with probability qs′ :=

∑
s∈S p(s ′|s)ps . Let Y be the

r.v. with values in S ′ and p.m.f. (qs′)s′∈S ′ .

Definition

Define the accessible classical information that Bob receives to be
Acc (C,Φ) = supM I (X : Y ).

If (Φ(ρs))s∈S have pairwise orthogonal supports, then Bob can identify
with certainty the states Φ(ρs) by choosing S ′ = S and Ms to be the
orthogonal projection to the support of Φ(ρs) for every s ∈ S . Hence
p(s ′|s) = tr (Ms′Φ(ρs)) = δs,s′ ⇒ I (X : Y ) = H(X )− H(X |Y ) = H(X ).
On the other hand, if (Φ(ρs))s∈S do not have pairwise orthogonal supports
then no measurement will identify them perfectly, so H(X |Y ) > 0 and
Acc (C,Φ) < H(X ).
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The Holevo bound

Compute the classical capacity of a quantum channel

Figure 5: Detail from the cover page of “Introduction to quantum computation
and information”, Lo, Popescu, Spiller (Editors), World Scientific 1998.
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The Holevo bound

The Holevo Theorem

Question

Give an upper (tight!) bound on the classical capacity of a quantum
channel.

Theorem (Holevo, 1973)

Consider the classical communication scheme

S(C ({0, 1}⊗m))
Cm,n−→ S(B(H)⊗n)

Φ⊗n

−→ S(B(H)⊗n)
Dm,n−→ S(C ({0, 1}⊗m))

using repeated transmitions via a memoryless noisy q-q channel
Φ : S(B(H))→ S(B(H)). Then Cc(Φ) ≤ lim

n→∞
1
nχ(Φ⊗n).

The definition of χ is in the next page.

Is this inequality saturated?

Are there easily computable upper bounds?
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The Holevo bound

Holevo’s χ

Definition

If Ψ : S(B(H))→ S(B(H)) is a q-q channel, then we define Holevo’s χ as

χ(Ψ) := sup

{
H

(∑
x

pxΨ(ρx)

)
−
∑
x

pxH(Ψ(ρx))

}

where the sup is taken w.r.t. all prob. distr. (px)x and all collections (ρx)x
of density operators on H.

By the concavity of von Neumann entropy, χ(Ψ) ≥ 0.

χ plays the role of the mutual information for q-q channels.

A better understanding for why χ is a “natural” upper bound for the
capacity for the q-q channel can be understood via the quantum
mutual information which is presented next.
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The Holevo bound

Quantum relative entropy

Definition

Given two states ρ, σ ∈ S(B(H)) the Umegaki relative entropy is

defined by D(ρ||σ) =

{
tr (ρ(log2 ρ− log2 σ)) if supp (ρ) ⊆ supp (σ)

∞ otherwise

Theorem

Positivity: D(ρ||σ) ≥ 0 and if D(ρ||σ) = 0 then ρ = σ.

Joint convexity:
D(λρ1 +(1−λ)ρ2||λσ1 +(1−λ)σ2) ≤ λD(ρ1||σ1)+ (1−λ)D(ρ2||σ2).

Additivity: D(ρ1 ⊗ σ1||ρ2 ⊗ σ2) = D(ρ1||ρ2) + D(ρ2||σ2).

Unitary invariance: D(UρU∗||UσU∗) = D(ρ||σ).

Monotonicity: D(Φ(ρ1)||Φ(ρ2)) ≤ D(ρ1||ρ2).

Lower semicontinuity: ‖ρn − ρ1‖1 → 0 and ‖σn − σ‖1 → 0 imply
D(ρ||σ) ≤ lim infn D(ρn||σn).

George Androulakis (Univ. of South Carolina) Entropy in communications 08/15/2019 31 / 33



The Holevo bound

Quantum mutual information

Definition (Ohya 1983)

Given a q-q channel Φ : S(B(H))→ S(B(H)) and a state ρ ∈ S(B(H))
the quantum mutual information I (ρ,Φ) is defined by the following
expression:

sup

{
D

(∑
k

µkEk ⊗ Φ(Ek)

∥∥∥∥∥ ρ⊗ Φ(ρ)

)
: ρ =

∑
k

µkEk spectral decomp.

}
.

I (ρ,Φ) indicates how much quantum information about the specific input
ρ of the q-q channel Φ is conveyed about its output. Thus supρ I (ρ,Φ)
represents how much quantum information about the input of the channel
Φ is conveyed by its output.

Theorem (Ohya, Watanabe, 2010)

χ(Φ) = supρ I (ρ,Φ).
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The Holevo bound

Thank you for your attention!
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