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Suppose a car is traveling at 60 miles per hour for 2 hours.

How far did the car go?
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Suppose a car is traveling at 60 miles per hour for 2 hours.
How far did the car go?
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Suppose a car is traveling at 60 miles per hour for 2 hours.
How far did the car go?

This is easy:

60
miles
hour

· 2 hours = 120 miles.
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Suppose a car is traveling at 60 miles per hour for 2 hours.
How far did the car go?

This is easy:
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Geometrically, this is the area under the constant curve
y(t) = 60 between t = 0 and t = 2:
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Geometrically, this is the area under the constant curve
y(t) = 60 between t = 0 and t = 2:
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This says that under constant velocity, v , the position of the
car, s(t), relative to the starting point at time 0 ≤ t is just

s(t) = v · t .
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According to Car and Driver, a 2006 Bugatti Veyron is
capable of an acceleration of 11.59 m / s2. Assume the car
starts at rest and accelerates at this constant rate.
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According to Car and Driver, a 2006 Bugatti Veyron is
capable of an acceleration of 11.59 m / s2. Assume the car
starts at rest and accelerates at this constant rate.

By the observation in the last example, we can compute the
velocity at time t as the area under the constant curve y(t) =
11.59:
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According to Car and Driver, a 2006 Bugatti Veyron is
capable of an acceleration of 11.59 m / s2. Assume the car
starts at rest and accelerates at this constant rate.

By the observation in the last example, we can compute the
velocity at time t as the area under the constant curve y(t) =
11.59:
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The velocity is linear: v(t) = 11.59 · t . Hence the position,
s(t), is the area under the velocity curve:
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The velocity is linear: v(t) = 11.59 · t . Hence the position,
s(t), is the area under the velocity curve:
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Therefore the position at time t is:

s(t) =
1
2

v(t) · t

=
1
2

(11.59 · t) · t

=
11.59

2
t2.
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What happens when the area is not a nice geometric
object?
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What happens when the area is not a nice geometric
object?

Can we tell how far a car traveled if we are given the following
table of times and velocities?

time (sec) 0 2 4 6 8 10
speed (ft/sec) 20 30 38 44 48 50

This is clearly not linear:

30 − 20
2 − 0

= 5 and
50 − 48
10 − 8

= 1.
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What happens when the area is not a nice geometric
object?

Can we tell how far a car traveled if we are given the following
table of times and velocities?

time (sec) 0 2 4 6 8 10
speed (ft/sec) 20 30 38 44 48 50

This is clearly not linear:

30 − 20
2 − 0

=

5 and
50 − 48
10 − 8

= 1.
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What happens when the area is not a nice geometric
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Can we tell how far a car traveled if we are given the following
table of times and velocities?

time (sec) 0 2 4 6 8 10
speed (ft/sec) 20 30 38 44 48 50

This is clearly not linear:

30 − 20
2 − 0

= 5 and

50 − 48
10 − 8

= 1.
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Can we tell how far a car traveled if we are given the following
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What happens when the area is not a nice geometric
object?

We can fit a curve to these points:

How do we compute the area of the shaded region?
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What happens when the area is not a nice geometric
object?

We can fit a curve to these points:

How do we compute the area of the shaded region?
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What happens when the area is not a nice geometric
object?

We can fit a curve to these points:

How do we compute the area of the shaded region?
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We could assume constant velocity between the two points
and estimate.

Say we assume the velocity is the velocity at
the left endpoint:

This is an underestimate of the area.
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We could assume constant velocity between the two points
and estimate. Say we assume the velocity is the velocity at
the left endpoint:

This is an underestimate of the area.
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We could assume constant velocity between the two points
and estimate. Say we assume the velocity is the velocity at
the left endpoint:

This is an underestimate of the area.
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We could assume constant velocity between the two points
and estimate. Say we assume the velocity is the velocity at
the left endpoint:

This is an underestimate of the area.
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Each rectangle has width 2.

The height of each rectangle is the height of the left
endpoint.
Our area estimate is:

2(20 + 30 + 38 + 44 + 48) = 2(180)

= 360 feet.
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Each rectangle has width 2.
The height of each rectangle is the height of the left
endpoint.

