DEFINITE & INDEFINITE INTEGRALS

INVESTIGATE METHODS OF COMPUTING DEFINITE INTEGRALS VIA FUNDTHM. OF CALL & INDEFINITE INTEGRALS

pecall from friday...

Def WHEN fix) IS POSITIVE AND OXB, THE AREA WOER

THE GRAPH OF & FROM XEA TO XOD IG:

lo for) dx f(x)

WE ALSO SAW THAT (ATLEAST IN THIS CLASS) ..

ANTIDIFFERENTIATION = "UNDOING" DERIVATIVE INTEGRATING

EX. FIND THE AREA UNDER THE CURVE Y=4 FROM XOI tO XO4.

 \rightarrow y=4 writing $\int_1^4 4 \, dx$ means the same thing

AREA OF RECTANGLE TO THE LEFT IS (4-1).4 = 12

so ∫4 4 dx =12.

WHAT IS A FUNCTION FOX) SO THAT F'(X)=4? 4x? 4x+3? 4x-1? IN GENERAL... f(x) = 4x + c, FOR A CONSTANT C.

NOTICE THE FOLLOWING:

$$\int_{1}^{4} 4 \, dx = 12 = 4 \cdot (4) - 4(1)$$

THEOREM (THE FUNDAMENTAL THEOREM OF CALCULUS)

IF F'LE) IS CONTINUOUS FROM t- a to t=b, THEN

$$\int_{a}^{b} F'(t) dt = F(b) - F(a)$$
ALLO WRITTEN AS
$$F(t) \Big|_{a}^{b}$$

Def. LET F(X) BE AN ANTIDERIVATIVE OF f(X). (F'(X)=f(X)). THEN, F(X)+C (WITH C A CONSTANT) IS THE FAMILY OF ANTIDERIVATIVES OF FCX). WE SAY

$$\int f(x) dx = F(x) + c$$

THE INDEFINITE INTEGRAL OF f(x).

NOTICE THE FOLLOWING:

TO EVALUATE $\int_0^b f(x) \, dx$ AND $\int f(x) \, dx$, WE NEED TO KNOW F(x) - AN ANTIDERIVATIVE OF f(x).

SO ... HOW CAN WE FIND FOX) GIVEN SOX)?

THERE ARE GOME FUNCTIONS, LIKE \$\int (X) = 0^{-x^2} WHERE NO SUCH "NICE" ANTI OERIVATIVE EXISTS.

FROM THE FIRST EXAMPLE, WE KNOW $\int 4dx = 4x + C$.

IN GENERAL ...

FACT.
$$\int k \, dx = kx + C$$

QUESTION WHAT ABOUT $\int x dx$? OR $\int x^2 dx$? CAN WE COME UP WITH A FORMULA TO FIND $\int x^n dx$?

WHAT CAN I TAKE

THE DERIVATIVE OF TO

GET x? x^2 ?