

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE

MATH 122

Ann Clifton 1

¹University of South Carolina, Columbia, SC USA

Calculus for Business Administration and Social Sciences

OUTLINE

MATH 122

CLIFTO

6.1/6.2: Antideriva tives

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

- **1** 6.1/6.2: ANTIDERIVATIVES
 - Polynomials
 - Exponentials
 - The Indefinite Integral
 - Some Examples
 - Negative Exponents

ANTIDERIVATIVES

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

DEFINITION 1

Given a function, f, we say an *antiderivative* of f is a function F such that

$$F'(x) = f(x)$$
.

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

REMARK 1

 By the Fundamental Theorem of Calculus, given an antiderivative, F, of f,

$$\int_a^b f(x) \, \mathrm{d} x =$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

REMARK 1

 By the Fundamental Theorem of Calculus, given an antiderivative, F, of f,

$$\int_a^b f(x) \, \mathrm{d} x = \int_a^b F'(x) \, \mathrm{d} x$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
FYDONENTS

REMARK 1

 By the Fundamental Theorem of Calculus, given an antiderivative, F, of f,

$$\int_a^b f(x) dx = \int_a^b F'(x) dx = F(b) - F(a).$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

REMARK 1

 By the Fundamental Theorem of Calculus, given an antiderivative, F, of f,

$$\int_a^b f(x) dx = \int_a^b F'(x) dx = F(b) - F(a).$$

② If f admits an antiderivative, F, then for any $c \in \mathbb{R}$, F(x) + c is also an antiderivative because

$$\frac{d}{dx}(F(x)+c)=$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

REMARK 1

 By the Fundamental Theorem of Calculus, given an antiderivative, F, of f,

$$\int_a^b f(x) dx = \int_a^b F'(x) dx = F(b) - F(a).$$

If f admits an antiderivative, F, then for any $c \in \mathbb{R}$, F(x) + c is also an antiderivative because

$$\frac{d}{dx}(F(x)+c)=\frac{d}{dx}F(x)+\frac{d}{dx}(c)$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

REMARK 1

 By the Fundamental Theorem of Calculus, given an antiderivative, F, of f,

$$\int_a^b f(x) dx = \int_a^b F'(x) dx = F(b) - F(a).$$

② If f admits an antiderivative, F, then for any $c \in \mathbb{R}$, F(x) + c is also an antiderivative because

$$\frac{\mathrm{d}}{\mathrm{d}x}(F(x)+c)=\frac{\mathrm{d}}{\mathrm{d}x}F(x)+\frac{\mathrm{d}}{\mathrm{d}x}(c)=f(x)+0$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

REMARK 1

 By the Fundamental Theorem of Calculus, given an antiderivative, F, of f,

$$\int_a^b f(x) dx = \int_a^b F'(x) dx = F(b) - F(a).$$

If f admits an antiderivative, F, then for any $c \in \mathbb{R}$, F(x) + c is also an antiderivative because

$$\frac{\mathrm{d}}{\mathrm{d}x}\left(F(x)+c\right)=\frac{\mathrm{d}}{\mathrm{d}x}F(x)+\frac{\mathrm{d}}{\mathrm{d}x}(c)=f(x)+0=f(x).$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE

For any monomial $f(x) = ax^n$, $0 \le n$, an antiderivative of f is

$$F(x) =$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVATIVES

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE

For any monomial $f(x) = ax^n$, $0 \le n$, an antiderivative of f is

$$F(x) = \frac{a}{n+1}x^{n+1} + c, \ c \in \mathbb{R}$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL.
SOME EXAMPLES
NEGATIVE
EXPONENTS

For any monomial $f(x) = ax^n$, $0 \le n$, an antiderivative of f is

$$F(x) = \frac{a}{n+1}x^{n+1} + c, \ c \in \mathbb{R}$$

since

$$F'(x) =$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

For any monomial $f(x) = ax^n$, $0 \le n$, an antiderivative of f is

$$F(x) = \frac{a}{n+1}x^{n+1} + c, \ c \in \mathbb{R}$$

since

$$F'(x) = \frac{a}{n+1}(n+1)x^n$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL.
SOME EXAMPLES
NEGATIVE
EXPONENTS

For any monomial $f(x) = ax^n$, $0 \le n$, an antiderivative of f is

$$F(x) = \frac{a}{n+1}x^{n+1} + c, \ c \in \mathbb{R}$$

since

$$F'(x) = \frac{a}{n+1}(n+1)x^n = ax^n.$$

POLYNOMIALS

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Since we know the antiderivative for a monomial, given a polynomial

$$f(x) = \sum_{i=0}^{n} a_{n-i} x^{n-i}$$

we have the antiderivative

$$F(x) = \sum_{i=0}^{n} a_{n-i} \frac{1}{n-i+1} x^{n-i+1} + c, \ c \in \mathbb{R}.$$