Our area estimate is:

2(20 + 30 + 38 + 44 + 48) = 2(180)

= 360 feet.
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The height of each rectangle is the height of the left
endpoint.
Our area estimate is:

2(20 + 30 + 38 + 44 + 48) = 2(180)

= 360 feet.
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Each rectangle has width 2.
The height of each rectangle is the height of the left
endpoint.
Our area estimate is:

2(20 + 30 + 38 + 44 + 48) =

2(180)

= 360 feet.
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Each rectangle has width 2.
The height of each rectangle is the height of the left
endpoint.
Our area estimate is:
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Each rectangle has width 2.
The height of each rectangle is the height of the left
endpoint.
Our area estimate is:

2(20 + 30 + 38 + 44 + 48) = 2(180)

= 360 feet.
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We could also assume the velocity is the velocity at the right
endpoint:

This is an overestimate of the area.
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We could also assume the velocity is the velocity at the right
endpoint:

This is an overestimate of the area.
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We could also assume the velocity is the velocity at the right
endpoint:

This is an overestimate of the area.
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Each rectangle has width 2.

The height of each rectangle is the height of the right
endpoint.
Our area estimate is:

2(30 + 38 + 44 + 48 + 50) = 2(210)

= 420 feet.
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Each rectangle has width 2.
The height of each rectangle is the height of the right
endpoint.

Our area estimate is:

2(30 + 38 + 44 + 48 + 50) = 2(210)

= 420 feet.
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Each rectangle has width 2.
The height of each rectangle is the height of the right
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Our area estimate is:
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Each rectangle has width 2.
The height of each rectangle is the height of the right
endpoint.
Our area estimate is:

2(30 + 38 + 44 + 48 + 50) =

2(210)

= 420 feet.
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Each rectangle has width 2.
The height of each rectangle is the height of the right
endpoint.
Our area estimate is:

2(30 + 38 + 44 + 48 + 50) = 2(210)

= 420 feet.
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Each rectangle has width 2.
The height of each rectangle is the height of the right
endpoint.
Our area estimate is:

2(30 + 38 + 44 + 48 + 50) = 2(210)

= 420 feet.

This tells us:

The distance traveled is at least 360 feet.
The distance traveled is at most 420 feet.
The distance traveled must be somewhere between
these two.
The average of these estimates is

420 + 360
2

= 390

feet, which gives a better estimate.
Can we do better? If so, how?
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We’ll use the old linear velocity example, v(t) = 11.59t , to
analyse these methods:
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Say we use the two points t = 0 and t = 10.

We know the
area under the curve is given by:

1
2

v(t) · t .

Our estimate is quite bad:

Red is the error.
Grey is the area.
The estimate for the
area is the sum of the
red and grey areas.
The error is equal to the
actual area!
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If we try three equidistant points, 0, t
2 , and t , then we get:

Visibly, this is a better
estimate.
The error is the area of
the two red triangles.
Both have base length
t
2 ; here t = 10.
The height of the left
triangle is v

( t
2

)
.

The height of the right
triangle is v(t) − v

( t
2

)
.
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So, the total error is:

1
2

[
v(t) − v

(
t
2

)]
t
2

+
1
2

v
(

t
2

)
· t

2
=

1
2

[
v(t) − v

(
t
2

)
+ v

(
t
2

)]
t
2

=
1
2

(
1
2

v(t) · t
)
.

By adding one more point, we’ve reduced the error by a
factor of two!
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If we try four equidistant points, 0, t
3 , 2t

3 , and t , then we get:

Visibly, this is an even
better estimate.
All three red triangles
have base length t

3 .
The height of the left
triangle is v

( t
3

)
.

The height of the middle
triangle is
v
(2t

3

)
− v

( t
3

)
.

