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Given a function, f, we say an antiderivative of f is a
function F such that
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6.1/6.2: @ By the Fundamental Theorem of Calculus, given an

ANTIDERIVA-

TIVES antiderivative, F, of f,

b b
/ f(x)dx = / F'(x)dx = F(b) — F(a).
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b b
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F(x) + cis also an antiderivative because

= (F() +0) =
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antiderivative, F, of f,

b b
/f(x)dx:/ F'(x)dx = F(b) — F(a).

@ If f admits an antiderivative, F, then for any ¢ € R,
F(x) + cis also an antiderivative because

= (F(0)+0) = - F(x) + =(0) = f(x) + 0
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6.1/6.2: © By the Fundamental Theorem of Calculus, given an

ANTIDERIVA-

TIVES antiderivative, F, of f,

b b
/f(x)dx:/ F'(x)dx = F(b) — F(a).

@ If f admits an antiderivative, F, then for any ¢ € R,
F(x) + cis also an antiderivative because

d d
= (F(0) +6) = = F(x) + (6) = () + 0 = f(x).




MONOMIALS

MATH 122

CLIFTON

For any monomial f(x) = ax”, 0 < n, an antiderivative of f is

Fx) =



MONOMIALS

MATH 122

CLIFTON

For any monomial f(x) = ax”, 0 < n, an antiderivative of f is

F(x) = x"14c ceR

n+1



MONOMIALS

MATH 122

CLIFTON

For any monomial f(x) = ax”, 0 < n, an antiderivative of f is

F(x)=——x""4¢c ceR
n+1
since

F'(x) =



MONOMIALS

MATH 122

CLIFTON

For any monomial f(x) = ax”, 0 < n, an antiderivative of f is

F(x) = x"14c ceR

n+1

since 2
/ _ n
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For any monomial f(x) = ax”, 0 < n, an antiderivative of f is

F(x) = x"14c ceR

n+1

since 2
F/ = 1 n = n.
(x) o (n+1)x" = ax
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Since we know the antiderivative for a monomial, given a
polynomial

n
f(x)=> anix""
i~0

we have the antiderivative
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This follows from
d [ 1
/ _ X~ i+1
Fro = 2 (z; i —x +c)

_ d 1 n—i+1
- Od<a”’n—/+1x

CLIFTON



MATH 122

CLIFTON

This follows from

F'(x) =




MATH 122

CLIFTON

This follows from

F'(x) =







EXAMPLE

MATH 122

CLIFTON

Let f(x) = 3x% 4+ 2x + 5.



EXAMPLE

MATH 122

CLIFTON

Let f(x) = 3x% 4 2x + 5. Then for any ¢ € R, an
antiderivative of f is



EXAMPLE

MATH 122

CLIFTON

Let f(x) = 3x% 4 2x + 5. Then for any ¢ € R, an
antiderivative of f is

F(x) = 3;X3 + Z%X2 +5x+c
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F(x):3;x3+2;x2+5x+c:x3+x2+5x+c.
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We can always check our solution:
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Let f(x) = 3x% 4 2x + 5. Then for any ¢ € R, an
antiderivative of f is

F(x):3;x3+2;x2+5x+c:x3+x2+5x+c.

We can always check our solution:

d d d
FI - 3 . 2 .
(*) dxX +dxx +5dxx
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Let f(x) = 3x% 4 2x + 5. Then for any ¢ € R, an
antiderivative of f is

F(x):3;x3+2;x2+5x+c:x3+x2+5x+c.

We can always check our solution:

F'(x) = %x3+%x2+5%x:3x2+2x+5
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Let f(x) = 3x% 4 2x + 5. Then for any ¢ € R, an
antiderivative of f is

F(x):3;x3+2;x2+5x+c:x3+x2+5x+c.

We can always check our solution:

F'(x) = dixx3 + %xz - 5%x =3x% 4+ 2x + 5 = f(x).
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Let P(x) = Pye®. Since & e = kek*, we observe that

dPO kx_POd kx_PO kx kx __
xkE T kax€ _?~k-e = Ppe™ = P(x).
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Let P(x) = Pye®. Since & e = kek*, we observe that

dPO kx POd kx_PO kx kx __
k= e _?'k-e = Pye™ = P(x).
This implies
P
ko e”+c ceRr

is an antiderivative of P(x).
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P(X) — Poax — Poeln(a)x

so that
i Po — Po d In(a)x
dx In(a) In(a) dx
Po
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If we want to integrate P(x) = Pya*, then we can rewrite as

P(X) — Poax — Poeln(a)x
so that

d P I
dx In(a) ~ In(a) dx

Therefore
P
In(a)

is an antiderivative of P(x).

a+c ceR
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If f is a function with an antiderivative F, then the indefinite
integral is the family of functions

/f(x)dx =F(x)+c

where c is a constant.
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If fis a function with an antiderivative F, then the indefinite
integral is the family of functions

/ f(x)dx = F(X) + ¢

where c is a constant.

Note that this immediately implies

dix / £(x) dx = £(x).
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Assume that [ f(x)dx and | g(x)dx exist. Then

© The indefinite integral of a sum is the sum of the
indefinite integrals:

/f(x)ig(x)dx—/f(x)dxi/g(x)dx.
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Assume that [ f(x)dx and | g(x)dx exist. Then

© The indefinite integral of a sum is the sum of the
indefinite integrals:

/f(x)ig(x)dx—/f(x)dxi/g(x)dx.

© Constants pass through the indefnite integral:

/af(x)dx = a/ f(x)dx, a e R.
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/tsdt = x°+ec
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(A) x® () 18 (c) 12x3 (D) q° —6q°

/12x3dx - 12/x dx

= 124x +c

= 3x*+c.
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(A) x5 (B) 8 (c) 12x8 (D) ¢° —6qg°

/q3—6q2dq = /qsdq—/fiqqu
— /q3dq—6/q2dq

_ 14 el
_4q 63q+c

1 4 3
= -qg -2 .
29 g°+c
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Integrate
12e%%.

/12e°-2’dt - 12/eédt

= 12(Seé) +cC

= 60e% 1.
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d 1 —n+1 _ 1 d —n+1
d[n+1x ] T Thitdx”
1
= —n+1)x"
—n+1( +1)x
ey X_n
1
XN
Hence
d 1 1
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@ When n = 1, the previous method fails because
1/(—n+ 1) is undefined.

@ We observe that

so we would expect

@ This isn’'t quite true.
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Matn 122 Let F(x) be an antiderivative of 1/x. Since this function is
CLIFTON continuous away from x = 0, we could ask:

What is the area between 1/x and the x-axis
fromx =-2tox=—-17?

By the Fundamental Theorem of Calculus, this is

/1 X _ F(1)— F(-2).

o X
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By the Chain Rule,

d In|x| =
dx N

Therefore
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