MATH 122

CLIFTON

6.1/6.2:
ANTIDERIVATIVES

TIVES

POLYNOMIALS

THE INDEFINITE
INTEGRAL
SOME EXAMPLE:

SOME EXAMPL
NEGATIVE

MATH 122

CLIFTO

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES

$$F'(x) = \frac{d}{dx} \left(\sum_{i=0}^{n} a_{n-i} \frac{1}{n-i+1} x^{n-i+1} + c \right)$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES

$$F'(x) = \frac{d}{dx} \left(\sum_{i=0}^{n} a_{n-i} \frac{1}{n-i+1} x^{n-i+1} + c \right)$$
$$= \sum_{i=0}^{n} \frac{d}{dx} \left(a_{n-i} \frac{1}{n-i+1} x^{n-i+1} \right)$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES

$$F'(x) = \frac{d}{dx} \left(\sum_{i=0}^{n} a_{n-i} \frac{1}{n-i+1} x^{n-i+1} + c \right)$$

$$= \sum_{i=0}^{n} \frac{d}{dx} \left(a_{n-i} \frac{1}{n-i+1} x^{n-i+1} \right)$$

$$= \sum_{i=0}^{n} a_{n-i} \frac{1}{n-i+1} (n-i+1) x^{n-i}$$

MATH 122

CLIFTO

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE

$$F'(x) = \frac{d}{dx} \left(\sum_{i=0}^{n} a_{n-i} \frac{1}{n-i+1} x^{n-i+1} + c \right)$$

$$= \sum_{i=0}^{n} \frac{d}{dx} \left(a_{n-i} \frac{1}{n-i+1} x^{n-i+1} \right)$$

$$= \sum_{i=0}^{n} a_{n-i} \frac{1}{n-i+1} (n-i+1) x^{n-i}$$

$$= \sum_{i=0}^{n} a_{n-i} x^{n-i}$$

MATH 122

CLIFTO

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE

$$F'(x) = \frac{d}{dx} \left(\sum_{i=0}^{n} a_{n-i} \frac{1}{n-i+1} x^{n-i+1} + c \right)$$

$$= \sum_{i=0}^{n} \frac{d}{dx} \left(a_{n-i} \frac{1}{n-i+1} x^{n-i+1} \right)$$

$$= \sum_{i=0}^{n} a_{n-i} \frac{1}{n-i+1} (n-i+1) x^{n-i}$$

$$= \sum_{i=0}^{n} a_{n-i} x^{n-i}$$

$$= f(x).$$

MATH 122

POLYNOMIALS

Let
$$f(x) = 3x^2 + 2x + 5$$
.

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Let $f(x) = 3x^2 + 2x + 5$. Then for any $c \in \mathbb{R}$, an antiderivative of f is

$$F(x) =$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Let $f(x) = 3x^2 + 2x + 5$. Then for any $c \in \mathbb{R}$, an antiderivative of f is

$$F(x) = 3\frac{1}{3}x^3 + 2\frac{1}{2}x^2 + 5x + c$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE

Let $f(x) = 3x^2 + 2x + 5$. Then for any $c \in \mathbb{R}$, an antiderivative of f is

$$F(x) = 3\frac{1}{3}x^3 + 2\frac{1}{2}x^2 + 5x + c = x^3 + x^2 + 5x + c.$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE

Let $f(x) = 3x^2 + 2x + 5$. Then for any $c \in \mathbb{R}$, an antiderivative of f is

$$F(x) = 3\frac{1}{3}x^3 + 2\frac{1}{2}x^2 + 5x + c = x^3 + x^2 + 5x + c.$$

$$F'(x) =$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE

Let $f(x) = 3x^2 + 2x + 5$. Then for any $c \in \mathbb{R}$, an antiderivative of f is

$$F(x) = 3\frac{1}{3}x^3 + 2\frac{1}{2}x^2 + 5x + c = x^3 + x^2 + 5x + c.$$

$$F'(x) = \frac{d}{dx}x^3 + \frac{d}{dx}x^2 + 5\frac{d}{dx}x$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Let $f(x) = 3x^2 + 2x + 5$. Then for any $c \in \mathbb{R}$, an antiderivative of f is