The height of the right
triangle is v(t) − v

(2t
3

)
.
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If we use n + 1 equidistant points,

t0 = 0, t1 =
t
n
, t2 =

2t
n
, . . . , tn−1 =

(n − 1)t
n

, tn = t ,

then we expect the error will be sum of the areas of n
triangles. The k th triangle, for 1 < k < n, has:

base length t
n ,

height v(tk ) − v(tk−1),
area

1
2

[v (tk ) − v (tk−1)]
t
n

REMARK 1
Note that v(t0) = v(0) = 0.
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Adding up the areas of each of the triangles, we get the total
error:

1
2

[v(t) − v(tk−1) + v(tk−1) − v(tk−2) + . . . + v(t2) − v(t1) + v(t1) − v(t0)]
t
n

=
1
2

v(t) · t
n

=
1
n

(
1
2

v(t) · t
)
.

Therefore, if we use n + 1 equidistant points, we have
overestimated the area under v(t) by

1
n

(
1
2

v(t) · t
)
.
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2 Equidistant Points:

Our Estimate for the area here is zero. We have underesti-
mated the area by 1

2v(t) · t .
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By the same analysis as with the right estimates, using
n + 1 equidistant points

t0 = 0, t1 =
t
n
, t2 =

2t
n
, . . . , tn−1 =

(n − 1)t
n

, tn = t ,

then we expect the error will be sum of the areas of n
triangles. The k th triangle, for 1 < k < n, has:

base length t
n ,

height v(tk ) − v(tk−1),
area

1
2

[v (tk ) − v (tk−1)]
t
n

REMARK 2
Note that v(t0) = v(0) = 0.
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Adding up the areas of each of the triangles, we get the total
error:
1
2

[v(t) − v(tk−1) + v(tk−1) − v(tk−2) + . . . + v(t2) − v(t1) + v(t1) − v(t0)]
t
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(
1
2

v(t) · t
)
.

Therefore, if we use n + 1 equidistant points, we have
underestimated the area under v(t) by

1
n

(
1
2

v(t) · t
)
.
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MORE IS BETTER

Using n + 1 points for either a left or a right estimate,
the absolute value of the error in estimating the area
under the curve between 0 and t = 10 is given by

1
n

(
1
2

v(t) · t
)

=
1
n

(
11.59

2
100

)
.

This tells us that as n becomes large, the error
decreases. That is, the more points, the better the
estimate!
As n grows larger, the right estimate decreases
towards the actual area and the left estimate increases
towards the actual area.
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towards the actual area and the left estimate increases
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decreases. That is, the more points, the better the
estimate!
As n grows larger, the right estimate decreases
towards the actual area and the left estimate increases
towards the actual area.



MATH 122

CLIFTON

5.1:
DISTANCE
AND ACCU-
MULATED
CHANGE

CONSTANT
FUNCTIONS

LINEAR FUNCTIONS

NON-LINEAR
FUNCTIONS

RIGHT ENDPOINT
ESTIMATES

LEFT ENDPOINT
ESTIMATES

PARTITIONS

LEFT- AND
RIGHT-HAND SUMS

APPLYING OUR
METHOD

RIGHT ERROR



MATH 122

CLIFTON

5.1:
DISTANCE
AND ACCU-
MULATED
CHANGE

CONSTANT
FUNCTIONS

LINEAR FUNCTIONS

NON-LINEAR
FUNCTIONS

RIGHT ENDPOINT
ESTIMATES

LEFT ENDPOINT
ESTIMATES

PARTITIONS

LEFT- AND
RIGHT-HAND SUMS

APPLYING OUR
METHOD

LEFT ERROR



MATH 122

CLIFTON

5.1:
DISTANCE
AND ACCU-
MULATED
CHANGE

CONSTANT
FUNCTIONS

LINEAR FUNCTIONS

NON-LINEAR
FUNCTIONS

RIGHT ENDPOINT
ESTIMATES

LEFT ENDPOINT
ESTIMATES

PARTITIONS

LEFT- AND
RIGHT-HAND SUMS

APPLYING OUR
METHOD

PARTITIONS OF AN INTERVAL

To generalize our methods to non-linear curves, we
introduce some notation.

