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#,e#i=Tf1 RECALL  THE FOWOWING FROM MONDAY
:

1 INVESTIGATE  PROPERTIES  OF

1
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INTEGRATION
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• To  compute labflx )dX  AND # dx
,

WE  NEED  to  FIND  

AN ,
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WE 'll  BE  FOCUSING ON  THE  FOLLOWING TODAY :
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WE ALSO  FOUND  THE  FOLLOWING FORMULAS

11
PROPERTIES  OF ANTIDERIVADVES :
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• / K dx  = KXTC
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Ct ) • / [ ftx )±gtx)1dX = |fLX)dX  + /gtx)dX ,
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DX =  ×nY÷ +  c  for  nt -1

1,1
(2) • / c. ftx )dx = C . µ DX Gora  constant C) l
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EI . CONSIDER .

Why should these be true ?

4) • /x5tx' dx  =

atxbtfxstc
Well . .  we  know they 're true for derivatives !

AND ddx (btxkfxic) = (6.f) ×5+( 8. f) x
'  =x5tx '

(2) • / 5×2 dx = §X3tc

AND dd×(55×3+4=364×2 =  5×2=5 ¥ ( tz×3+c)
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INTEGRATING  TO  MOVE  IN  EITHER  Direction .

integrate 'f |, DIFFERENTIATE THIS  MAKES  IT  EASIER TO SEE  THAT  INTEGRATION § DIFFERENTIATION ARE

f
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IN  SOME  SENSE

,
INVERSE  OPERAAONS OF  EACHOTHER . ( ONE  UNDOES THE  OTHER {

VKVERSA )

→ You  CAN CHECK ( VIA  EXAMPLE ) THAT  OUR DIFFERENT ARON RULES ( CHAIN
,

PRODUCT
,

QUORENT)

DO NOI TRANSLATE  NICELY TO  INTEGRATION . IN PARTICULAR ,
WE  DONT HAVE A CHAIN OR QUORENT

RULE  FOR INTEGRATION ,
AND  THE ANALOG  OF  THE PRODUCT  RULE  B CALLED KNIEGEAIO.nl.BY . .

PERIS
.
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WE  WON'T TALK  ABOUT  THIS  BECAUSE  IT CAN  BECOME REALLY COMPLICATED
.

So . . AT  THE MOMENT
,

WE  HAVE  TWO TOOLS FOR  INTEGRATION : THE POWER RULE  § THE PROPERTIES  ABOVE .

WE  ALSO KNOW  THE  FOLLOWING :

FAI fxtdx.lu/ytc FAI fexdx  =  extc

SINCE  d/d×( lnyy ) =  Yx ...
but  if  *  0

, lnlx ) isnt BECAUSE d/d×(e×tC)=e×
DEFINED . THEN . .

9d×lentxD=¥x=Y×.
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FIND /(X+ , )2dX

'
' -  -

-
-

- - →  NORNGTHAT  WEDONTREAUY
HAVE A PRODUCE  RULE  FOR

INTEGRATION
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SO
...  WE 'll  HAVE

TO SIMPLIFY THIS .

=
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1×2+2×+1 dx

= ( 2/+1 )2 = (XTDLXTD =

 2/2+2×+1 = /x2dx  +  2fxdX  + fidx
" " "

SO  WE 'LL  COMPUTE

stx3 +  2( Ex ' ) +  X

/X2t2Xt1 dx -

=  tzx3+x2tX  +  c
mmmm

Ed .

% 2XdX →

you  CAN  compute /2xdx  FIRST
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,l¥ , if2¥Antioerw - febftx )dX=FLb ) - FCA)www.D
SO . .  FUNDAMENTAL  THM  OF CALCULUS  SAYS :

f32xdx = ( 32+4-42+0 = ( 9h ) - ( Itc ) =8tC - C = 8=|->n=
-

Yz

¥ ' f.
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,f×dx  = ftxtzdx m=±z+E=±

fx " "
dx  = 2×1 "

+  C
.

THEN
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xhdx=(2c4Ftc) - Gas"+D

EI FIND  SOME  NONCONSTANT  FUNCTION FLX) AND NUMBERS a,b SO THAT

AN  EXAMPLE  OF  THIS : |abflX)dXtO > GEOMETRICALLY,  WHAT'S GOING

ON HERE ?

•TY=X=• a
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f H EI . COMPUTE 133 2X2t1 dx
. GEOMETRICALLY ,  WHAT'S HAPPENING  HERE ?
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ANTIDERIVARVE  FOR 2×2+1 → 231 + Xtc

• × / 32×2+1 dx= 2313-1×+43 =o=
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EI . COMPUTE  THE  FOLLOWING :

•folexdx =  e×H=e'
- e°=e . I
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,

"

exdx =  e×h2=e?e '
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exdx = e×/a3=e3 - e2
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• /o3 exdx =

EX COMPUTE THE FOLLOWING : Y
- x3tx

• [I x3tXaX

fIx3+xdx I
!qx3txdx

• | } X3+×dX 1
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• µ X3t×d×
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fixtxdx
µ x3txdX

• Sa3×3+×dX

• S.3yx3txdX


