Derivatives

Definition and Notation

If $y=f(x)$ then the derivative is defined to be $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$.

If $y=f(x)$ then all of the following are equivalent notations for the derivative.
$f^{\prime}(x)=y^{\prime}=\frac{d f}{d x}=\frac{d y}{d x}=\frac{d}{d x}(f(x))=D f(x)$

If $y=f(x)$ all of the following are equivalent notations for derivative evaluated at $x=a$.

$$
f^{\prime}(a)=\left.y^{\prime}\right|_{x=a}=\left.\frac{d f}{d x}\right|_{x=a}=\left.\frac{d y}{d x}\right|_{x=a}=D f(a)
$$

Interpretation of the Derivative

If $y=f(x)$ then,

1. $m=f^{\prime}(a)$ is the slope of the tangent line to $y=f(x)$ at $x=a$ and the equation of the tangent line at $x=a$ is given by $y=f(a)+f^{\prime}(a)(x-a)$.
2. $f^{\prime}(a)$ is the instantaneous rate of change of $f(x)$ at $x=a$.
3. If $f(x)$ is the position of an object at time x then $f^{\prime}(a)$ is the velocity of the object at $x=a$.

Basic Properties and Formulas

If $f(x)$ and $g(x)$ are differentiable functions (the derivative exists), c and n are any real numbers,

1. $(c f)^{\prime}=c f^{\prime}(x)$
2. $\frac{d}{d x}(c)=0$
3. $(f \pm g)^{\prime}=f^{\prime}(x) \pm g^{\prime}(x)$
4. $(f g)^{\prime}=f^{\prime} g+f g^{\prime}-$ Product Rule
5. $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$ - Power Rule
6. $\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) g^{\prime}(x)$

This is the Chain Rule
4. $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-f g^{\prime}}{g^{2}}-$ Quotient Rule

$$
\begin{aligned}
& \frac{d}{d x}(x)=1 \\
& \frac{d}{d x}(\sin x)=\cos x \\
& \frac{d}{d x}(\cos x)=-\sin x \\
& \frac{d}{d x}(\tan x)=\sec ^{2} x \\
& \frac{d}{d x}(\sec x)=\sec x \tan x
\end{aligned}
$$

Common Derivatives

$$
\begin{array}{lll}
\frac{d}{d x}(\csc x)=-\csc x \cot x & & \frac{d}{d x}\left(a^{x}\right)=a^{x} \ln (a) \\
\frac{d}{d x}(\cot x)=-\csc ^{2} x & \frac{d}{d x}\left(\mathbf{e}^{x}\right)=\mathbf{e}^{x} \\
\frac{d}{d x}\left(\sin ^{-1} x\right)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}(\ln (x))=\frac{1}{x}, x>0 \\
\frac{d}{d x}\left(\cos ^{-1} x\right)=-\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}(\ln |x|)=\frac{1}{x}, x \neq 0 \\
\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}} & \frac{d}{d x}\left(\log _{a}(x)\right)=\frac{1}{x \ln a}, x>0
\end{array}
$$