DEFINITION 1
For a continuous function, f , on an interval [a,b], a set of
n + 1 equidistant points,

t0 = a < t1 < t2 < . . . < tn−1 < tn = b

is called a partition of [a,b].
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These n + 1 points are called a partition because they
partition [a,b] into n smaller intervals of length ∆t

∆t ∆t ∆t

a t1 t2 tn−1 tn−1· · ·

where
∆t =

b − a
n

.

These n smaller intervals form the bases of the rectangles
we use to estimate the area under a curve.
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DEFINITION 2
Let f be a continuous function on the interval [a,b].

Given a
partition

a = t0 < t1 < · · · < tn−1 < tn = b

The Left-Hand Sum is

f (t0)∆t + f (t1)∆t + · · · + f (tn−2)∆t + f (tn−1)∆t .

The Right-Hand Sum is

f (t1)∆t + f (t2)∆t + · · · + f (tn−1)∆t + f (tn)∆t .
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The Left-Hand Sum underestimates the area under the
curve:
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The Right-Hand Sum overestimates the area under the
curve:
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For ease of notation, we write the left-hand sum as

n−1∑
i=0

f (ti)∆t = f (t0)∆t + . . . + f (tn−1)∆t

and we write the right-hand sum as

n∑
i=1

f (ti)∆t = f (t1)∆t + . . . + f (tn)∆t .

The letter i is the index of the summation and the letter n is
the upper bound of the summation. The i = 0 underneath
the sigma, Σ, indicates the sum starts at 0 and the upper
bound indicates when to stop.
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The entire point of our analysis of the linear velocity
example was to improve our estimates for the non-linear
curve
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When we use a Left-Hand Sum, we can’t necessarily write
down the error explicitly because the error isn’t quite a
triangle:

However, we can use differential calculus to get around this.
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LINEARIZATION FOR LEFT-HAND SUMS

Let f be a continuous function. Recall that if we take ∆t
sufficiently small, then we can use the Tangent Line
Approximation,

f (t) ≈ f ′(a)(t − a) + f (a),

to ensure that f is basically a line whenever a ≤ t ≤ a + ∆t .
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Say we want to find the area beneath a continuous curve, f ,
on the interval [a,b].

We can control the size of ∆t by increasing the number
of points in a partition

a = t0 < t1 < t2 < · · · < tn−1 < tn = b

since
∆t =

b − a
n

.

This means that if we use enough points,

f (t) ≈ f ′(ti)(t − ti) + f (ti),

whenever ti ≤ t ≤ ti+1, and in particular

f (ti+1) ≈ f ′(ti)∆t + f (ti).
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LINEARIZATION FOR LEFT-HAND SUMS (CONT.)

Using this linearization, we get the following picture on
[ti , ti+1]:

f (ti)
f (ti+1)

∆y
f (t)

∆t

ti ti+1

By our previous analysis, the Left-Hand Sum
underestimates the area under f on the interval [ti , ti+1] by
approximately

1
2

∆y∆t =
1
2

[f (ti+1) − f (ti)] ∆t .
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By our work in Chapter 4, f attains a global maximum,
M, and a global minimum, m, on [a,b].

This means we can bound the approximate error of the
underestimate by

1
2

[f (ti+1) − f (ti)] ∆t ≤ 1
2

[M − m] ∆t .

Since M − m is a fixed constant, this value goes to zero
as n becomes large!
This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Left-Hand Sum increases towards the area under
the curve.
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to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Left-Hand Sum increases towards the area under
the curve.
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LINEARIZATION FOR LEFT-HAND SUMS (CONT.)

By our work in Chapter 4, f attains a global maximum,
M, and a global minimum, m, on [a,b].
This means we can bound the approximate error of the
underestimate by

1
2

[f (ti+1) − f (ti)] ∆t

≤ 1
2

[M − m] ∆t .

Since M − m is a fixed constant, this value goes to zero
as n becomes large!
This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Left-Hand Sum increases towards the area under
the curve.
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LINEARIZATION FOR LEFT-HAND SUMS (CONT.)

