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GLOBAL EXTREMA

DEFINITION 1
For any function, f , we say

f has a global minimum at p if f (p) ≤ f (x) for all x in the
domain of f .
f has a global maximum at p if f (x) ≤ f (p) for all x in
the domain of f .

THEOREM 1
If f is a continuous function defined on a closed interval,
[a,b], then f has a global minimum and a global maximum
on [a,b].
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EXAMPLE

Find the global extrema of f (x) = x3 − 9x2 − 48x + 52 on
[−5,14].

f ′(x) = 3x2 − 18x − 48 = 3(x2 − 6x − 16)
= 3(x + 2)(x − 8)

f ′′(x) = 6x − 18 = 6(x − 3)
⇒ f ′′(−2) = 6(−2− 3) < 0
⇒ f ′′(8) = 6(8− 3) > 0.

f (−5) = −58
f (14) = 360
f (−2) = 104

f (8) = −396.

Maximum: (14,360).
Minimum: (8,-396).
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DEFINITION

For a cost function, C(q), and a revenue function, R(q),
define

the marginal cost is

d

dq
C(q) = C′(q), .

the marginal revenue is

d

dq
R(q) = R′(q).
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MARGINAL PROFIT

DEFINITION 2
The marginal profit is

π′(q) = R′(q)− C′(q).

REMARK 1
Critical points occur whenever marginal cost equal marginal
revenue, or one of marginal cost/revenue is undefined.
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EXAMPLE

Find the quantity which maximizes profit for the given
revenue and cost functions on [0,1000]

R(q) = 5q − 0.003q2

C(q) = 300 + 1.1q

Since
π(q) = −0.003q2 + (5− 1.1)q − 300

is a quadratic with negative leading coefficient, the global
maximum occurs at

q =
−(5− 1.11)
2(−0.003)

= 650
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EXAMPLE

At a price of $80 for a half day trip, a white water rafting
company attracts 300 customers.

Every $5 decrease in
price attracts an additional 30 customers. What price should
the company charge per trip to maximize revenue?
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EXAMPLE

At a price of $80 for a half day trip, a white water rafting
company attracts 300 customers. Every $5 decrease in
price attracts an additional 30 customers. What price should
the company charge per trip to maximize revenue?

Since each $5 decrease in the price, p, increases the number
of customers, q, by 30, we have

q(p)

= 300 +
(80− p)

5
· 30

= 300 + 6(80− p)
= 300 + 480− 6p
= −6p + 780.
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At a price of $80 for a half day trip, a white water rafting
company attracts 300 customers. Every $5 decrease in
price attracts an additional 30 customers. What price should
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