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MAXIMA AND For any function, f, we say

MINIMA

e f has a global minimum at p if f(p) < f(x) for all x in the
domain of f.

e f has a global maximum at p if f(x) < f(p) for all x in
the domain of f. |
If f is a continuous function defined on a closed interval,

[a, b], then f has a global minimum and a global maximum
on [a, b].
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LR Find the global extrema of f(x) = x3 — 9x? — 48x + 52 on
CLIFTON [_5’14]

4.3: GLOBAL

MAXIMA AND fI(X) = 3X2 —18x —48 = 3(X2 — 6x — 16)
MINIMA
3(x + 2)(x — 8)

f'(x) = 6x—18=16(x —3)
= f'(-2) = 6(-2-3)<0
= f"(8) = 6(8—3)>0.
f(-5) = -58
f(14) = 360
f(—2) = 104
f(8) = —396.

Maximum: (14,360).
Minimum: (8,-396).
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For a cost function, C(q), and a revenue function, R(q),
define

@ the marginal costis

d /
@C(Q) = C'(q).-

@ the marginal revenue is

1< Rl@) = R(a)
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™(q) = R'(q9) - C'(9). )
Critical points occur whenever marginal cost equal marginal
revenue, or one of marginal cost/revenue is undefined.

1ZING
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R(q) = 5q—0.003g°
C(q) = 300+1.1q

Since
m(q) = —0.003¢2 + (5 — 1.1)g — 300

is a quadratic with negative leading coefficient, the global
maximum occurs at
—(5-1.11)

9= 30003 o
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price attracts an additional 30 customers. What price should
the company charge per trip to maximize revenue?

Since each $5 decrease in the price, p, increases the number
of customers, q, by 30, we have

(80 —p)

g(p) = 300+ —5 30
= 300+ 6(80 —p)
= 300 +480 —6p

= —6p+ 780.
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At a price of $80 for a half day trip, a white water rafting
company attracts 300 customers. Every $5 decrease in
price attracts an additional 30 customers. What price should
the company charge per trip to maximize revenue?

The maximum revenue is

R(65) = $25, 350.
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