By our work in Chapter 4, f attains a global maximum,
M, and a global minimum, m, on [a,b].
This means we can bound the approximate error of the
underestimate by

1
2

[f (ti+1) − f (ti)] ∆t ≤ 1
2

[M − m] ∆t .

Since M − m is a fixed constant, this value goes to zero
as n becomes large!
This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Left-Hand Sum increases towards the area under
the curve.
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LINEARIZATION FOR LEFT-HAND SUMS (CONT.)

By our work in Chapter 4, f attains a global maximum,
M, and a global minimum, m, on [a,b].
This means we can bound the approximate error of the
underestimate by

1
2

[f (ti+1) − f (ti)] ∆t ≤ 1
2

[M − m] ∆t .

Since M − m is a fixed constant, this value goes to zero
as n becomes large!

This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Left-Hand Sum increases towards the area under
the curve.
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LINEARIZATION FOR LEFT-HAND SUMS (CONT.)

By our work in Chapter 4, f attains a global maximum,
M, and a global minimum, m, on [a,b].
This means we can bound the approximate error of the
underestimate by

1
2

[f (ti+1) − f (ti)] ∆t ≤ 1
2

[M − m] ∆t .

Since M − m is a fixed constant, this value goes to zero
as n becomes large!
This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.

As we increase the number of points in our partition,
the Left-Hand Sum increases towards the area under
the curve.
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LINEARIZATION FOR LEFT-HAND SUMS (CONT.)

By our work in Chapter 4, f attains a global maximum,
M, and a global minimum, m, on [a,b].
This means we can bound the approximate error of the
underestimate by

1
2

[f (ti+1) − f (ti)] ∆t ≤ 1
2

[M − m] ∆t .

Since M − m is a fixed constant, this value goes to zero
as n becomes large!
This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Left-Hand Sum increases towards the area under
the curve.
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LINEARIZATION FOR RIGHT-HAND SUMS

Just as in the linear case, the analysis of the
Right-Hand Sums is completely symmetric.

After linearizing, the approximate error for the
overestimate is

1
2

[f (ti+1) − f (ti)] ∆t ≤ 1
2

[M − m] ∆t .

Again, as M − m is a constant, this value goes to zero
as n becomes large!
This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Right-Hand Sum decreases towards the area
under the curve.
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LINEARIZATION FOR RIGHT-HAND SUMS

Just as in the linear case, the analysis of the
Right-Hand Sums is completely symmetric.
After linearizing, the approximate error for the
overestimate is

1
2

[f (ti+1) − f (ti)] ∆t ≤ 1
2

[M − m] ∆t .

Again, as M − m is a constant, this value goes to zero
as n becomes large!
This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Right-Hand Sum decreases towards the area
under the curve.
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LINEARIZATION FOR RIGHT-HAND SUMS

Just as in the linear case, the analysis of the
Right-Hand Sums is completely symmetric.
After linearizing, the approximate error for the
overestimate is

1
2

[f (ti+1) − f (ti)] ∆t

≤ 1
2

[M − m] ∆t .

Again, as M − m is a constant, this value goes to zero
as n becomes large!
This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Right-Hand Sum decreases towards the area
under the curve.
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LINEARIZATION FOR RIGHT-HAND SUMS

Just as in the linear case, the analysis of the
Right-Hand Sums is completely symmetric.
After linearizing, the approximate error for the
overestimate is

1
2

[f (ti+1) − f (ti)] ∆t ≤ 1
2

[M − m] ∆t .

Again, as M − m is a constant, this value goes to zero
as n becomes large!
This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Right-Hand Sum decreases towards the area
under the curve.
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LINEARIZATION FOR RIGHT-HAND SUMS

Just as in the linear case, the analysis of the
Right-Hand Sums is completely symmetric.
After linearizing, the approximate error for the
overestimate is

1
2

[f (ti+1) − f (ti)] ∆t ≤ 1
2

[M − m] ∆t .

Again, as M − m is a constant, this value goes to zero
as n becomes large!