$$F(x) = 3\frac{1}{3}x^3 + 2\frac{1}{2}x^2 + 5x + c = x^3 + x^2 + 5x + c.$$

$$F'(x) = \frac{d}{dx}x^3 + \frac{d}{dx}x^2 + 5\frac{d}{dx}x = 3x^2 + 2x + 5$$

MATH 122

CLIFTON

6.1/6.2:
ANTIDERIVA
TIVES
POLYNOMIALS
EXPONENTIALS

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Let $f(x) = 3x^2 + 2x + 5$. Then for any $c \in \mathbb{R}$, an antiderivative of f is

$$F(x) = 3\frac{1}{3}x^3 + 2\frac{1}{2}x^2 + 5x + c = x^3 + x^2 + 5x + c.$$

$$F'(x) = \frac{d}{dx}x^3 + \frac{d}{dx}x^2 + 5\frac{d}{dx}x = 3x^2 + 2x + 5 = f(x).$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLE:

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

POLYNOMIALS

EXPONENTIALS

THE INDEFINIT

THE INDEFINITE INTEGRAL SOME EXAMPLES NEGATIVE EXPONENTS Let $P(x) = P_0 e^{kx}$. Since $\frac{d}{dx} e^{kx} = ke^{kx}$, we observe that $\frac{d}{dx} \frac{P_0}{k} e^{kx} =$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS

EXPONENTIALS

THE INDEFINIT
INTEGRAL

THE INDEFINITE INTEGRAL SOME EXAMPLES NEGATIVE EXPONENTS

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{P_0}{k}e^{kx} = \frac{P_0}{k}\frac{\mathrm{d}}{\mathrm{d}x}e^{kx}$$

MATH 122

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{P_0}{k}e^{kx} = \frac{P_0}{k}\frac{\mathrm{d}}{\mathrm{d}x}e^{kx} = \frac{P_0}{k}\cdot k\cdot e^{kx}$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

POLYNOMIALS

EXPONENTIALS

THE INDEFINIT

THE INDEFINITE INTEGRAL SOME EXAMPLES NEGATIVE EXPONENTS

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{P_0}{k}e^{kx} = \frac{P_0}{k}\frac{\mathrm{d}}{\mathrm{d}x}e^{kx} = \frac{P_0}{k}\cdot k\cdot e^{kx} = P_0e^{kx}$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS

EXPONENTIALS

THE INDEFINIT

THE INDEFINITE INTEGRAL SOME EXAMPLES NEGATIVE EXPONENTS

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{P_0}{k}e^{kx} = \frac{P_0}{k}\frac{\mathrm{d}}{\mathrm{d}x}e^{kx} = \frac{P_0}{k}\cdot k\cdot e^{kx} = P_0e^{kx} = P(x).$$

NATURAL EXPONENTIALS

MATH 122

CLIFTON

6.1/6.2: Antideriva

POLYNOMIALS

EXPONENTIALS

THE INDEFINIT
INTEGRAL

THE INDEFINITE INTEGRAL
SOME EXAMPLES NEGATIVE EXPONENTS

Let $P(x) = P_0 e^{kx}$. Since $\frac{d}{dx} e^{kx} = ke^{kx}$, we observe that

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{P_0}{k}e^{kx} = \frac{P_0}{k}\frac{\mathrm{d}}{\mathrm{d}x}e^{kx} = \frac{P_0}{k}\cdot k\cdot e^{kx} = P_0e^{kx} = P(x).$$

This implies

$$\frac{P_0}{k}e^{kx}+c, c\in\mathbb{R}$$

is an antiderivative of P(x).

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVATIVES

POLYNOMIALS

EXPONENTIALS

THE INDEFINITE INTEGRAL

SOME EXAMPLES

If we want to integrate $P(x) = P_0 a^x$, then we can rewrite as

$$P(x) = P_0 a^x = P_0 e^{\ln(a)x}$$

MATH 122

If we want to integrate $P(x) = P_0 a^x$, then we can rewrite as

$$P(x) = P_0 a^x = P_0 e^{\ln(a)x}$$

$$\frac{\mathrm{d}}{\mathrm{d}x}\frac{P_0}{\ln(a)}a^x =$$

MATH 122

If we want to integrate $P(x) = P_0 a^x$, then we can rewrite as

$$P(x) = P_0 a^x = P_0 e^{\ln(a)x}$$

$$\frac{d}{dx}\frac{P_0}{\ln(a)}a^x = \frac{P_0}{\ln(a)}\frac{d}{dx}e^{\ln(a)x}$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

