Math 122 Practice Problems Sections 5.1-5.3, 5.5, and 6.1-6.3

Exercise 1: A car is moving at a rate of $f(t) = t^2 + 2t$ meters per second for $0 \le t \le 6$ where t is given in seconds. Use a left and right Riemann sum with n = 3 subintervals do estimate $\int_0^6 f(t)dt$. Which is the overestimate and which is the underestimate? What are the units of $\int_0^6 f(t)dt$ and what does it represent?

Exercise 2: Let f(t) be a continuous function on the interval [a, b]. In your own words, explain what $\int_a^b f(t)dt$ represents and how we *estimate* it.

Exercise 3: The rate of change of a quantity is given by $g(t) = 1 - t^2$ for $0 \le t \le 8$. Find an overestimate for $\int_0^8 g(t)dt$ using a Riemann sum with n = 4 subintervals.

Exercise 4: Consider the graph below. Represent the area between the curve and the x-axis as a definite integral.

Exercise 5: Consider the graph below. Represent the indicated area as a definite integral.

Exercise 6: Consider the graph below. Represent the indicated area as a definite integral.

Exercise 7: Use the graph of the function g(x) = 4x - 8 to evaluate $\int_2^6 g(x) dx$.

Exercise 8: Consider the graph of f(x) given below. Determine if each of the following is positive, negative or approximately zero.

Exercise 9: Find the indefinite integral: $\int (5x+7)dx$.

Exercise 10: Find the indefinite integral: $\int (t^2 + 5t + 1)dt$.

Exercise 11: Find the indefinite integral: $\int (\frac{3}{x} - \frac{2}{x^2}) dx$.

Exercise 12: Find the indefinite integral: $\int (3\sqrt{w})dw$.

Exercise 13: Find the indefinite integral: $\int (e^x + \frac{1}{\sqrt{x}}) dx$.

Exercise 14: Find the indefinite integral: $\int (100e^{4t}) dt$.

Exercise 15: Find the indefinite integral: $\int (2\pi r) dr$.

Exercise 16: Find the indefinite integral: $\int (6x - 7^x) dx$.

Exercise 17: Find the derivative of $f(x) = e^{x^2}$.

Exercise 18: Use the previous problem to evaluate $\int_0^6 (2xe^{x^2}) dx$.

Exercise 19: Find the derivative of $g(t) = t^2 \ln(t)$.

Exercise 20: Use the previous problem to evaluate $\int_{1}^{4} (2t \ln(t) + t) dt$.

Exercise 21: Find the value of b so that: $\int_0^b x^2 dx = 243$.

Although the following problems *can* be solved in your calculator, you should try to work them by hand first and use your calculator to check.

Exercise 22: Evaluate $\int_0^3 t^3 dt$. **Exercise 23:** Evaluate $\int_4^9 \sqrt{x} dx$. **Exercise 24:** Evaluate $\int_0^2 (3t^2 + 4t + 3) dt$. **Exercise 25:** Evaluate $\int_0^1 2e^x dx$. **Exercise 26:** Evaluate $\int_2^7 (\frac{1}{t} - \frac{2}{t^3}) dt$. **Exercise 27:** Evaluate $\int_0^1 (y^2 + y^4) dy$.