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DERIVATIVE OF CONSTANTS

Let f (x) = a for a ∈ R (this means “a is an element of
R”, the set of real numbers).

The difference quotient for any x0, x1 is

f (x0)− f (x1)

x0 − x1
=

a− a
x0 − x1

= 0.

Therefore f ′(x) = 0.
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THE DERIVATIVE IS A LINEAR OPERATOR

Let f and g be differentiable functions, and let a ∈ R.

d

dx
(f (x)± g(x))

=
d

dx
f (x)± d

dx
g(x)

d

dx
(af (x))

= a
d

dx
f (x).
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The derivative of xn for n ∈ R is

d

dx
(xn) = nxn−1.

REMARK 1
The derivative of a linear function is

d

dx
(mx + b) = m

d

dx
x +

d

dx
(b) = m
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Consider a degree n polynomial,

p(x) = anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0.

The derivative is

p′(x) =
d

dx
(anxn + an−1xn−1 + · · ·+ a2x2 + a1x + a0)

= an
d

dx
(xn) + an−1

d

dx
(xn−1) + · · ·

+ a2
d

dx
(x2) + a1

d

dx
(x)

= nanxn−1 + (n − 1)an−1xn−2 + · · ·+ 2a2x + a1.
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Differentiate the following

1 A(t) = 3t5

2 r(p) = p5 + p3

3 f (x) = 5x2 − 7x3

4 g(t) = t2

4 + 3
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Find the derivative of

f (x) = x3 − 2x2 − 5x + 7.

f ′(x) =
d

dx
(x3 − 2x2 − 5x + 7)

=
d

dx
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dx
(2x2)− d

dx
(5x) +

d

dx
(7)

=
d

dx
(x3)− 2

d

dx
(x2)− 5

d

dx
(x) + 0

= 3x2 − 4x − 5.
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The derivative of ex is

d

dx
(ex) = ex .
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The derivative of the natural logarithm is

d

dx
(ln(x)) =

1
x
.

The derivative of loga(x) is

d

dx
(loga(x)) =

d

dx

(
ln(x)
ln(a)

)
=

1
ln(a)

d

dx
(ln(x))

=
1

ln(a)x
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