POLYNOMIALS

EXPONENTIALS

THE INDEFINITE
INTEGRAL

THE INDEFINITE INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

If we want to integrate $P(x) = P_0 a^x$, then we can rewrite as

$$P(x) = P_0 a^x = P_0 e^{\ln(a)x}$$

$$\frac{d}{dx} \frac{P_0}{\ln(a)} a^x = \frac{P_0}{\ln(a)} \frac{d}{dx} e^{\ln(a)x}$$
$$= \frac{P_0}{\ln(a)} \left(\ln(a) e^{\ln(a)x} \right)$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS

EXPONENTIALS

THE INDEFINITE

THE INDEFINITE INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

If we want to integrate $P(x) = P_0 a^x$, then we can rewrite as

$$P(x) = P_0 a^x = P_0 e^{\ln(a)x}$$

$$\frac{d}{dx} \frac{P_0}{\ln(a)} a^x = \frac{P_0}{\ln(a)} \frac{d}{dx} e^{\ln(a)x}$$
$$= \frac{P_0}{\ln(a)} \left(\ln(a) e^{\ln(a)x} \right)$$
$$= P_0 a^x.$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS

EXPONENTIALS

THE INDEFINITE
INTEGRAL

SOME EXAMPLES
NEGATIVE
EXPONENTS

If we want to integrate $P(x) = P_0 a^x$, then we can rewrite as

$$P(x) = P_0 a^x = P_0 e^{\ln(a)x}$$

so that

$$\frac{d}{dx} \frac{P_0}{\ln(a)} a^x = \frac{P_0}{\ln(a)} \frac{d}{dx} e^{\ln(a)x}$$
$$= \frac{P_0}{\ln(a)} \left(\ln(a) e^{\ln(a)x} \right)$$
$$= P_0 a^x.$$

Therefore

$$\frac{P_0}{\ln(a)}a^x+c,\ c\in\mathbb{R}$$

is an antiderivative of P(x).

DEFINITION

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

DEFINITION 2

If f is a function with an antiderivative F, then the *indefinite integral* is the family of functions

$$\int f(x)\,\mathrm{d}x = F(x) + c$$

where c is a constant.

DEFINITION

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

DEFINITION 2

If f is a function with an antiderivative F, then the *indefinite integral* is the family of functions

$$\int f(x)\,\mathrm{d}x = F(x) + c$$

where c is a constant.

REMARK 2

Note that this immediately implies

$$\frac{\mathrm{d}}{\mathrm{d}x}\int f(x)\,\mathrm{d}x=f(x).$$

PROPERTIES OF THE INDEFINITE INTEGRAL

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE

Assume that $\int f(x) dx$ and $\int g(x) dx$ exist. Then

PROPERTIES OF THE INDEFINITE INTEGRAL

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Assume that $\int f(x) dx$ and $\int g(x) dx$ exist. Then

The indefinite integral of a sum is the sum of the indefinite integrals:

$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx.$$

PROPERTIES OF THE INDEFINITE INTEGRAL

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Assume that $\int f(x) dx$ and $\int g(x) dx$ exist. Then

• The indefinite integral of a sum is the sum of the indefinite integrals:

$$\int f(x) \pm g(x) dx = \int f(x) dx \pm \int g(x) dx.$$

Constants pass through the indefnite integral:

$$\int af(x)\,\mathrm{d}x = a\int f(x)\,\mathrm{d}x,\ a\in\mathbb{R}.$$

MATH 122

CLIFTO

6.1/6.2: Antideriva tives

POLYNOMIALS

EXPONENTIAL

THE INDEFINE

SOME EXAMPLES

NEGATIVE

Integrate

(A) x^{5}

(B) t^8

(c) $12x^3$

(D) $q^3 - 6q^2$

MATH 122

SOME EXAMPLES

(A)
$$x^5$$

(B)
$$t^8$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int x^5 \, \mathrm{d}x =$$

MATH 122

SOME EXAMPLES

(A)
$$x^5$$

(B)
$$t^8$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int x^5 dx = \frac{1}{6}x^6 + c.$$

MATH 122

CLIFTON

6.1/6.2: Antideriva Tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINIT
INTEGRAL

SOME EXAMPLES

NEGATIV

(A)
$$x^5$$

(B)
$$t^8$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int t^8 dt =$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINIT
INTEGRAL

SOME EXAMPLES

NEGATIVE

(A)
$$x^{5}$$

(B)
$$t^8$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int t^8 dt = \frac{1}{9}x^9 + c.$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL

SOME EXAMPLES

NEGATIVE EXPONENT

(A)
$$x^5$$

(B)
$$t^8$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int 12x^3 dx =$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE

SOME EXAMPLES

NEGATIVE

(A)
$$x^{5}$$

(B)
$$t^{8}$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int 12x^3 dx = 12 \int x^3 dx$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL

