Instructor: Ann Clifton	Name:

Do not turn this page until told to do so. You will have a total of 1 hour 40 minutes to complete the exam. Unless otherwise stated, you must show all work to receive full credit. Unsupported or otherwise mysterious answers will **not receive credit**. If you require extra space, use the provided scrap paper and indicate that you have done so.

You may use a calculator without a CAS if you like, but a calculator is not necessary. NO PHONES ALLOWED.

Draw a firework on this page if you read these directions in full. Cheating of any kind on the exam will not be tolerated and will result in a grade of 0%.

#	score	out of	#	score	out of
1		2	7		9
2		5	8		12
3		5	9		15
4		5	10		15
5		6	11		20
6		6	Total		100

Remember: This exam has no impact on your worth as a human being. You got this!!!

ITHINKIMIN

THE WRONG MATH CLASS?

I'M FINALLY IN

1.	(a) State the Point-Slope form of a line passing through the point (x_0, y_0) with slope m .
	(b) State the Slope-Intercept form of a line with slope m and y -intercept b .
2.	Let f be a function and let $a < b$ be given. State the average rate of change of f on the interval $[a, b]$.
3.	Given a quantity P_0 , state the relative change of the quantity from P_0 to P_1 .

4.	(a)	State the	e form	of an	exponential	function	of a	variable	t with	initial	value I	and	base of	a:
т.	(α)	Duade dir	CIOIII	or air	CAPOHCHUM	Tuncoron	Or a	variable	C WILLI	11110101	varue 1	0 and	Dasc	ω .

$$P(t) = \underline{\hspace{1cm}}.$$

(b) The relative rate of change of P is

[Hint: If you don't recall the formula, this is just the relative change from P(t) to P(t+1).]

- (c) The function P models
 - (i) exponential growth when r is ______.
 - (ii) exponential decay when r is ______.
- (d) The continuous growth/decay rate is

$$k = \underline{\hspace{1cm}}$$
.

5. Let 0 < x, 0 < y be given. Fill in the blanks:

(i)
$$\ln(1) =$$
 (iv) $\ln(x^r) =$

(iv)
$$\ln(x^r) = \underline{\hspace{1cm}}$$

(ii)
$$\ln(xy) =$$
 ______ (v) $\ln(e^x) =$ _____

(v)
$$\ln(e^x) =$$

(iii)
$$\ln\left(\frac{x}{y}\right) =$$
 ______ (vi) $e^{\ln(x)} =$ _____

(vi)
$$e^{\ln(x)} =$$

6.	6. (a) Find the slope of the line passing through	the points $(3, \frac{1}{2})$ and $(2, 1)$
		_
	(b) Write the equation of this line in Point-Slo	pe Form.
	(c) Write the equation of this line in Slope-Int	ercept Form.

(d) Sketch a graph of f(x). Label the x-intercept and the y-intercept.

- 7. Let $f(x) = -x^2 + 1$.
 - (a) Compute the average rate of change for f between x=3 and x=5.

(b) Give the Point-Slope form of the line that passes through (3, f(3)) and (5, f(5)).

(c) Give the Slope-Intercept form of the line from part (b).

8.	A biologist observes a population with initial size 9. In two years, the biologist returns to observe the population again and finds that there are 81.
	(a) Find an exponential function for the size of the population as a function of t years since the initial observation.
	(b) Does the function from part (a) model growth or decay?
	(c) Use the model from part (a) to determine how many years it will take for the size of the population to reach 243.

9.	A bank is offering an money in this account nearest year.	account that pays 89 nt, how long will it	% interest compounded take for your initial is	d continuously. If you do investment to double?	ecide to invest Round to the

Let	f(t) be the number of US billionaires in year t . Express the following statements in terms of f . (a) In 1985 there were 13 US billionaires.
	(b) In 1990 there were 99 US billionaires.
Exp	(c) Find the average yearly increase in the number of US billionaires between 1985 and 1990 press this using f .
billi	(d) Assuming the yearly increase remains constant, find a formula predicting the number of US conaires in year t .
	Exp

11. A company hosts a weekly event. They find that 25 people attend at a ticket price of \$30, and 15 people attend at a ticket price of \$50. Assuming this relationship is linear, determine the ticket price that will generate the highest revenue. State the maximum revenue.

Hint: First, find the equation of the line representing the quantity of tickets sold, q, in terms of price, p.