This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Right-Hand Sum decreases towards the area
under the curve.
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LINEARIZATION FOR RIGHT-HAND SUMS

Just as in the linear case, the analysis of the
Right-Hand Sums is completely symmetric.
After linearizing, the approximate error for the
overestimate is

1
2

[f (ti+1) − f (ti)] ∆t ≤ 1
2

[M − m] ∆t .

Again, as M − m is a constant, this value goes to zero
as n becomes large!
This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.

As we increase the number of points in our partition,
the Right-Hand Sum decreases towards the area
under the curve.
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LINEARIZATION FOR RIGHT-HAND SUMS

Just as in the linear case, the analysis of the
Right-Hand Sums is completely symmetric.
After linearizing, the approximate error for the
overestimate is

1
2

[f (ti+1) − f (ti)] ∆t ≤ 1
2

[M − m] ∆t .

Again, as M − m is a constant, this value goes to zero
as n becomes large!
This means we can compute the area under our curve
to arbitrary precision by increasing the number of points
in our partition.
As we increase the number of points in our partition,
the Right-Hand Sum decreases towards the area
under the curve.
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OUR DISTANCE TRAVELED EXAMPLE

Recall that we started this excursion with the following
question:

Given the table of velocities and times
time (sec) 0 2 4 6 8 10

speed (ft/sec) 20 30 38 44 48 50

can we determine how far the car traveled?
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OUR DISTANCE TRAVELED EXAMPLE

Recall that we started this excursion with the following
question:

Given the table of velocities and times
time (sec) 0 2 4 6 8 10

speed (ft/sec) 20 30 38 44 48 50

can we determine how far the car traveled?
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

It is possible to fit the data to the quadratic

v(t) =
−1
4

t2 +
11
2

t + 20.

That is,

t 0 2 4 6 8 10
f(t) 20 30 38 44 48 50

This is the curve under which we’ve been attempting to
estimate the area. Later, we’ll be able to explicitly compute
that the area under this curve–which represents the
distance traveled over those ten seconds–is

1175
3

= 391.6 feet
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

It is possible to fit the data to the quadratic

v(t) =
−1
4

t2 +
11
2

t + 20.

That is,

t 0 2 4 6 8 10
f(t) 20 30 38 44 48 50

This is the curve under which we’ve been attempting to
estimate the area. Later, we’ll be able to explicitly compute
that the area under this curve–which represents the
distance traveled over those ten seconds–is

1175
3

= 391.6 feet
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

It is possible to fit the data to the quadratic

v(t) =
−1
4

t2 +
11
2

t + 20.

That is,

t 0 2 4 6 8 10
f(t) 20 30 38 44 48 50

This is the curve under which we’ve been attempting to
estimate the area.

Later, we’ll be able to explicitly compute
that the area under this curve–which represents the
distance traveled over those ten seconds–is

1175
3

= 391.6 feet
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

It is possible to fit the data to the quadratic

v(t) =
−1
4

t2 +
11
2

t + 20.

That is,

t 0 2 4 6 8 10
f(t) 20 30 38 44 48 50

This is the curve under which we’ve been attempting to
estimate the area. Later, we’ll be able to explicitly compute
that the area under this curve–which represents the
distance traveled over those ten seconds–is

1175
3

= 391.6 feet
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

With 5 equidistant points

Our Left-Hand Sum estimated 360 feet,
Our Right-Hand Sum estimated 420 feet,
Our average estimated 390 feet, which was quite close.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

With 5 equidistant points
Our Left-Hand Sum estimated 360 feet,

Our Right-Hand Sum estimated 420 feet,
Our average estimated 390 feet, which was quite close.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

With 5 equidistant points
Our Left-Hand Sum estimated 360 feet,
Our Right-Hand Sum estimated 420 feet,

Our average estimated 390 feet, which was quite close.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

With 5 equidistant points
Our Left-Hand Sum estimated 360 feet,
Our Right-Hand Sum estimated 420 feet,
Our average estimated 390 feet, which was quite close.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Left-Hand Sums for n + 1 points:

n
∑n−1

i=0 f (ti)∆t

10 376.25
100 390.1625
1,000 391.516625
10,000 391.65166625
100,000 391.6651666625

So we can see that as n increases, the Left-Hand Sums
increase towards the actual area under the curve, as
expected.