SOME EXAMPLES

NEGATIV

(A)
$$x^{5}$$

(B)
$$t^{8}$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int 12x^3 dx = 12 \int x^3 dx$$
$$= 12 \frac{1}{4}x^4 + c$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE

SOME EXAMPLES

NEGATIVI EXPONEN

(A)
$$x^{5}$$

(B)
$$t^{8}$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int 12x^3 dx = 12 \int x^3 dx$$
$$= 12 \frac{1}{4}x^4 + c$$
$$= 3x^4 + c.$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

EXPONENTIALS
THE INDEFINIT

SOME EXAMPLES

NEGATIVE

(A)
$$x^5$$

(B)
$$t^8$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int q^3 - 6q^2 \, \mathrm{d}q =$$

MATH 122

CLIFTON

6.1/6.2: Antideriva Tives

EXPONENTIALS
THE INDEFINIT
INTEGRAL

SOME EXAMPLES

NEGATIV

(A)
$$x^5$$

(B)
$$t^8$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int q^3 - 6q^2 dq = \int q^3 dq - \int 6q^2 dq$$

MATH 122

CLIFTON

6.1/6.2: Antideriva Tives

EXPONENTIALS
THE INDEFINITI
INTEGRAL

SOME EXAMPLES

NEGATIV EXPONEN

(A)
$$x^5$$

(B)
$$t^8$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int q^3 - 6q^2 dq = \int q^3 dq - \int 6q^2 dq$$
$$= \int q^3 dq - 6 \int q^2 dq$$

MATH 122

CLIFTON

6.1/6.2: Antideriva Tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE

SOME EXAMPLES

NEGATIVE

(A)
$$x^5$$

(B)
$$t^8$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int q^3 - 6q^2 dq = \int q^3 dq - \int 6q^2 dq$$
$$= \int q^3 dq - 6 \int q^2 dq$$
$$= \frac{1}{4}q^4 - 6\frac{1}{3}q^3 + c$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL

SOME EXAMPLES

NEGATIV EXPONEN

(A)
$$x^5$$

(B)
$$t^8$$

(c)
$$12x^3$$

(D)
$$q^3 - 6q^2$$

$$\int q^{3} - 6q^{2} dq = \int q^{3} dq - \int 6q^{2} dq$$

$$= \int q^{3} dq - 6 \int q^{2} dq$$

$$= \frac{1}{4}q^{4} - 6\frac{1}{3}q^{3} + c$$

$$= \frac{1}{4}q^{4} - 2q^{3} + c.$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS

EXPONENTIALS

THE INDEFINIT

SOME EXAMPLES

NEGATIVE EXPONENTS Integrate

 $12e^{0.2t}$.

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL

SOME EXAMPLES

NEGATIVE

$$12e^{0.2t}$$
.

$$\int 12e^{0.2t} dt =$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINIT
INTEGRAL

SOME EXAMPLES

NEGATIVE

$$12e^{0.2t}$$
.

$$\int 12e^{0.2t} dt = 12 \int e^{\frac{t}{5}} dt$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

EXPONENTIALS
THE INDEFINIT

SOME EXAMPLES

NEGATIVE

$$12e^{0.2t}$$
.

$$\int 12e^{0.2t} dt = 12 \int e^{\frac{t}{5}} dt$$
$$= 12 \left(5e^{\frac{t}{5}}\right) + c$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINIT
INTEGRAL

SOME EXAMPLES

NEGATIVE

$$12e^{0.2t}$$
.

$$\int 12e^{0.2t} dt = 12 \int e^{\frac{t}{5}} dt$$

$$= 12 \left(5e^{\frac{t}{5}}\right) + c$$

$$= 60e^{.02t} + c.$$

MATH 122

CLIFTON

6.1/6.2:
ANTIDERIVA

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES

EXPONENTS

What is the indefinite integral of $\frac{1}{x^n}$?

MATH 122

CLIFTON

6.1/6.2:
ANTIDERIVA

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE

EXPONENTS

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

EXPONENTIALS
THE INDEFINITE INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

$$\frac{d}{dx} \left[\frac{1}{-n+1} x^{-n+1} \right] =$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

$$\frac{d}{dx}\left[\frac{1}{-n+1}x^{-n+1}\right] = \frac{1}{-n+1}\frac{d}{dx}x^{-n+1}$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

$$\frac{d}{dx} \left[\frac{1}{-n+1} x^{-n+1} \right] = \frac{1}{-n+1} \frac{d}{dx} x^{-n+1}$$
$$= \frac{1}{-n+1} (-n+1) x^{-n}$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

What is the indefinite integral of $\frac{1}{x^n}$? For n < 1, observe that

$$\frac{d}{dx} \left[\frac{1}{-n+1} x^{-n+1} \right] = \frac{1}{-n+1} \frac{d}{dx} x^{-n+1}$$

$$= \frac{1}{-n+1} (-n+1) x^{-n}$$

$$= x^{-n}$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

What is the indefinite integral of $\frac{1}{x^n}$? For n < 1, observe that

$$\frac{d}{dx} \left[\frac{1}{-n+1} x^{-n+1} \right] = \frac{1}{-n+1} \frac{d}{dx} x^{-n+1}$$

$$= \frac{1}{-n+1} (-n+1) x^{-n}$$

$$= x^{-n}$$

$$= \frac{1}{x^n}$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

What is the indefinite integral of $\frac{1}{x^n}$? For n < 1, observe that

$$\frac{d}{dx} \left[\frac{1}{-n+1} x^{-n+1} \right] = \frac{1}{-n+1} \frac{d}{dx} x^{-n+1}$$

$$= \frac{1}{-n+1} (-n+1) x^{-n}$$

$$= x^{-n}$$

$$= \frac{1}{x^n}$$

Hence

$$\int \frac{\mathrm{d}x}{x^n} =$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

What is the indefinite integral of $\frac{1}{x^n}$? For n < 1, observe that

$$\frac{d}{dx} \left[\frac{1}{-n+1} x^{-n+1} \right] = \frac{1}{-n+1} \frac{d}{dx} x^{-n+1}$$

$$= \frac{1}{-n+1} (-n+1) x^{-n}$$

$$= x^{-n}$$

$$= \frac{1}{x^n}$$

Hence

$$\int \frac{\mathrm{d}x}{x^n} = \frac{1}{-n+1}x^{-n+1} + c$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

What is the indefinite integral of $\frac{1}{x^n}$? For n < 1, observe that

$$\frac{d}{dx} \left[\frac{1}{-n+1} x^{-n+1} \right] = \frac{1}{-n+1} \frac{d}{dx} x^{-n+1}$$

$$= \frac{1}{-n+1} (-n+1) x^{-n}$$

$$= x^{-n}$$

$$= \frac{1}{x^n}$$

Hence

$$\int \frac{\mathrm{d}x}{x^n} = \frac{1}{-n+1}x^{-n+1} + c = \frac{1}{(-n+1)x^{n-1}} + c$$

MATH 122

CLIFTON

6.1/6.2: Antideriva Tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINIT
INTEGRAL
SOME EXAMPLE

NEGATIVE EXPONENTS

Integrate

 $\frac{1}{x^3}$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

POLYNOMIALS
EXPONENTIALS
THE INDEFINIT
INTEGRAL

SOME EXAMPLES

NEGATIVE EXPONENTS

$$\frac{1}{x^3}$$

$$\int \frac{\mathrm{d}x}{x^3} =$$

MATH 122

CLIFTON

6.1/6.2: Antiderivatives

POLYNOMIALS EXPONENTIALS THE INDEFINIT INTEGRAL

SOME EXAMPLES

NEGATIVE EXPONENTS

$$\frac{1}{x^3}$$
.

$$\int \frac{\mathrm{d}x}{x^3} = \int x^{-3} \, \mathrm{d}x$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVATIVES

EXPONENTIALS
THE INDEFINITION INTEGRAL
SOME EXAMPLE

SOME EXAMPLE: NEGATIVE EXPONENTS

$$\frac{1}{x^3}$$
.

$$\int \frac{\mathrm{d}x}{x^3} = \int x^{-3} \,\mathrm{d}x$$
$$= \frac{1}{-2}x^{-2} + c$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

POLYNOMIALS
EXPONENTIALS
THE INDEFINIT
INTEGRAL
SOME EXAMPLE

SOME EXAMPLES
NEGATIVE
EXPONENTS

$$\frac{1}{x^3}$$
.

$$\int \frac{\mathrm{d}x}{x^3} = \int x^{-3} \,\mathrm{d}x$$
$$= \frac{1}{-2}x^{-2} + c$$
$$= \frac{-1}{2x^2} + c.$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

THE INDEFINITE
INTEGRAL
SOME EXAMPLE
NEGATIVE
EXPONENTS

• When n = 1, the previous method fails because 1/(-n+1) is undefined.