MATH 122

CLIFTON

5.1:
DISTANCE
AND ACCU-
MULATED
CHANGE

CONSTANT
FUNCTIONS

LINEAR FUNCTIONS

NON-LINEAR
FUNCTIONS

RIGHT ENDPOINT
ESTIMATES

LEFT ENDPOINT
ESTIMATES

PARTITIONS

LEFT- AND
RIGHT-HAND SUMS

APPLYING OUR
METHOD

OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Left-Hand Sums for n + 1 points:

n
∑n−1

i=0 f (ti)∆t
10 376.25

100 390.1625
1,000 391.516625
10,000 391.65166625
100,000 391.6651666625

So we can see that as n increases, the Left-Hand Sums
increase towards the actual area under the curve, as
expected.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Left-Hand Sums for n + 1 points:

n
∑n−1

i=0 f (ti)∆t
10 376.25
100 390.1625

1,000 391.516625
10,000 391.65166625
100,000 391.6651666625

So we can see that as n increases, the Left-Hand Sums
increase towards the actual area under the curve, as
expected.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Left-Hand Sums for n + 1 points:

n
∑n−1

i=0 f (ti)∆t
10 376.25
100 390.1625
1,000 391.516625

10,000 391.65166625
100,000 391.6651666625

So we can see that as n increases, the Left-Hand Sums
increase towards the actual area under the curve, as
expected.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Left-Hand Sums for n + 1 points:

n
∑n−1

i=0 f (ti)∆t
10 376.25
100 390.1625
1,000 391.516625
10,000 391.65166625

100,000 391.6651666625

So we can see that as n increases, the Left-Hand Sums
increase towards the actual area under the curve, as
expected.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Left-Hand Sums for n + 1 points:

n
∑n−1

i=0 f (ti)∆t
10 376.25
100 390.1625
1,000 391.516625
10,000 391.65166625
100,000 391.6651666625

So we can see that as n increases, the Left-Hand Sums
increase towards the actual area under the curve, as
expected.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Left-Hand Sums for n + 1 points:

n
∑n−1

i=0 f (ti)∆t
10 376.25
100 390.1625
1,000 391.516625
10,000 391.65166625
100,000 391.6651666625

So we can see that as n increases, the Left-Hand Sums
increase towards the actual area under the curve, as
expected.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Right-Hand Sums for n + 1 points:

n
∑n

i=1 f (ti)∆t

10 406.25
100 393.1625
1,000 391.816625
10,000 391.68166625
100,000 391.6681666625

So we can see that as n increases, the Right-Hand Sums
decrease towards the actual area under the curve, as
expected.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Right-Hand Sums for n + 1 points:

n
∑n

i=1 f (ti)∆t
10 406.25

100 393.1625
1,000 391.816625
10,000 391.68166625
100,000 391.6681666625

So we can see that as n increases, the Right-Hand Sums
decrease towards the actual area under the curve, as
expected.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Right-Hand Sums for n + 1 points:

n
∑n

i=1 f (ti)∆t
10 406.25
100 393.1625

1,000 391.816625
10,000 391.68166625
100,000 391.6681666625

So we can see that as n increases, the Right-Hand Sums
decrease towards the actual area under the curve, as
expected.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Right-Hand Sums for n + 1 points:

n
∑n

i=1 f (ti)∆t
10 406.25
100 393.1625
1,000 391.816625

10,000 391.68166625
100,000 391.6681666625

So we can see that as n increases, the Right-Hand Sums
decrease towards the actual area under the curve, as
expected.
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OUR DISTANCE TRAVELED EXAMPLE (CONT.)

Here is a table of Right-Hand Sums for n + 1 points:

n
∑n

i=1 f (ti)∆t
10 406.25
100 393.1625
1,000 391.816625
10,000 391.68166625

100,000 391.6681666625

So we can see that as n increases, the Right-Hand Sums
decrease towards the actual area under the curve, as
expected.
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