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

- When n = 1, the previous method fails because 1/(-n+1) is undefined.
- We observe that

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

- When n = 1, the previous method fails because 1/(-n+1) is undefined.
- We observe that

$$\frac{\mathsf{d}}{\mathsf{d}x}\ln(x)=\frac{1}{x},$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

- When n = 1, the previous method fails because 1/(-n+1) is undefined.
- We observe that

$$\frac{\mathsf{d}}{\mathsf{d}x}\ln(x)=\frac{1}{x},$$

so we would expect

$$\int \frac{\mathrm{d}x}{x} = \ln(x) + c.$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

- When n = 1, the previous method fails because 1/(-n+1) is undefined.
- We observe that

$$\frac{\mathsf{d}}{\mathsf{d}x}\ln(x)=\frac{1}{x},$$

so we would expect

$$\int \frac{\mathrm{d}x}{x} = \ln(x) + c.$$

• This isn't quite true.

The Indefinite Integral of $\frac{1}{x}$ (Cont.)

Let F(x) be an antiderivative of 1/x.

MATH 122

CLIFTON

6.1/6.2:
ANTIDERIVA

POLYNOMIALS
EXPONENTIAL:
THE INDEFINITIONS
INTEGRAL

SOME EXAMPLES
NEGATIVE
EXPONENTS

4日 > 4月 > 4目 > 4目 > 目 900

MATH 122

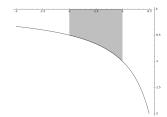
CLIFTON

6.1/6.2: Antideriva tives

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Let F(x) be an antiderivative of 1/x. Since this function is continuous away from x = 0, we could ask:

What is the area between 1/x and the *x*-axis from x = -2 to x = -1?



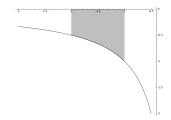
MATH 122

6.1/6.2: Antideriva-

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Let F(x) be an antiderivative of 1/x. Since this function is continuous away from x = 0, we could ask:

What is the area between 1/x and the x-axis from x = -2 to x = -1?



By the Fundamental Theorem of Calculus, this is

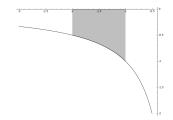
MATH 122

6.1/6.2: Antideriva

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Let F(x) be an antiderivative of 1/x. Since this function is continuous away from x = 0, we could ask:

What is the area between 1/x and the x-axis from x = -2 to x = -1?



By the Fundamental Theorem of Calculus, this is

$$\int_{-2}^{-1} \frac{\mathrm{d}x}{x} = F(-1) - F(-2).$$

MATH 122

CLIFTO

6.1/6.2: ANTIDERIVATIVES

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Since ln(x) is only defined for **positive** values of x, $F(x) \neq ln(x)$. We can fix this by taking F(x) = ln|x|.

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA-TIVES

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Since ln(x) is only defined for **positive** values of x, $F(x) \neq ln(x)$. We can fix this by taking F(x) = ln|x|. Recall that

$$|x| = \begin{cases} x & \text{if } 0 \le x, \\ -x & \text{if } x < 0 \end{cases}.$$

The Indefinite Integral of $\frac{1}{x}$ (Cont.)

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVATIVES
POLYNOMIALS

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Since ln(x) is only defined for **positive** values of x, $F(x) \neq ln(x)$. We can fix this by taking F(x) = ln|x|. Recall that

$$|x| = \left\{ \begin{array}{ll} x & \text{if } 0 \leq x, \\ -x & \text{if } x < 0 \end{array} \right..$$

For x < 0 we have

$$\frac{d}{dx}|x| =$$

MATH 122

CLIFTON

6.1/6.2:
ANTIDERIVATIVES
POLYNOMIALS

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Since ln(x) is only defined for **positive** values of x, $F(x) \neq ln(x)$. We can fix this by taking F(x) = ln|x|. Recall that

$$|x| = \left\{ \begin{array}{ll} x & \text{if } 0 \leq x, \\ -x & \text{if } x < 0 \end{array} \right..$$

For x < 0 we have

$$\frac{\mathsf{d}}{\mathsf{d}x}|x| = \frac{\mathsf{d}}{\mathsf{d}x}(-x)$$

MATH 122

CLIFTON

6.1/6.2:
ANTIDERIVA
TIVES
POLYNOMIALS
EXPONENTIALS

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Since ln(x) is only defined for **positive** values of x, $F(x) \neq ln(x)$. We can fix this by taking F(x) = ln|x|. Recall that

$$|x| = \left\{ \begin{array}{ll} x & \text{if } 0 \leq x, \\ -x & \text{if } x < 0 \end{array} \right..$$

For x < 0 we have

$$\frac{\mathrm{d}}{\mathrm{d}x}|x|=\frac{\mathrm{d}}{\mathrm{d}x}(-x)=-1.$$

MATH 122

CLIFTON

6.1/6.2:
ANTIDERIVATIVES
POLYNOMIALS
EXPONENTIALS

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Since ln(x) is only defined for **positive** values of x, $F(x) \neq ln(x)$. We can fix this by taking F(x) = ln|x|. Recall that

$$|x| = \left\{ \begin{array}{ll} x & \text{if } 0 \le x, \\ -x & \text{if } x < 0 \end{array} \right..$$

For x < 0 we have

$$\frac{\mathrm{d}}{\mathrm{d}x}|x|=\frac{\mathrm{d}}{\mathrm{d}x}(-x)=-1.$$

For x > 0 we have

$$\frac{d}{dx}|x| =$$

The Indefinite Integral of $\frac{1}{x}$ (Cont.)

MATH 122

CLIFTON

6.1/6.2:
ANTIDERIVATIVES
POLYNOMIALS
EXPONENTIALS

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Since ln(x) is only defined for **positive** values of x, $F(x) \neq ln(x)$. We can fix this by taking F(x) = ln|x|. Recall that

$$|x| = \left\{ \begin{array}{ll} x & \text{if } 0 \leq x, \\ -x & \text{if } x < 0 \end{array} \right..$$

For x < 0 we have

$$\frac{\mathrm{d}}{\mathrm{d}x}|x|=\frac{\mathrm{d}}{\mathrm{d}x}(-x)=-1.$$

For x > 0 we have

$$\frac{d}{dx}|x| = \frac{d}{dx}x$$

The Indefinite Integral of $\frac{1}{x}$ (Cont.)

MATH 122

CLIFTON

6.1/6.2:
ANTIDERIVATIVES
POLYNOMIALS
EXPONENTIALS

POLYNOMIALS
EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES
NEGATIVE
EXPONENTS

Since ln(x) is only defined for **positive** values of x, $F(x) \neq ln(x)$. We can fix this by taking F(x) = ln|x|. Recall that

$$|x| = \left\{ \begin{array}{ll} x & \text{if } 0 \leq x, \\ -x & \text{if } x < 0 \end{array} \right..$$

For x < 0 we have

$$\frac{\mathrm{d}}{\mathrm{d}x}|x|=\frac{\mathrm{d}}{\mathrm{d}x}(-x)=-1.$$

For x > 0 we have

$$\frac{\mathsf{d}}{\mathsf{d}x}|x| = \frac{\mathsf{d}}{\mathsf{d}x}x = 1.$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVA TIVES

POLYNOMIALS
EXPONENTIALS
THE INDEFINITIONS
INTEGRAL

SOME EXAMPLE

NEGATIVE EXPONENTS

The Indefinite Integral of $\frac{1}{x}$ (Cont.)

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVATIVES

POLYNOMIALS EXPONENTIALS THE INDEFINIT

INTEGRAL SOME EXAMPLES

NEGATIVE EXPONENTS

$$\frac{d}{dx} \ln |x| =$$

The Indefinite Integral of $\frac{1}{x}$ (Cont.)

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

TIVES
POLYNOMIALS
EXPONENTIALS

INTEGRAL
SOME EXAMPLES

NEGATIVE EXPONENTS

$$\frac{\mathrm{d}}{\mathrm{d}x}\ln|x| = \frac{\frac{\mathrm{d}}{\mathrm{d}x}|x|}{|x|}$$

MATH 122

EXPONENTS

$$\frac{d}{dx} \ln |x| = \frac{\frac{d}{dx} |x|}{|x|}$$

$$= \begin{cases} \frac{1}{x} & \text{if } 0 < x \\ \frac{-1}{-x} = \frac{1}{x} & \text{if } x < 0. \end{cases}$$

MATH 122

CLIFTON

6.1/6.2: ANTIDERIVATIVES

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES

EXPONENTS

$$\frac{d}{dx} \ln |x| = \frac{\frac{d}{dx} |x|}{|x|}$$

$$= \begin{cases} \frac{1}{x} & \text{if } 0 < x \\ \frac{-1}{-x} = \frac{1}{x} & \text{if } x < 0. \end{cases}$$

$$= \frac{1}{x}.$$

MATH 122

CLIFTON

6.1/6.2: Antideriva tives

EXPONENTIALS
THE INDEFINITE
INTEGRAL
SOME EXAMPLES

EXPONENTS

By the Chain Rule,

$$\frac{d}{dx} \ln |x| = \frac{\frac{d}{dx} |x|}{|x|}$$

$$= \begin{cases} \frac{1}{x} & \text{if } 0 < x \\ \frac{-1}{-x} = \frac{1}{x} & \text{if } x < 0. \end{cases}$$

$$= \frac{1}{x}.$$

Therefore

$$\int \frac{\mathrm{d}x}{x} = \ln|x| + c.$$